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Abstract: The analysis of Discrete Event Systems suffer from the well known state explosion
problem. A classical technique to overcome this problem is to relax the behaviour by partially
removing the integrality constraints, thus dealing with hybrid or continuous systems. In the Petri
nets framework, continuous net systems (technically hybrid systems) are the result of removing
the integrality constraint in the firing of transitions. This relaxation may highly reduce the
complexity of analysis techniques but may not preserve important properties of the original
system. This paper deals with the basic operation of fluidization. More precisely, it aims at
establishing conditions that a discrete system must satisfy so that a given property is preserved
by the continuous system. These conditions will be mainly based on the here introduced marking
homothetic behaviours of the system. The focus will be on logical properties as boundedness,
deadlock-freeness, liveness and reversibility. Furthermore, testing homothetic montonicity of
some properties in the discrete systems will be considered.
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1. INTRODUCTION

Petri nets [1, 2], as other formalisms for Discrete Event
Dynamic Systems (DEDs), suffer from the state explosion
problem. Such a problem renders analysis techniques based
on exhaustive enumeration computationally infeasible for
large system populations. A promising approach to over-
come this difficulty is to relax the original discrete model
by explicitly removing the integrality constraint in the
firing of transitions. This process is known as fluidization
being its result a continuous Petri net (PN) in which both
the firing amounts of transitions and the marking of places
are non-negative real quantities [7, 9].

Continuous PNs allow the use of some polynomial time
complexity techniques for several analysis purposes [9].
Unfortunately, continuous nets may not always preserve
important properties of the discrete model [8]. For this
reason, it is crucial to study which discrete PN systems
can be “succesfully” fluidified and which ones not.

At first glance, the simple way in which the basic defini-
tions of discrete models are extended to continuous ones
may make us naively think that their behaviour will be
similiar. However, the behaviour of the continuous model
can be completely different just because the integrality
constraint has been dropped. In other words, not all DEDs
can be satisfactorily fluidified. Consider, for instance, the
net system in Fig.1. If considered as discrete, the system is
deadlock-free: from m0 = (3, 0), both t2 and t1 can be fired
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Fig. 1. Not homothetically deadlockfree PN [8]

alternatively, and no deadlock can be reached. However, if
considered as continuous, transition t2 can be fired in an
amount of 1.5 from m0, leading to a deadlock marking
md = (0, 1.5).

Notice that deadlock-freeness of the discrete system in
Fig.1 highly depends on its initial marking. In fact, if the
initial marking is doubled, i.e., we consider m

′
0 = (6, 0),

then the system deadlocks by firing t2 an amount of 3.

Let us now consider the PN in Fig.2 (a), which exhibits
a different behaviour. Considered as discrete, this PN is
deadlockfree for m0 = (2, 1, 0, 0, 0). Moreover, it is
deadlockfree for an initial marking proportional to m0,
i.e., m

′
0 = k ·m0, with k ∈ N. We will say that the system

is homothetically deadlockfree. When the PN system is
fluidified, i.e., the PN system in Fig.2 (a) is a continuous
system, it preserves the deadlock-freeness property.

The generalization of this fact is that, if a discrete system is
deadlockfree with a certain m0, and it is also deadlockfree
with a scaled initial marking (k·m0 with k ∈ N+), then the
system is said to be homothetically deadlock-free. We will
exploit this idea to extract conditions for the preservation
of properties when a discrete system is fluidified.
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Fig. 2. Homothetically deadlockfree PN,m0 = (2, 1, 0, 0, 0)

This paper explores the kind of features a discrete net
system must exhibit so that a given property is pre-
served when fluidization is applied. If focuses on classical
properties as reversibility, boundedness, deadlock-freeness,
liveness and reversibility. Furthermore, homothetic mono-
tonicity of boundedness and deadlock-freeness properties
in discrete Petri nets are studied.

This work is organized as follows. Section 2 recalls some
definitions that will be used in the rest of the paper.
Section 3 sets the main result: a property that exhibits
homothetic monotonicity in a discrete PN system, will
be preserved after fluidization. Section 5 studies whether
a discrete PN is homothetic monotonous on deadlock-
freeness property. Finally, Section 6 deals with some con-
clusions and open problems.

2. PRELIMINARY CONCEPTS AND DEFINITIONS

Some concepts used in the rest of the paper are defined
here. In the following, it is assumed that the reader is fa-
miliar with Petri nets (see [1, 2] for a gentle introduction).

2.1 Continuous Petri nets

The Petri net structure is denoted N :

Definition 1. A PN is a tuple N = 〈P, T, Pre, Post〉
where P = {p1, p2, ..., pn} and T = {t1, t2, ..., tm} are
disjoint and finite sets of places and transitions, and
Pre, Post are |P | × |T | sized, natural valued, incidence
matrices.

Given a Petri net and a marking, the discrete Petri net
system can be defined:

Definition 2. A discrete PN system is a tuple 〈N , m0〉D
where N is the structure and m0 ∈ N|P | is the initial
marking.

In discrete PN systems, a transition t is enabled at m

if for every p ∈ •t, m[p] ≥ Pre[p, t]. It can be fired in
any amount α ∈ N such that 0 < α ≤ enab(t, m), where

enab(t, m) = minp∈•t⌊
m[p]

P re[p,t]⌋.

The main difference between continuous and discrete PNs
is in the firing amounts and consequently in the marking,

which in discrete PNs are restricted to be in the naturals,
while in continuous PNs are relaxed into the non-negative
real numbers. Thus, a continuous PN system is understood
as a relaxation of a discrete one.

Definition 3. A continuous PN system is a tuple 〈N , m0〉C
where N is the structure and m0 ∈ R|P |

≥0 is the initial
marking.

In continuous systems, a transition t is enabled at m

if for every p ∈ •t, m[p] > 0. It can be fired in any
amount α ∈ R such that 0 < α ≤ enab(t, m), where

enab(t, m) = minp∈•t{
m[p]

P re[p,t]}.

In both discrete and continuous PN systems, the firing
of t in a certain amount α leads to a new marking m

′,

and denoted as m
αt
−→ m

′. It holds m
′ = m + α · C[P, t],

where C = Post−Pre is the token flow matrix (incidence
matrix if N is self-loop free) and C[P, t] denotes the
column t of the matrix C. Hence, m = m0 + C · σ,
the state (or fundamental) equation summarizes the way
the marking evolves; where σ is the firing count vector
associated to the fired sequence. Right and left natural
annullers of the token flow matrix are called T- and P-
semiflows, respectively. When ∃y > 0, y · C = 0, the net
is said to be conservative, and when ∃x > 0, C · x = 0,
the net is said to be consistent. A set of places Θ is a trap
if Θ• ⊆ •Θ. While a set of places Σ is a siphon if •Σ ⊆ Σ•.

The set of all the reachable markings of 〈N , m0〉D is
denoted as reachability set, RSD(N , m0).

Definition 4. RSD(N , m0) = {m | ∃ σ = tγ1
. . . tγk

such that m0
tγ1−→ m1

tγ2−→ m2 · · ·
tγk−→ mk = m}.

In continuous PNs, two sets of reachable markings are
considered: one denoted as RSC(N , m0), that contains
all the markings that are reachable with finite firing
sequences; and the lim-reachability set, denoted as lim-
RSC(N , m0), that contains all the markings that are
reachable either with a finite or with an infinite firing
sequence.

Definition 5. RSC(N , m0) = {m | ∃ σ = α1tγ1
. . . αktγk

s.t. m0
α1tγ1−→ m1

α2tγ2−→ m2 · · ·
αktγk−→ mk = m where

αi ∈ R>0, ∀i ∈ {1..k}}.

Definition 6. lim-RSC(N , m0)={m | ∃σ = α1tγ1
...αitγi

...

s.t. m0

α1tγ1−→ m1

α2tγ2−→ m2 . . . mi−1

αitγi−→ mi . . . and
limi→∞ mi = m where αi ∈ R>0, ∀i > 0 }.

Notice that it holds RSD(N , m0) ⊆ RSC(N , m0) ⊆
lim-RSC(N , m0).

An interesting consequence of the definition of continuous
firings is Property 7, a well known result in [8].

Property 7. If m ∈ RSC(N , m0) then α · m ∈ RSC(N ,
α · m0), ∀α ∈ R>0.

Finally, let us define ||v|| as the infinite norm (or maximum
norm) of the vector v: ||v|| = max {|v1|, · · · , |vn|}. It will
be used to compare two markings.
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Fig. 3. No monotonic deadlockfree PN system, m0 = (1, 0)

2.2 Petri net properties

Some interesting properties, often required for real sys-
tems, are defined below for continuous PNs: boundedness
(B); deadlock-freeness (DF), lim-deadlockfreeness (lim-
DF); liveness (L), lim-liveness (lim-L), reversibility (R)
and lim-reversibility (lim-R).

Definition 8. (lim-)boundedness. A system 〈N , m0〉C
is (lim-)bounded if there exists b ∈ R+ such that for all
m ∈ (lim-)RSC(N , m0), ∀p ∈ P, m[p] ≤ b.

Definition 9. (lim-)deadlock-freeness. A system
〈N , m0〉C is (lim-)deadlockfree if ∀m ∈ (lim-)RSC(N ,
m0), ∃t ∈ T such that t is enabled at m.

Definition 10. (lim-)liveness. A system 〈N , m0〉C is
(lim-)live if for every transition t and for every marking
m ∈ (lim-)RSC(N , m0) there exists m’ ∈ (lim-)RSC(N ,
m) such that t is enabled at m’.

Definition 11. (lim-)reversibility. A system 〈N , m0〉C
is (lim-)reversible if for any marking m ∈ (lim-)RSC(N ,
m0) it holds that m0 ∈ (lim-)RSC(N , m).

Due to the fact that RSC(N , m0) ⊆ lim-RSC(N , m0), it is
straightforward that: (1) if a continuous system 〈N , m0〉C
is lim-DF, then it is also DF; (2) if 〈N , m0〉C is lim-L,
then it is also L and (3) if 〈N , m0〉C is lim-R, then it is
also R.

Finally, marking monotonicity and marking homothetic
monotonicity are defined below for a behavioural property
Π (where Π can be boundedness, deadlock-freeness, etc).

In this work, we will use the concepts of marking mono-
tonicity and marking homothetic monotonicity, in which
the initial marking of the PN system is scaled. Here,
only marking monotonicity will be considered. However,
different concepts of monotonicity are considered in other
works, such us monotonicity w.r.t. the firing rates in timed
PN systems.

Definition 12. Monotonicity. Given a system 〈N , m0〉D,
a behavioural property Π is monotonic w.r.t. m0 if:
Π holds in 〈N , m0〉D =⇒ Π holds in 〈N , m′

0〉D for every
m

′
0 ≥ m0.

For example, considering the PN system on Fig. 3,
deadlock-freeness property is not monotonic for m0 =
(1,0), because it is deadlockfree for m0 = (1,0), but it
deadlocks for m

′
0 = (2,0) and also for m

′′′
0 = (4,0); and

it is deadlockfree for m
′′
0 = (3,0), m

′′
0 = (5,0) and higher

initial markings.

Definition 13. Homothetic monotonicity. Given a sys-
tem 〈N , m0〉D, a behavioural property Π is homothetically
monotonic (for short, homothetic) w.r.t m0 if:
Π holds in 〈N , m0〉D =⇒ Π holds in 〈N , k · m0〉D,
∀k ∈ N+.

Homothetic monotonicity of DF can be illustrated with
the example in Fig. 2 (a). The discrete net system is DF
for the initial marking m0 = (2, 1, 0, 0, 0), and for any
proportional initial marking k · m0, i. e., it is homothetic
DF. Nevertheless, the system is not monotonic DF for m0

(for example, for m
′
0 = (2, 2, 0, 0, 0) it deadlocks, where

m
′
0 ≥ m0).

Notice that monotonicity is more restrictive than homo-
thetic monotonicity, i.e., if Π is monotonic then Π is also
homothetically monotonic.

Some classical results about the study of monotonicity of
certain properties are the rank theorem [3] or properties
defined in the traps and the siphons of the system [4]

3. PROPERTY PRESERVATION BY FLUIDIZATION

The aim of this section is to set certain conditions that
a discrete PN system has to fulfill in order to preserve a
certain property after being fluidified to a continuous PN
system. It will be proved that, given a property Π which
exhibits homothetic monotonicity in 〈N , m0〉D, this prop-
erty will be preserved when considered continuous (i.e.
〈N , m0〉C). We will focus on the well-known properties
considered in Section 2.2.

First, two technical results (Lemmas 15 and 16) about
reachability are presented. They will be needed for the
results on the following subsections.

3.1 Reachability

Let us introduce an additional reachability set that will
be used in this work. It is the rational reachability set
(RSQ(N , m0)), which is the set of markings that can be
reached from the initial marking considering only firings
in the set of rational numbers (Q). Given this definition,
we will denote 〈N , m0〉Q the net system in which only
rational amounts are fired by the transitions.

Definition 14. RSQ(N , m0) = {m | ∃ σ = α1tγ1
. . . αktγk

s.t. m0

α1tγ1−→ m1 · · ·
αktγk−→ mk = m where αi ∈ Q>0,

∀i ∈ {1..k}}

For any marking m reachable in the rational net system
〈N , m0〉Q, there exists a k such that a scaled marking k·m
is reachable in the discrete system 〈N , k · m0〉D.

Lemma 15. Given a continuous and a discrete systems
with the same structure N and the same initial marking
m0 ∈ N,
m ∈ RSQ(N , m0) =⇒ ∃k ∈ N | k ·m ∈ RSD(N , k ·m0).

Proof. Let us suppose m ∈ RSQ(N ,m0), i.e., m0
σ

−→ m,
where σ = α1tγ1

· · ·αntγn
, and αi ∈ Q, ∀i ∈ {1 · · ·n}.

Because each αi is a rational amount, it can be considered
as its irreducible fraction: αi = ni

di
.

We can multiply the rational sequence σ by the l.c.m.
(least common multiple) of the denominators of the irre-



ducible fractions, to obtain a sequence σ′ in the naturals:
σ′ = k · σ, where k = l.c.m.(di |

ni

di
= αi, ∀αi ∈ σm).

It holds α′
i ∈ N for every α′

i in σ′. Because of the proper-
ties of the continuous PN, the initial marking (m0), the
firing sequence (σ) and the resulting marking (m) can be

multiplied by k in the continuous PN: k · m0
k·σ
−→ k · m.

Because it is a natural sequence fireable in the continuous
PN, σ′ = k · σ is fireable from the same marking, k · m0,

also in the discrete system: k · m0
σ′

−→ k · m. 2

Let us proof that, for any marking m reachable with a
real firing sequence, another marking m

′ exists that is
reachable with rational firings, such that it is as close to
m as desired, and the set of empty places coincide.

Lemma 16. For every m ∈ RSC(N , m0), and every ε > 0,
there exists m

′ ∈ RSQ(N , m0) such that:

• ||m′ − m|| < ε and
• (m′[p] = 0 ⇔ m[p] = 0).

Proof. Given σ = α1tγ1
α2tγ2

· · ·αntγn
, with αi ∈ R, ∀i ∈

{1..n} such that m0
σ

−→ m; then for any ε > 0, we will
build a firing sequence σ′ = α′

1tγ1
α′

2tγ2
· · ·α′

ntγn
, α′

i ∈ Q,

∀i ∈ {1..n}, such that m0
σ′

−→ m
′. Where ||m′ − m|| < ε

and (m′[p] = 0 ⇔ m[p] = 0). It will be proof by induction
on the length of the sequence σ: |σ| = k.

• Base case (|σ| = 1).
Let σ = α1tγ1

. Then, a α′
1 ∈ Q, has to be chosen. The

firing of α1tγ1
yields m = m0 + C[P, tγ1

]α1; and the
firing of a given α′

1tγ1
yields m

′ = m0 + C[P, tγ1
]α′

1.
Subtracting both equations and considering its norm,
we obtain ||m − m

′|| = ||C[P, tγ1
](α1 − α′

1)||. Since
all the elements in C are finite numbers, a rational
α′

1 ∈ Q close enough to α1 can be chosen to satisfy
||m − m

′|| < ε. Moreover, since m0 ∈ N, if the
firing of α1 emptied some places, then α1 ∈ Q and
α′

1 = α1 can be chosen. Otherwise (if no place has
been emptied), then α′

1 ∈ Q as close as desired to α1

can be chosen that does not empty places.
• Inductive hypothesis (|σ| = k)

Given σ = α1tγ1
α2tγ2

· · ·αktγk
, such that m0

σ
−→ mk;

there exists σ′ = α′
1tγ1

α′
2tγ2

· · ·α′
ktγk

, such that α′
i ∈

Q, ∀i ∈ {1..k} and m0
σ′

−→ m
′
k, where ||m′

k−mk|| <
ε and (m′[p] = 0 ⇔ m[p] = 0).

• Inductive step (|σ| = k + 1)
Let consider the k + 1 firing. We can distinguish two
cases:

(a) The firing of αk+1tγk+1
does not empty places in

•tγk+1
. Then, it holds that m = mk+C[P, tγk+1

]αk+1,
and m

′ = m
′
k + C[P, tγk+1

]α′
k+1. Again, subtracting

both equations and considering its norm, we obtain
||m−m

′||=||(mk−m
′
k) + C[P, tγk+1

](αk+1−α′
k+1)||.

We have to force that ||m−m
′|| < ε. Given that mk

and m
′
k fulfill the inductive hypothesis, the quantity

||mk−m
′
k|| can be as small as desired. Moreove, since

the elements of the matrix C are finite numbers, a
rational α′

k+1 close to αk+1 can be chosen such that
||C[P, tγk+1

](αk+1 −α′
k+1)|| is as small as desired and

no places in •tγk+1
are emptied.

(b) The firing of αk+1tγk+1
empties places in •tγk+1

.
Then, we take α′

k+1 = enab(tγk+1
, m′

k), in order to

empty the same input places. The amount α′
k+1 is

in Q, because m
′
k (and hence the enabling degree)

is rational. Since mk and m
′
k fulfill the inductive

hypothesis, they can be as close as desired. Thus, the
firing of α′

k+1 empties the same places than αk+1, and
mk+1 and m

′
k+1 can be as close as desired. 2

Given Lemmas 15 and 16, some theorems are obtained for
the preservation of boundedness; and deadlock-freeness,
liveness, and reversibility.

3.2 Boundedness

In this section it is proved that given an initial marking, a
PN system is homothetically bounded as discrete iff it is
bounded as continuous.

Theorem 17. 〈N , m0〉D is homotethic bounded ⇐⇒
〈N , m0〉C is bounded.

Proof. (=⇒) Let us suppose the 〈N , m0〉C is unbounded,
i.e., ∀b ∈ N ∃p ∈ P ∃m ∈ RSC(N , m0) s.t. m[p] > b.
If m is not in RSQ(N , m0), but m[p] > b, because of
Lemma 16, ∀ε > 0, ∃m

′ s.t. ||m′ − m|| < ε, so we
can find another m

′ ∈ RSC(N , m0) as near to m as
desired, such that also m′[p] > b. And because of Lemma
15, if m

′ ∈ RSQ(N , m0), then ∃k ∈ N s. t. k · m
′ ∈

RSD(N , k·m0). Hence, in the discrete PN, ∀b ∈ N, ∃k·m ∈
RSD(N , k ·m0) s.t. k ·m[p] > b. Consequently, ∃k ∈ N s.t.
the discrete system 〈N , k · m0〉D is unbounded.

(⇐=) Let us suppose ∃k ∈ N s.t. the discrete system
〈N , k · m0〉D is not bounded. It means ∀b ∈ N, ∃p ∈ P
∃m ∈ RSD(N , k · m0) s.t. m[p] > b.

If m ∈ RSD(N , k · m0), then also m ∈ RSC(N , k · m0).
Because of Property 7, for each marking m ∈ RSC(N , k ·
m0), the marking m

′ = m

k
is reachable in 〈N , m0〉C .

Given that m[p] > b then also m′[p] = m[p]
k

> b
k
,

and it holds for all the reals, i.e., ∀b ∈ R+. Thus, for
every c = b

k
∈ R+, the proposition holds. Consequently,

〈N , m0〉C is also not bounded. 2

3.3 Deadlock-freeness

In Section 3.3 and Section 3.4, some results about the
preservation of a homothetic property Π when the system
is fluidified are presented. The results and its proofs are
analogous in the case of three properties Π : deadlock-
freeness, liveness and reversibility. For a didactic purpose,
in this section the results are explained for DF property. In
the following section, the results are extended to Π , and
enunciated for liveness and reversibility.

As previously defined (Section 2.2), DF in continuous PN
consider only the markings that are reachable with finite
firing sequences (reachability); while lim-DF consider also
infinite firing sequences (lim-reachability). Both concepts
will be considered here.

Needed for Theorem 19, a technical result is presented
below. It sets that, given a reachable deadlock marking,
either its firing sequence is in Q (it is in RSQ(N , m0))
or there exists another deadlock marking that it is in the
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Fig. 4. PN which deadlocks as discrete for any k, and it
lim-deadlocks as continuos

rationals (Q). It is equivalent to say that, if 〈N , m0〉C is
not DF, then also 〈N , m0〉Q is not DF.

Lemma 18. Let md ∈ RSC(N , m0) be a deadlock, then
∃m

′
d ∈ RSQ(N , m0) s.t. it is a deadlock.

Proof. Assume md ∈ RSC(N , m0)r RSQ(N , m0). Be-
cause of Lemma 16, ∀ε > 0 another m

′
d ∈ RSQ(N , m0)

exists such that ||m′
d − md|| < ε ∀p s.t. md[p] = 0, also

m′
d[p] = 0. Since ∀t ∈ T , t is not enabled in md, then also

∀t ∈ T , t is not enabled in m
′
d. Hence, ∃m

′
d ∈ RSQ(N ,

m0) that is a deadlock in the continuous system. 2

Let us proof that, if a discrete PN is homothetically
deadlockfree (HDF), it will be also DF as continuous.
However, the opposite implication is not true.

Theorem 19. 〈N , m0〉D is HDF =⇒ 〈N , m0〉C is DF

Proof. Let us suppose 〈N , m0〉C deadlocks. It means
∃m ∈ RSC(N , m0) that is a deadlock. Because of Lemma
18, if m is a deadlock, then there exists m

′ ∈ RSQ(N , m0)
that is a deadlock. Because of Lemma 15, ∃k ∈ N s. t.
m

′′ = k · m′, where m
′′ ∈ RS(N , k · m0). Since ∀t ∈ T ,

∃p ∈ •t, m′[p] = 0, then also ∀t ∈ T , ∃p ∈ •t, k ·m′′[p] = 0,
and consequently m

′′ it is also deadlock: 〈N , k · m0〉D
deadlocks. 2

Theorem 19 can be illustrated by the example in Fig. 2
(a). However, the opposite implication does not hold, i.e.,

〈N , m0〉C is DF 6=⇒ 〈N , m0〉D is HDF

The PN in Fig. 4 is a counter example: the net system is
DF when considered continuous, with m0 = (1, 0); because
it can always fire a small amount, and it will never reach
a deadlock with a finite firing sequence [8], but when the
net system is considered discrete, 〈N , k · m0〉D deadlocks
for every k.

The previous results deals with DF. What happens if lim-
DF is considered? A continuous system which is lim-DF,
could be homothetic DF as discrete. When this is not
the case, a minimun value of k can be considered for
homotethic monotonicity. We will denote that a property
Π is homothetic from n if ∃n ∈ N, s.t. ∀k ≥ n, with k ∈ N,
Π holds in 〈N , k · m0〉D.

Now, the implication can be formulated.

Theorem 20. 〈N , m0〉C is lim-DF =⇒ ∃n ∈ N s.t.
〈N , m0〉D is HDF from n

Proof. Let us suppose ∀n ∈ N ∃k ≥ n, k ∈ N, such that
the discrete system 〈N, k · m0〉D deadlocks. It means there
exists an infinite ordered set A = {a1, a2, a3 . . . }, such that
∀ai ∈ A, ai < ai+1 and 〈N , ai · m0〉D deadlocks.

For each ai for which it deadlocks, ∃md ∈ RSD(N , ai ·m0)
s.t. md is a deadlock. It holds that ∀t ∈ T, ∃p ∈ •t, md[p] <
Pre[p, t]. Because of the definitions of continuous firings
(Property 7), marking md

ai
is reachable in 〈N , m0〉C .

t1

t2t3 t4

t5 t6

p1

p2 p3

p4

p5

k

Fig. 5. Ordinary PN, it is live as discrete for any k (homo-
thetic deadlock-freeness), but not lim-deadlockfree as
continuos

Given that ai tends to infinite, making ai → ∞,
then md

ai
[p] → 0, and it will reach a deadlock in the

limit. Consequently, the continuous 〈N , m0〉 is not lim-
deadlockfree. 2

However, the reverse is not true:

〈N , m0〉D is HDF 6=⇒ 〈N , m0〉C is lim-DF

The PN system in Fig. 5 is a counter example. When
discrete, the net system is homothetic DF from m0 =
(1, 0, 0, 0, 0). It can be easily proved that the discrete
system is monotonic DF from m0 because every siphon
contains a marked trap [4, 5]. It is straightforward that
monotonic DF implies homothetic DF. However, when the
net system is considered as continuous, the infinite firing
sequence t1 t2

1
2 t3

1
2 t4

1
2 t2

1
4 t3

1
4 t4

1
4 t2

1
8 t3

1
8 t4 . . . can be

fired, leading to the deadlock marking m = (0, 0, 0, 0, 2):
the continuous system reaches a deadlock in the limit [8].

3.4 Liveness and reversibility

〈

N , m0〉D is
homothetic Π

〈N , m0〉C is Π

〈N , m0〉C is lim-Π

⇒ 6⇒

6⇒

⇒

⇒

6⇒

Fig. 6. Relations w.r.t. a property Π

The theorems and lemmas presented here are analogous to
the ones presented for DF (Section 3.3); even the proofs are
technically analogous. Figure 6 summarizes the relations
among a certain property Π (DF, L or R), when considered
homothetic in the discrete system (homothetic Π), when
considered for the continuous system (Π) or considerig
also reachability in the limit (lim-Π).

Analogously to Lemma 18:

Lemma 21. 〈N , m0〉C is not Π =⇒ 〈N , m0〉Q is not Π

The proof of this lemma when Π = L is similar to the
one of Lemma 18, but instead of consider a marking md

which is a deadlock, a marking ml from which ∃t s.t. t is
not enabled from ml should be considered. In the lemma
when Π = R, a marking mr from which the initial marking
is no reachable should be considered.
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Fig. 7. Non reversible, non live discrete PN system. It is
reversible and live as continuous

Given these lemmas, the general result about preservation
of a homothetic property by fluidization can be formulated
(equivalent to Theorem 19).

Theorem 22. 〈N , m0〉D is homoth. Π =⇒ 〈N , m0〉C is Π

The proofs of the theorem for liveness (Π = L) and for
reversibility (Π = R) would be similiar to the proof of
Theorem 19. The lemmas obtained from Lemma 21 for
Π = L and Π = R would be also used in these proofs.

As an illustrative example, consider the Petri net example
on Fig. 2 (a). It is homothetic live and homothetic re-
versible. Thus it preserves these properties when fluidified.

If the opposite implication is considered, again, even in
the case of considering not every k but a big enough k, the
implication is not true:

〈N , m0〉C is Π 6=⇒ ∃n ∈ N, 〈N , m0〉D is homothetic Π
from n.

Let us consider the example in Fig. 7. When considered
a continuous system, it is live and reversible from m0 =
(1,0,0): the marking can decrease firing t1 and t2, but it can
also increase in the same amount firing t3 and t4. However,
if the net system is discrete, it is neither live or reversible
for m0 = (1,0,0), nor for any proportional initial marking
k ·m0. It is because for any value of k, transitions t1 and t2
can be fired until m[p1] < 2. Then, no transition is enabled,
the system is deadlocked and the system is neither live nor
reversible.

Let us now consider the properties in the limit, i.e., lim-Π .
In this case, it holds:

Theorem 23. 〈N , m0〉C is Π =⇒ ∃n ∈ N s.t.〈N , m0〉D is
homothetic Π from n.

The proofs of Theorem 23 for Π = L and for Π = R would
be analogous to that of Theorem 20, in which also Lemma
15 would be used.

Analogously to lim-deadlockfreenes, the reverse is not true:

〈N , m0〉D is homothetic Π 6=⇒ 〈N , m0〉C is lim-Π

Again, the PN system in Fig. 5 is live and reversible for
m0=(1,0,0,0,0) if it is a discrete system. However, when
considered continuous, the infinite firing sequence t1 t2

1
2 t3

1
2 t4

1
2 t2

1
4 t3

1
4 t4

1
4 t2

1
8 t3

1
8 t4 . . . would reach the deadlock

marking md = (0, 0, 0, 0, 2) in the limit, so the system is
not lim-live and not lim-reversible from md.

4. HOMOTHETIC MONOTONICITY OF
BOUNDEDNESS IN DISCRETE PN SYSTEMS

The aim of this brief section is to propose a condition to
characterize (sufficient and necesary condition) homoth-
etic boundedness for discrete PN systems.

By definition, if a discrete net system is structurally
bounded (SB) (i.e., bounded for any initial marking m0),
then it is homothetically bounded (HB): N is SB ⇒
〈N , m0〉D is HB.

However, the opposite is not true: 〈N , m0〉D is HB 6⇒ N
is SB. The reason is that if there is an empty siphon in
〈N , m0〉D, some transitions can never be fired from m0;
so the system can be B and HB for that m0, but N can
be unbounded for a different initial marking.

Furthermore, if ∄ empty siphon in 〈N , m0〉D, a reasonable
condition for real systems) then every transition would
be fireable from m0 or from a given k · m0, and then
HB implies SB. Considering a result of boundedness in
continuous systems from [8], a more general result can be
obtained.

Theorem 24. Given a net system such that every siphon
is marked, the following statements are equivalent:
. (1) N is SB
. (2) 〈N , m0〉D is HB
. (3) 〈N , m0〉C is B
. (4) 〈N , m0〉C is lim-B

Proof.
(1) ⇒ (2) Trivially holds by definition.
(2) ⇒ (3) Because of Theorem 17.
(3) ⇒ (1) Proved in [8].
(4) ⇔ (1) Proved in [8]. 2

The computation of structural boundedness of a PN sys-
tem can be done in polynomial time [3], as well as checking
the existence of empty siphons [9]. Consequently, bound-
edness of a continuous system can also be checked in
polynomial time.

5. HOMOTHETIC DEADLOCK-FREENESS IN SB
DISCRETE SYSTEMS

The aim of this section is to characterize homothetic
deadlock-freeness for discrete PN systems. For this pur-
pose, a technique for the characterization of DF in discrete
PN systems considered in [3] is recalled. It will allow us
to characterize not only DF of a given system 〈N , m0〉D,
but also HDF (for any scaled initial marking k · m0).

5.1 Classic method for the characterization of DF

This general sufficient condition for DF, based on the state
equation, exploits the definition: “a deadlock corresponds
to a marking in which no transition is fireable”.

Proposition 25. Let 〈N , m0〉D be a PN system. If there
does not exist any solution (m, σ) to the following system,
then 〈N , m0〉D is deadlockfree.

m = m0 + C · σ
m ≥ 0, σ ≥ 0 (1)
∨

p∈•t m[p] < Pre[p, t], ∀t ∈ T

Notice that the system above contains |T | “complex con-
ditions”, (one for each transition), which are non linear,
due to the “∨” connective. Thus, (1) can be handled
by solving independently a set of

∏

t∈T |•t| systems of



linear inequalities. Notice the number of systems grows
exponentially.

In [3], some transformations and rules are considered in
order to reduce the number of systems generated by (1).
Furthermore, in Theorem 34 of [3], it was proved that
the system can be rewritten as a single system of linear
inequalities for every structurally bounded PN system
(to ease the task of reviewers, we included in this draft
Appendix A).

Let us illustrate the key idea with the example in Fig. 2
(a). Initially, the system that characterizes the sufficient
condition for deadlockfreeness is: If there not exists solu-
tion to the following system, then the net system is DF.

m = m0 + C · σ (2)
m ≥ 0; σ ≥ 0
(m[p1] = 0 ∨ m[p2] = 0) {t1 is not enabled}
(m[p1] = 0 ∨ m[p3] = 0) {t2 is not enabled}
(m[p4] = 0 ∨ m[p5] = 0) {t3 is not enabled}

This system is not linear; however, by applying the trans-
formation and the reduction rules in [3], it can be con-
verted to a single system. Such rules force the PN system
to be transformed to the one in Fig. 2 (b).

The resulting system is:

m = m0 + C · σ (3)
m ≥ 0; σ ≥ 0
m[pb] + m[p2] ≤ 1 {t1 is not enabled}
m[pb] + m[p3] ≤ 1 {t2 is not enabled}
m[pd] + m[p4] ≤ 1 {t3 is not enabled}
m[p1] + 2 · m[pa] ≤ 2 {tp is not enabled}
m[pc] + m[p5] ≤ 1 {tq is not enabled}

5.2 Characterization of homothetic deadlock-freeness

The system characterizes the presence of deadlocks in
the state equation. If they are not reachable with a real
sequence from m0, then they will be also not reachable
from k · m0, then the discrete system is homothetic
DF. Applying Theorem 19, it is straightforward that the
continuous net system is deadlockfree.

For example, the equation system obtained for the PN on
Fig. 2, has no solution in the real domain. Consequently,
〈N , m0〉D is homotethic DF, and 〈N , m0〉C is also DF as
continuous.

In the case that the equation system obtained from (1)
has a solution, it means there is a solution of the state
equation that is a deadlock. But it is not enough to decide
about the HDF of the system. Some additional methods
can be used to refine the characterization.

• Check if the obtained deadlock marking m is a
spurious solution of the state equation, i.e., a solution
of the state equation that is not reachable in the
discrete system. It can be checked with some classical
techniques [9].

• Check if 〈N , m0〉D is monotonic DF, which implies
that it is also homothetic DF. It is monotonic DF
if every siphon of 〈N , m0〉D contains a marked trap
[4, 5] (with some marking restrictions in the case of
non-ordinary PN).

• Check if the firing count vector σ obtained as solution
is fireable from a scaled initial marking k · m0 in the
discrete system 〈N , k · m0〉D.

• Consider a system of inequalities equivalent to the one
recalled here, but scaled by k. The SB of 〈N, k · m0〉
would be calculated with a parametric Linear Pro-
gramming Problem (see, for example, [6]), and the
marking of the places would be scaled by k. The
system could be solved (as a Integer Programming
Problem) for different values of k.

6. CONCLUSIONS

This paper sets that, given a property which has a homo-
thetic behaviour in a discrete PN, that property will be
preserved in the corresponding continuous PN when it is
fluidified.

The conclusion is that just studying if a given property is
homothetically monotonic in a certain discrete PN system,
the preservation of the property by the fluidified PN
system can be concluded. It means to determine whether
the fluidization makes sense with respect to a certain
property.

Homotethic boundedness in discrete systems is character-
ized here. Moreover, a method to check if a given PN sys-
tem is homothetically deadlockfree has been explored. This
method requires the Petri net systems to be structurally
bounded.

Future work will be to further study the characterization
of HDF in discrete PNs; and also to obtain the characteri-
zation of more types of nets, apart from the ones proposed
here. Furthermore, techniques for the characterization of
homothetic liveness and homotethic reversibility are under
development.
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Appendix A. DEADLOCKFREENESS
CHARACTERIZATION IN DISCRETE PN

A transformation and two rules are used in [3] to reduce
the set of equations of the characterization of discrete PN.

Rule 1 presents a reduction of the number of disjuntives ∨
when the structural bound (SB) of a set π of places in •t
satisfies SB[p] ≤ Pre[p,t].

Rule 2 is the generalization of Rule 1 when every place
fulfills SB[p] ≤ Pre[p,t] but one. In order to force SB[p] ≤
Pre[p,t], a previous transformation should can be applied,
where the projected language of the Petri net system is
preserved.

Rule 1 Let t be a transition such that for every p ∈ π ⊆ •p
the following holds: SB[p] ≤ Pre[p, t]. Replacing in (1)
for the disabledness condition corresponding to transition
t the following (less complex) condition the set of integer
solutions is preserved:
(

∑

p∈π

m[p] <
∑

p∈π

Pre[p, t]

)

∨





∨

p∈•t\π

m[p] < Pre[p, t]





Rule 2 Let t be a transition such that •t = π ∪ {p′},
where SB[p] ≤ Pre[p, t] for every p ∈ π. Replacing in (1)
for the disabledness condition corresponding to transition
t the following (less complex) condition the set of integer
solutions is preserved:

SB[p′]
∑

p∈π

m[p] + m[p′] < SB[p′]
∑

p∈π

Pre[p, t] + Pre[p′, t]


