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Abstract

Aiming to reach a desired final state from a given initial one, this paper
addresses the minimum-time decentralized control of Choice-Free continuous
Petri nets. It is assumed that the original system is cut into disconnected
subsystems by a set of places (buffers). Local control laws are first computed
independently in subsystems, based on which the globally admissible ones are
derived. In the process, two problems arise: 1) disconnected subsystems can
exhibit different behaviours from the original ones, and 2) since the buffer
places are essentially shared by more than one subsystems, there must be an
agreement among the neighoring local controllers. The first problem can be
overcome by complementing the disconnected subsystems with an abstraction
of the parts that are missing. For this purpose, two reduction rules are
proposed to substitute the missing parts by a set of places. For the second
problem, a simple coordinate controller is introduced, and several algorithms
are proposed to reach the agreement, without knowing the detailed structure
of subsystems. Finally, by applying an ON-OFF control strategy in each
subsystem, the final state is ensured to be reached in minimum-time.
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1. Introduction

1.1. Related work

Petri Nets (PN) is a well known paradigm used for modeling, analysis,
and synthesis of discrete event systems (DES). Since it can easily represent
sequences, conflicts, concurrency and synchronizations, it is widely applied
in the industry, for the analysis of manufacturing, traffic, software systems,
etc. Similarly to other modeling formalisms for DES, it also suffers from
the state explosion problem. To overcome it, a classical relaxation technique
called fluidification can be used.

Continuous PN (CPN) [1, 2] are fluid approximations of classical discrete
PN obtained by removing the integrality constraints, which means that the
firing count vector and consequently the marking are no longer restricted
to be in the naturals but relaxed into the non-negative real numbers. An
important advantage of this relaxation is that more efficient algorithms are
available for their analysis [3, 4].

A simple and interesting way to introduce time to CPN is to assume that
time is associated to transitions, obtaining timed CPN. Many works can be
found in the literature about the control of different classes of timed CPN,
e.g., [5, 6, 7]. For the kind of timed CPN under infinite server semantics,
several control approaches have been considered. In [3], the optimal steady
state control problem is studied. Model Predictive Control is used for optimal
control problem in [8] assuming a discrete-time model. In [9], a Lyapunov-
function-based dynamic control algorithm is studied, while in [10] a heuristics
for minimum-time control is proposed. In this work, a minimum-time control
problem of timed CPN under infinite server semantics is considered.

Decentralized control is extensively explored in recent decades for complex
dynamic systems (e.g., [11, 12, 13, 14]), in which multiple controllers may be
allocated to subsystems. In the context of decentralized control on PN, some
approaches have been proposed. The centralized admissibility concept was
extended to d-admissibility for the decentralized setting in [15]. Based on
the d-admissibility concept, two suboptimal methods to design decentralized
supervisors are proposed. Under certain assumptions, the methods in [16] fo-
cused on global state specifications given in terms of GMECs and on a control
architecture without central coordinator and communication between local
supervisors. In [17], a decentralized approach based on overlapping decom-
positions was proposed. By adding control places, the system is driven from
an initial marking to a set of the desired markings. The method presented in
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[18] considers continuous models composed of several subsystems that com-
municate through buffers (modelled by places). By executing the proposed
algorithm iteratively in each subsystem, their respective target markings are
reached and then maintained.

Different from the methods in [15, 16] which focus on enforcing system
states to satisfy certain constraints (specifications), we address the problem
of driving the system from an initial state to a specific final one, which is
similar to the set-point control problem in a general continuous-state system.
Considering the method in [17], systems are targeted to a set of desired states,
but when a specific one is chosen, the control complexity may be increased
(because more control places should be be added). On the other hands, its
control structures are also strongly dependent on the desired markings. Our
method is also different from the one of [18]. First, subsystems do not have
to be strongly connected. Second, the globally admissible control laws are
achieved inside a simple coordinator, therefore the iterative process executed
in subsystems is not needed. Finally, the states of buffers are also specified
in the control problem and reached in minimum-time.

1.2. The undertaken problem

Imagining that there is large scale dynamic system, e.g., a complex trans-
portation system connecting cities from different countries. Because of the
distributed physical deployment or the high costs, it may be difficult to have
a central controller which knows all the detailed structures and states of all
subsystems, and the global control law can not be achieved directly. A more
practical way is to have local controller allocated in each subsystem, which
is the essence of decentralized control. The intersections among neighboring
subystems (in our case, modeled by places) play a important role in facili-
tating the interaction and communication between neighboring subsystems.

It is assumed that the original system modelled by CPN is cut into dis-
connected subsystems by a set of places (buffers), and the addressed problem
is how to compute the control law and drive the system from an initial state
to desired final one, in a decentralized way: local controllers first compute
control laws separately, then based on the local control laws, the globally
admissible ones are derived without knowing the detailed structures of sub-
systems. There are two main problems arising in this process: 1) discon-
nected subsystems can exhibit different behaviours from the original ones,
e.g., properties like liveness, boundedness in the original system may not be
preserved. And 2) since the buffer places are essentially shared by more than
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one subsystems, there must be an agreement among the neighoring local
controllers. The first problem can be overcome by complementing the sub-
systems with an abstraction of the parts that are missing. For this purpose,
two reduction rules are proposed to substitute the missing parts by a set of
places. For the second problem, a simple coordinate controller is introduced.
Local controllers send limited information (the firing count vector and the
T-semiflow) to the coordinator, and based on this information, algorithms
are proposed to reach the agreement. After the globally admissible control
laws are obtained, a simple ON-OFF controller is applied in each subsystem.
Considering the system is Choice-Free, this ON-OFF strategy ensures the fi-
nal state to be reached in minimum-time. The sketch of the system structure
is shown in Fig. 1.

Coordinator Controller

Local

Controller 1

Local

Controller 2

Local

Controller n

Subsystem 1 Subsystem 2 Subsystem n

Local

Controller 3

Subsystem 3

Figure 1: System Structures

This paper is organized as follows: Section 2 briefly recalls some basic
concepts of CPN. Section 3 introduces the decomposition method for CFPN
and proposes two reduction rules in order to obtain complemented subsys-
tems. Section 4 proposes the approach for decentralized control of CFPN
system. In section 5, we illustrate the proposed methods by using a manu-
facturing system as the case study. The conclusions and some final remarks
are in section 6.

2. Basic Concepts and Notations

2.1. Continuous Petri Nets

The reader is assumed to be familiar with basic concepts of CPN (see [1, 2]
for a gentle introduction).

Definition 2.1. A CPN system is a pair ⟨N ,m0⟩ where N = ⟨P, T,Pre,Post⟩
is a net structure where:
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• P and T are the sets of places and transitions respectively.

• Pre,Post ∈ Q|P|×|T|
≥0 are the pre and post incidence matrices.

• m0 ∈ R|P|
≥0 is the initial marking (state).

For v ∈ P ∪ T, the sets of its input and output nodes are denoted as •v
and v•, respectively. Let pi, i = 1, . . . , |P | and tj, j = 1, . . . , |T| denote the
places and transitions. Each place can contain a non-negative real number
of tokens, its marking. The distribution of tokens in places is denoted by m.
The enabling degree of a transition tj ∈ T is given by:

enab(tj,m) = min
pi∈•tj

{
m(pi)

Pre(pi, tj)

}
which represents the maximum amount in which tj can fire. Transition tj
is called k-enabled under marking m, if enab(t,m) = k, being enabled if
k > 0. An enabled transition tj can fire in any real amount α, with 0 <
α ≤ enab(tj,m) leading to a new state m′ = m + α · C(·, tj) where C =
Post− Pre is the token flow matrix and C(·, j) is its jth column.

Non negative left and right natural annullers of the token flow matrix
C are called P-semiflows (denoted by y) and T-semiflows (denoted by x),
respectively. If ∃y > 0, y · C = 0, then the net is said to be conservative.
If ∃x > 0, C · x = 0 it is said to be consistent. The support of a vector v,
denoted by ||v||, is the set of index of nonzero components. A semiflow v is
said to be minimal when its support is not a proper superset of any other,
and the greatest common divisor of its components is one.

A PN system is bounded when every place is bounded, i.e., its token
content is less than some bounds at every reachable marking. It is live when
every transition is live, i.e., it can ultimately occur from every reachable
marking.

If m is reachable from m0 through a finite sequence σ, the state (or

fundamental) equation is satisfied: m = m0 +C · σ, where σ ∈ R|T|
≥0 is the

firing count vector, i.e., σ(tj) is the cumulative amount of firings of tj in the
sequence σ. A vector σ is said to be a fireable firing count vector, if there
exists a corresponding sequence σ which can be fired. A firing count vector
σ is said to be minimal one driving the system to m if for any T-semiflow
x, ||x|| ̸⊆ ||σ||.

If for all p ∈ P , |p•| ≤ 1 then N is called Choice-Free PN (CFPN). A
CFPN is structurally persistent in the sense that independently of the initial
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marking, the net has no conflict, i.e., it is conflict-free [19]. A net is said to
be a marked graph (MG) when the weight of every arc is equal to 1, and each
place has exactly one input and exactly one output arc. Weighted T-systems
(WTS) are the weighted generalization of MGs. The following property holds
for conflict-free PN, it is also true for CFPN.

Property 2.2. In a CFPN system, if transition tj is k-enabled, its enabling
degree will be at least k until tj is fired.

In timed CPN (TCPN) the state equation has an explicit dependence on
time: m(τ) = m0 + C · σ(τ) which through time differentiation becomes
ṁ(τ) = C · σ̇(τ). The derivative of the firing count f(τ) = σ̇(τ) is called
the firing flow. Depending on how the flow is defined, many firing semantics
appear, being the most used ones infinite (or variable speed) and finite (or
constant speed) server semantics [1, 2]. In this paper we assume the system
is under infinite server semantics, because for a broad class of PN it offers a
better approximation of the throughput in steady state of discrete systems
[20]. For each transition tj ∈ T , let λj ∈ R>0 be its firing rate. Under infinite
server semantics, the flow of a transition tj at time τ is the product of its
firing rate, λj, and its enabling degree at m(τ):

f(tj, τ) = λj · enab(tj,m(τ)) = λj · min
pi∈•tj

{
m(pi, τ)

Pre(pi, tj)

}
(1)

2.2. Gains and Weighted Markings

The gain of a weighted path was introduced in [21] for WTS, it represents
the mean firing ratio between the last transition and the first one in the path.
It can be naturally extended to CFPN systems:

Definition 2.3. Let ⟨N ,m0⟩ be a CFPN system, and π = {t0, p1, t1, p2,
..., pn, tn} be a path in N from transition t0 to tn. The gain of π is:

G(π) =
n∏

i=1

Post(pi, ti−1)

Pre(pi, ti)

The weighted marking M(π,m) of a path π under marking m in a CFPN
system is the natural extension of the sum of tokens of paths in marked
graphs.
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Definition 2.4. Let ⟨N ,m0⟩ be a CFPN system, and π = {t0, p1, t1, p2,
..., pn, tn} be a path in N from transition t0 to tn. The weighted marking of
π under marking m is:

M(π,m) =
n∑

i=1

(
m(pi)

Post(pi, ti−1)

i−1∏
j=1

Pre(pj, tj)

Post(pj, tj−1)

)

Let tin and tout (t0 and tn in the former definition) be the first and last
transitions of π, M(π,m) can be interpreted as the number of firings tin is
required to be fired to reach m, in the case that π is initially empty. It can
be deduced that, starting from m, if all the intermediate transitions between
tin and tout are fired with the maximal amounts, the enabling degree of tout
becomes G(π) ·M(π,m).

t1

p1

t2

p2

t3

p3

2 4

2

Figure 2: A simple CFPN system with m0 = [0 0 2]T

Example 2.5. Let us consider the CFPN system in Fig. 2. The path between
t1 and t3 is π = {t1, p1, t2, p2, t3}, according to the definition of gains,

G(π) = Post(p1,t1)·Post(p2,t2)
Pre(p1,t2)·Pre(p2,t3)

= 2·1
1·4 = 1/2. It means that if t1 fires once, t3 can

fire 1/2 times (in the case that p1 and p2 are empty initially).
In the initial state, path π is empty, i.e., m0(p1) = 0, m0(p2) = 0.

In order to reach a marking m, such that m(p1) = 1, m(p2) = 1, so
σ =[1 1 0]T , t1 needs to fire once, therefore, the weighted marking of π under
m is M(π,m) = 1.

Suppose that from m the intermediate transition t2 is fired in the maximal
amount that is equal to 1, the enabling degree of t3 becomes 1/2, obviously it
is equal to G(π) ·M(π,m).

2.3. System Under Control

Now the net system is considered to be subject to external control ac-
tions, and it is assumed that the only admissible control law consists in
slowing down the firing flow of transitions [2], i.e., transitions, modeling
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machines for example, cannot work faster than their nominal speeds. Un-
der this assumption, the controlled flow of a TCPN system is denoted as:
w(τ) = f(τ) − u(τ), with 0 ≤ u(τ) ≤ f(τ). The overall behaviour of the
system is ruled by: ṁ = C · (f(τ)− u(τ)). In this paper, it is assumed that
every transition is controllable (tj is uncontrollable if the only control action
that can be applied is u(tj) = 0).

3. Structural Decomposition of CFPN systems

In this section, a structural decomposition approach for CFPN is intro-
duced, obtaining subsystems that have behaviours consistent with in the
original system.

Given a large scale system, naturally it may be divided into several parts,
for example, due to its physical deployments. Here we suppose that the
original system is cut into subsystems through a given set of places (buffers).
Local control laws will be separately computed in subsystems, but because
these subsystems become disconnected with the other parts, their behaviours
may be different from the ones in the original system. To overcome this
problem, a set of reduction rules is proposed to obtain the abstraction of
the missing parts, by which the disconnected subsystem is complemented. It
is then proved that the behaviours (firing sequences and consequently, the
reachable markings) of the original system are preserved.

3.1. Cutting

Here the structural cutting method developed in [22] for MGs is extended
to CFPN. In order to simplify the notation, we assume that the system is
cut into two parts.

Definition 3.1. Let S = ⟨N ,m0⟩ be a strongly connected CFPN system,
where N = ⟨P ∪ B, T,Pre,Post⟩. B is said to be a cut if there exist two
subnets Ni = ⟨Pi, Ti,Prei,Posti⟩, i = 1, 2, such that:

(1) T1 ∪ T2 = T , T1 ∩ T2 = ∅

(2) P1 ∪ P2 = P , P1 ∩ P2 = ∅

(3) P1 ∪B = •T1 ∪ T1
•, P2 ∪B = •T2 ∪ T2

•

(4) T1 =
•P1 ∪ P1

•, T2 =
•P2 ∪ P2

•
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where U = •B ∪ B• is said to be interface, which is partitioned into U1,
U2, such that U1 ∪ U2 = U , Ui = Ti ∩ U .

Example 3.2. Fig. 3(a) shows a CFPN system. The set of places B =
{p1, p2, p10} is a cut decomposing the original system into two subsystems,
S1 and S2, where the interface transitions are U1 = {t1, t10} and U2 =
{t2, t3, t8, t9}.

p1

2

2

2

p2

p3

p4

p5

p7

p8

p10

p11

p12
t1

t2

t3

t4

t5

t10

t11

t12

t14

t8

t7

2 2

p13
t13

t15

p14

p15

p16t16

t9

t6

p9

p6

p17

p18

p19

2

3

3

2

S1

S2

(a)

2

2

p11

p12t1 t10

t11

t12

t14

2 2

p13t13

t15

p14

p15

p16t16

p17

p18

p19p1 p2 p10

2

t2

t3

t8

t9

2

3

3

2
p2_8

p3_9

(b) CS1

2

p3

p4

p5

p7

p8t2

t3

t4

t5

t8

t7 t9

t6

p9

p6

2

3

3

2

p1 p2 p10

2

t1 t10
p10_1

(c) CS2

Figure 3: (a) A live and bounded CFPN system and a cut B = {p1, p2, p10}; (b) comple-
mented subsystem CS1; (c) complemented subsystem CS2

3.2. Complemented Subsystems

Due to the cut, different behaviours can be introduced, because subsys-
tems become disconnected with the remaining parts. For instance, the net
system in Fig.3(a) is live and bounded. After cutting by B = {p1, p2, p10},
both obtained subsystems S1 and S2 become unbounded. A solution to this
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problem is to build an abstraction of the missing parts and use it to comple-
ment the disconnected subsystem.

Two rules are proposed to reduce paths between (interface) transitions to
a set of places. Let us still consider the system in Fig.3(a). By applying the
proposed rules, the path between interface place t1 and t10 can be reduced to
a single place p10 1, obtaining the abstraction of S1. Using this abstraction
to complement S2, the complemented subsystem CS2 is obtained, shown
in Fig.3(c). Similarly, the abstraction of S2 can be constructed, and the
complemented subsystem CS1 is shown in Fig.3(b). Notice that, the cutting
places and interface transitions are shared in both complemented subsystems.

In the sequel, net systems are assumed to be live and bounded (in the
case of CFPN, it is equal to strongly connected and consistent).

Reduction Rule 1. Let tj be a transition in a continuous CFPN system
S = ⟨N ,m0⟩, with |•tj| = n, |tj•| = k. Let us denote its inputs by Pin = •tj,
and its outputs by Pout = tj

•. Let px ∈ Pin, py ∈ Pout. Transition tj with its
input and output places can be reduced to n · k places, obtaining the reduced
system S ′ = ⟨N ′,m′

0⟩, by using the following process:

(1) Replace each elementary path {px, tj, py} with a place px y.

(2) Add arcs such that •px y =
•px ∪ •py, px y

• = py
•.

(3) Add weights such that G(π(tin, tout)) = G(π′(tin, tout)), where tin ∈
•Pin ∪ •Pout, tout ∈ Pout

•, π(tin, tout) and π′(tin, tout) are the paths from
tin to tout, in S and S ′ respectively.

(4) Put the initial marking m′
0(px y) = Post(px y, tin) ·M(π,m0), where

π = {tin, px, tj, py, tout}.

Remark 3.3. In step (3), the the weight on the arcs of the reduced net is
not unique, but the gains of paths should be maintained. For instance, in
the CPN in Fig. 2, by keeping the gain of path {t1, p1, t2}, we can put weight
Post(p1, t1) = 4 and Pre(p1, t2) = 2 (in this case, the marking of p1 is still
zero). Obviously, the overall behaviours of the system are not changed (notice
that this conclusion only holds for continuous systems).

In the sequel, it is assumed that for any place p obtained by applying rule
1, the weights on the arcs connecting with p, are constrained to natures, and
have the greatest common divisor equal to one. In this way, the obtained
system is uniquely (structurally) determined.
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Example 3.4. In Fig. 4(a) is a CFPN system S, it is shown how to reduce
tj by applying rule 1. tj has two inputs Pin = {pi 1, pi 2} and two outputs
Pout = {po 1, po 2}, therefore n = k = 2. Transitions ti 1 and ti 2 are the
inputs of pi 1 and pi 2 which may have more inputs denoted by tim 1 and tim 2.
Transitions to 1 and to 2 are the outputs of po 1 and po 2 which may also have
more inputs denoted by tom 1 and tom 2.

ti_1 pi_1

…... …...

ti_2

to_1

to_2

tim_1

tim_2

tom_1

tom_2

pi_2

po_1

po_2

w1

w2

w3

w4

w5

w6

w8

w9

w10

w7

w11

w12

tj

(a) Original system S = ⟨N ,m0⟩

ti_1

p1_1

…... …...

ti_2

to_1

to_2

tim_1

tim_2

tom_1

tom_2

…

g1

g3

g2

g4

g6

g5

g7

g8

g9

g16

g10

g11

g12

g13

g14

g15

p1_2

p2_1

p2_2

(b) Reduced system S ′ = ⟨N ′,m′
0⟩

Figure 4: Reduction Rule 1

Fig. 4(b) shows the reduced system S ′, where p1 1, p1 2, p2 1 and p2 2 are
the new places. In particular, p1 1 is the reduction of path {pi 1, tj, po 1},
p1 2 is the reduction of path {pi 1, tj, po 2}, etc. Observe that the gain of the
path from ti 1 to to 1, i.e., π = {ti 1, pi 1, tj, po 1, to 1} is G(π) = w2·w8

w5·w11
. The

weights g2, g10 on the path of the reduced net between the same transitions,
i.e., π′ = {ti 1, p1 1, to 1}, should satisfy g2

g10
= G(π). Considering p1 1 in S ′,

step (4) implies that m′
0(p1 1) = g2 ·M(π,m0).

Let S = ⟨N ,m0⟩ and S ′ = ⟨N ′,m′
0⟩ be the original and reduced CFPN

systems, σ be a firing sequence in S. Sequence ς is said to be the projection
of σ from S to S ′ when ς is obtained from σ by removing the elements
corresponding to transitions tj, tj /∈ T ∩ T ′.

Proposition 3.5. Let S be a continuous CFPN system, and S ′ be its reduced
system obtained by applying rule 1, removing a transition tj. Assume σ is a
firing sequence of S, and ς is its projection to S ′. Then σ is fireable in S if
and only if ς is fireable in S ′.
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Proof. In order to prove the result, we will first consider a given firing se-
quence σ, and prove that σ is fireable in S iff ς is fireable in S ′. Then it is
shown that the proof can be easily extended for any firing sequence.

Considering rule 1 applied in Fig. 4 to reduce transition tj and its input,
output places. Let us assume, without loss of generality, the firing sequence in
S, σ = ti 1(α1)ti 2(α2) tj(β)tim 1(α3)to 1(α4), and its projection to the reduced
system S ′, ς = ti 1(α1) ti 2(α2) tim 1(α3)to 1(α4).

In S, let π1 = {ti 1, pi 1, tj, po 1, to 1}, π2 = {ti 2, pi 2, tj, po 1, to 1},
and π3 = {tim 1, pi 1, tj, po 1, to 1}. In S ′, let π′

1, π
′
2 and π′

3 be the paths
corresponding to the same transitions as π1, π2 and π3 respectively, i.e., π

′
1 =

{ti 1, p1 1, to 1}, π′
2 = {ti 2, p2 1, to 1}, and π3 = {tim 1, p1 1, to 1}.

Let us first consider a subsequence of σ, σ1 = ti 1(α1)ti 2(α2)tj(β)tim 1(α3),
and its corresponding projection to S ′, ς1 = ti 1(α1)ti 2(α2)tim 1(α3). Obvi-
ously, σ1 is fireable in S iff ς1 is fireable in S ′ because transitions ti 1, ti 2 and
tim 1 have the same input places and corresponding markings in S and S ′.

In S, if tj is fired with the maximal amount in σ1, to 1 will get the maximal
enabling degree. Therefore by firing of σ1, the enabling degree of to 1 can be
maximally increased by:

ϕ = min{α1 ·G(π1) + α3 ·G(π3), α2 ·G(π2)}

Considering the initial marking m0, the maximal enabling degree of to 1

by firing of σ1 is:

min {G(π1) ·M(π1,m0), G(π2) ·M(π2,m0)}+ ϕ

In S ′, the enabling degree of to 1 under the initial marking is equal to:

min

{
m′

0(p1 1)

g10
,
m′

0(p2 1)

g12

}
According to according the reduction step (4), it is equal to

min

{
g2 ·M(π1,m0)

g10
,
g5 ·M(π2,m0)

g12

}
= min{G(π1) ·M(π1,m0), G(π2) ·M(π2,m0)}

By the firing of ς1, it is increased by the same amount ϕ as in S, because
G(πi) = G(π′

i), i = 1, 2, 3.
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Therefore, if σ is fireable in S, ς is for sure fireable in S ′. On the other
side, if ς is fireable in S ′, σ is fireable in S when the intermediate transition
tj is fired in the maximal amount.

Similar proof can be achieved for any firing sequence following the proce-
dure: 1) any sequence that consists of the transitions whose input places are
the same in S and S ′ (like ti 1, ti 2 in Fig.4), is fireable in S iff its projection
in S ′ is fireable . 2) any other transitions (like to 1, to 2 in Fig.4) can get the
same enabling degrees in S and S ′, when sequences in 1) fire.

Remark 3.6. Reduction rule 1 is a generalization of the methods discussed
in [23] for continuous CFPN systems. For instance, in [23], only ordinary
nets are considered; on the other side, a transition that has multiple inputs or
outputs while its output places have multiple inputs, might not be reducible.

It can be observed that, each time rule 1 is applied to a subnet formed by
paths between Tin ∈ T and Tout ∈ T , one transition t /∈ Tin ∪Tout is removed.
Therefore the repetitive application of rule 1 results in a set of places between
Tin and Tout but no transitions.

Reduction Rule 2. Let p1, p2 be two places in a continuous CFPN system,
such that •p1 = •p2 = Tin ⊆ T, p1

• = p2
• = tout. If for any tin ∈ Tin, paths

πa = {tin, p1, tout} and πb = {tin, p2, tout} have the same gain, i.e., G(πa) =

G(πb). Then, if m0(p1)
Pre(p1,tout)

≤ m0(p2)
Pre(p2,tout)

, p2 can be removed, otherwise, p1
can be removed.

In order to applying rule 2, G(πa) = G(πb) has to be satisfied. Notice
that if G(πa) ̸= G(πb), it implies not live or not bounded system.

Example 3.7. Fig. 5(a) shows a CFPN system in which Tin = {ti 1, ti 2}.
In order to apply rule 2, the weights of arcs should satisfy w1

w5
= w2

w6
, and

w3

w5
= w4

w6
. Suppose m0(p1)

w5
≤ m0(p2)

w6
, then by removing p2, the reduced system

is shown in Fig. 5(b).

Proposition 3.8. Let S be a continuous CFPN system, and S ′ be the reduced
system obtained by applying rule 2, sequence σ is fireable in S if and only if
σ is fireable in S ′.

Proof. It is easy to verify that the places being removed by applying rule
2 belong to a particular type of implicit places, i.e., those places that never
uniquely restrict the firing of its output transitions (see [24]). Therefore, they
can be removed without affecting the behaviour of the rest of the system.
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w5
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w6

ti_2

…...

w2

w3

(a) Original subsystem S

top1

ti_1

…...

ti_2

w1

w5

w3

(b) Reduced subsystem S ′

Figure 5: Reduction Rule 2

Example 3.9. Let us apply the reduction rules on subsystem S2 in Fig. 3(a).
The net system in Fig. 6(a) is obtained by applying rule 2 to remove places
p5. By applying rule 1 to the path between t2 and t6, p2 6 is obtained (6(b)).
Similarly, applying rule 1 to the path between t3 and t7 in 6(b), removes t5
and obtains p3 7 (6(c)). Applying rule 1 to the path between t2 and t8 in 6(c),
removes t6 and obtains p2 8 (6(d)). Applying rule 1 to the path between t3
and t9 in 6(d), removes t7 and obtains p3 9 (6(e)). Finally, only two places
are left with markings m′

0(p2 8) = 2, m′
0(p3 9) = 1. The reduced subsystem

in Fig. 6(e) is the abstraction of S2.

Assume that, using rule 1 and 2, we reduce the paths between two sets
of transitions Tin and Tout. Now we will discuss the uniqueness of the fully
reduced system.

Property 3.10. Any arbitrary and interleaved application of rule 1 and 2
until none of them can be applied produces the same reduced system.

Proof. It is first proved that the order of adjacent rules that are applied can
be interchanged, obtaining the same reduced system. Otherwise stated, let
A and B be the instances of two rules, by applying AB, the same system
is obtained as by applying BA. Then we will show that any sequence of
rules, leading to the fully reduced system, can be reordered. After that, the
uniqueness of the reduced system can be easily proved.

1) if A and B are both instances of rule 1 (or rule 2 ), it is trivial.
2) if A and B are instances of different rules. Without loss of generality,

suppose A is an instance of rule 1, removing a transition tj and B is an
instance of rule 2, removing an implicit place px. Obviously, if tj /∈ •px∪px•,
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2
p8
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t8

t7 t9

t6
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3
3

2

p3_7

p2_6

(c) applying rule 1 to (b)

2

t2

t3

t8

t7 t9p9

2

3
3

2

p3_7

p2_8

(d) applying rule 1 to (c)

2

t2

t3

t8

t9

2

3
3

2

p3_9

p2_8

(e) applying rule 1 to (d)

Figure 6: Reduction process of S2 in Fig. 3(a)

A and B are independent, so the system obtained after applying AB is
equivalent to the one obtained after applying BA. Therefore, we only need
to consider the two cases shown in Fig.7, where tj can be removed by using
rule 1, at the same time, its input or/and output places can be reduced by
using rule 2. Its extension to more general structures is quite straightforward.

t1

px

p1

w2

w3

w6w4

tj w5

t2

w1

t3

w7

w8

p2

p3

(a)

t1 p1

p2

w2

w3

w6w4

tj w5 w7

w8

px

p3
t2

w1

t3

(b)

Figure 7: The two cases with tj ∈ •pi ∪ pi
•

It will be shown that for case (a), by applying AB and BA, the same
system is obtained. The analysis to case (b) is similar.

Since px can be removed by using rule 2, then w1/w3 = w2/w4 and in
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(a) First apply rule 1

t1

p1

w2

w6

w4

tj w5

t2

t3
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(b) First apply rule 2

t1

t2

t3

pa

pb

g2

g6

g3

g7

(c) Finally reduced

Figure 8: Reducing by applying rules in different order

the initial state m0(px)/w3 ≥ m0(px)/w4. Let path π1 = {t1, px, tj, p2, t2}
and π2 = {t1, p1, tj, p2, t2}, then we have the weighted marking M(π1,m0) ≥
M(π2,m0).

If first rule 1 has been applied to remove tj, the system in Fig.8(a) is
obtained. Let us first consider the obtained place pa and p′a. Without loss
of generality, we should have: g1

g5
= w1·w5

w3·w7
= g2

g6
= w2·w5

w4·w7
, moreover, with

the initial marking m′
0(p

′
a) = g1 ·M(π1,m0) and m′

0(pa) = g2 ·M(π2,m0),

therefore,
m′

0(p
′
a)

g5
≥ m′

0(pa)

g6
, p′a is implicit place. Then, it can be removed by

applying rule 2. Similarly, for pb and p′b, let
g3
g7

= w2·w6

w4·w8
, g4

g8
= w1·w6

w3·w8
, p′b is also

implicit and can be removed. The obtained system is shown in Fig.8(c).
If first rule 2 has been applied to remove px, the system in Fig.8(b) is

obtained. Then by applying rule 1, tj is removed, it is clear that the same
reduced system in 8(c) is achieved.

Now we know that the order of applying reduction rules is not important.
Let Γ1 and Γ2 be two sequences of rules leading to two fully reduced systems
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S1 and S2. It is clear that, the same number of rule 1 is applied in Γ1

and Γ2 (because applying rule 1 once, one transition between Tin and Tout

is removed). From 1) and 2), we can transform the sequence Γ1 to Γ′
1 by

interchanging the order of adjacent rules, until all the instances of rule 1
are moved ahead of instances of rule 2. Assume that by applying all the
instances of rule 1, the obtained system is S ′

1. On the other side, we can
also transform the sequence Γ2 to Γ′

2 by doing the same interchanging and
assume that by applying all the instances of rule 1, the obtained system is
S ′
2. Obviously, S ′

1 and S ′
2 are equivalent, and there are only places (but no

transitions) left between Tin and Tout. After that, the instances of rule 2 are
applied to reduce implicit places in S ′

1 and S ′
2. If they are fully reduced, for

sure the finally obtained systems are the same, i.e., S1 and S2 are equivalent.
Therefore, the fully reduced system is unique.

Remark 3.11. In order to obtain the fully reduced system, we need to explore
the paths between transitions. Concerning the computational complexity, it
is suggested that before considering to apply rule 1, we should first apply rule
2 (or other possible methods) as much as possible, to remove the redundant
implicit places, e.g., in Ex.3.9, rule 2 is first applied to remove a implicit
place p5.

Proposition 3.12. Let S be a continuous CFPN system, and Si, i = 1, 2
be its subsystems obtained by cutting with places B ∈ P . CS i is the comple-
mented subsystems obtained from S by substituting Sj, j = 1, 2, j ̸= i with its
abstraction. The firing sequences and reachable markings of S are preserved
in the complemented subsystems.

Proof. Since the abstractions of subsystems are obtained by using the pro-
posed reductions rules, it is a direct consequence of Proposition. 3.5 and 3.8.

Sometimes for a complex system, it may be divided into more than two
parts through several given sets of places. Therefore, this cut and comple-
ment process should be executed iteratively. For instance, the CFPN system
in Fig.3(c) can be cut one more time with B2 = {p10 1, p6, p7}. Using the same
reduction process, two second level subsystems CS21 and CS22 are obtained,
they are given in Fig.9.
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Figure 9: Second level decomposition of CS2 with B2 = {p10 1, p6, p7}

4. Decentralized Control of CFPN Systems

4.1. Computing the Control Laws

Using the decomposition method proposed in Section 3, we obtain the
complemented subsystems whose behaviours are consistent with in the origi-
nal system. The local control laws (minimal firing count vectors) driving sub-
systems to their corresponding final states can be computed separately. But
consider the fact that buffers are essentially shared by neighboring subsys-
tems, local control laws should be compatible with each other, more specifi-
cally, the interface transitions between two neighboring subsystems should be
fired with the amount in both of them (this is not true in general, see Ex.4.1
for a example where local control laws are not compatible). For this purpose,
a coordinator is introduced. Local controllers will send limited information
(the local control law and the minimal T-semiflow) to the coordinator. Al-
gorithms are proposed to compute the globally admissible control laws base
on this information, without knowing the detailed structures of subsystems.

Example 4.1. Let us consider the CFPN in Ex. 3.2 and the two obtained
complemented subsystems in Fig.3(b) and Fig.3(c). The initial and final
marking m0, mf of the original system, and its corresponding minimal firing
count vector σmin is shown in Tab. 1. The minimal firing count vectors
σi

min of CS i for reaching the corresponding final marking mi
f from mi

0 are
computed separately, they are also given in Tab. 1. It can be observed that
σ1

min and σ2
min are not compatible, because their interface transitions do not

have the same firing counts, for instance, σ1
min(t1) ̸= σ2

min(t1).

Let S = ⟨N ,m0⟩ be the original system, with mf > 0 the desired final
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Table 1: Markings and firing count vectors
P m0 m1

0 m2
0 T σmin σ1

min σ2
min

(mf ) (m1
f ) (m2

f )

p1 0 (0.4) 0 (0.4) 0 (0.4) t1 1.4 0.9 1.4
p2 0 (0.3) 0 (0.3) 0 (0.3) t2 0.55 0.3 0.55
p3 0 (0.3) 0 (0.3) t3 1 0.5 1
p4 0 (0.3) 0 (0.3) t4 0.25 0.25
p5 1 (1.3) 1 (1.3) t5 0.7 0.7
p6 0 (0.5) 0 (0.5) t6 0 0
p7 1 (0.3) 1 (0.3) t7 1.4 1.4
p8 1 (0.4) 1 (0.4) t8 1 0.5 1
p9 0 (0.2) 0 (0.2) t9 0.4 0.23 0.4
p10 0 (0.6) 0 (0.6) 0 (0.6) t10 0.8 0.3 0.8
p11 0 (0.2) 0 (0.2) t11 0.6 0.1
p12 0 (0.1) 0 (0.1) t12 0.7 0.2
p13 0 (0.1) 0 (0.1) t13 0.35 0.1
p14 0 (0.3) 0 (0.3) t14 0.5 0
p15 0 (0.1) 0 (0.1) t15 0.6 0.1
p16 0 (0.1) 0 (0.1) t16 0.25 0
p17 1 (0.1) 1 (0.1)
p18 1 (0.2) 1 (0.2)
p19 1 (0.1) 1 (0.1)
p2 8 2 (2.1)
p3 9 1 (0.8)
p10 1 1 (0.4)

state. It is assumed that the original system is decomposed into K subsys-
tems, the following notations are used:

(1) σmin: the minimal firing count vector driving S to mf .

(2) CS i = ⟨CN i,m
i
0⟩ be the complemented subsystems with corresponding

final state mi
f , i = 1, 2, ..., K.

(3) B(k1,k2): the cutting places between CSk1 and CSk2.

(4) U (k1,k2): the interface transitions between CSk1 and CSk2.

(5) xi: the minimal T-semiflow in CN i, i = 1, 2, ..., K.

(6) σi
min: the minimal firing count vector driving CS i tom

i
f , i = 1, 2, ..., K.

The original system is strongly connected and consistent, all the obtained
complemented subsystems preserve these properties. It has been proved that
the minimal T-semiflow and minimal firing count vector are unique in a
strongly connected and consistent CFPN ([25, 26]), therefore, σmin and xi
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are unique, any firing count vector σi driving CS i to its final state can be
written as the following:

σi = σi
min + αi · xi, αi ≥ 0 (2)

Algorithms 1 is used by the coordinator controller. Non-negative value
α1, α2, ..., αK are obtained by solving a simple LPP. Then these values are
sent back to local controllers. It is ensured that by updating the local control
law from σi

min to σi
min+αi ·xi, the interface transitions are fired in the same

amounts in neghboring subsystems.

Algorithm 1 Coordinator

Input: σi
min, x

i, i = 1, 2, .., K
Output: αi, i = 1, 2, .., K

1: Receive σi
min, x

i from local controllers
2: Compute αi by solving LPP:

min
K∑
i=1

αi

s.t. σi1
min(tj) + αi1 · xi1(tj) = σi2

min(tj) + αi2 · xi2(tj),∀tj ∈ U (i1,i2)

∀i1, i2 ∈ {1, 2, ..., K}, CS i1 and CS i2 are neighbors.
αi ≥ 0, i = 1, 2, ..., K

(3)
3: Send αi to CS i;

Given a reachable final state mf , LPP (3) is feasible. Let σ be a firing
count vector driving S to mf . The projections of σ corresponding to CS i1

and CS i2 , denoted by σi1 and σi2 , are fireable and can drive CS i1 , CS i2 to
their corresponding final states. Obviously, the transitions in U (i1,i2) are fired
in the same amounts in σi1 and σi2 , so there exist αi1 and αi2 , satisfying the
constraints of LPP (3).

Proposition 4.2. Let αi be the value obtained by using Alg.1 and σi =
σi

min + αi · xi, i = 1, 2, ..., K be the local control laws of CS i. The global
control law σ obtained by merging all the local ones, is the minimal firing
count vector driving S to mf .

Proof. It is trivial that σ can drive S to mf . If σ is not the minimal one,
some amounts of T-semiflow can be subtracted, obtaining a contradiction
with the objective function of LPP (3).
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Algorithms 2 is used by local controllers. The minimal firing count vector
σi

min of subsystem CS i is first computed separately in the corresponding
local controller and then sent to the coordinator together with the minimal
T-semiflow. After the updating information, αi, is received, the controller of
CS i can be implemented independently with the control law σi

min + αi · xi.
In this work, a ON-OFF control strategy (presented in the next section) is
used.

Let us observe that the only information required by the coordinator
are the local control laws and minimal firing count vectors, therefore all
computations are done locally with very low communication costs.

Algorithm 2 Local Controller i

Input: CN i, m
i
0, m

i
f

Output: σi

1: Compute σi
min driving the system to mi

f ;
2: Compute the minimal T-semiflow xi;
3: Send σi

min and xi to the coordinator;
4: Receive αi from the coordinator;
5: Update σi ← σi

min + αi · xi;
6: Apply ON-OFF control;

4.2. Minimum-time ON-OFF Controller

The globally admissible local control laws are obtained using the method
presented in Section 4.1, in this section we will discuss how to drive the
system to its final state, in particular, an ON-OFF strategy will be applied
which ensures the minimum-time state evolution.

The final state of a system may be reached by following different firing
count vectors. In CFPN systems if the final state is reached in minimum-
time, the system should follow the minimal one, which is unique in (strongly
connected and consistent) CFPN.

Since in a CFPN system every place has only one output transition,
the firing of one transition will not disable another. Furthermore, if two
transitions t1 and t2 are enabled at the same time, the order of firing is not
important (i.e., both sequence t1t2 and t2t1 are fireable). Based on these
observations, it can be concluded that if there exists a transition that has
not been fired with the maximal amount at one moment, certain amount of
its firings may be moved ahead in order to reach the maximal amount.
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Example 4.3. Let us consider the trivial CFPN system in Fig. 10 and as-
sume mf = [0.2 0.5 0.3]T , the minimal firing count vector for reaching the
final state is σ = [0.8 0.3 0]T . Following this vector, one firing sequence may
be σ1 = t1(0.5)t2(0.3)t1(0.3). It can be observed that t1 is 1-enabled under
m0, and the required amount that t1 should fire is 0.8. Therefore, we can
fire t1 more than 0.5 in the beginning. In particular, the final marking is also
reached by firing sequence σ2 = t1(0.8)t2(0.3).

p3t1 t3t2p2p1

Figure 10: A CFPN system with m0 = [1 0 0].

The ON-OFF controller is obtained if every transition is fired as fast as
possible at any moment until the required minimal firing count is reached.
Under the continuous time setting, the control action for transition tj at time
τ is given by:

u(tj, τ) =

{
0 if

∫ τ−

0
w(tj, δ)dδ < σ(tj) (a)

f(tj, τ) if
∫ τ−

0
w(tj, δ)dδ = σ(tj) (b)

(4)

where σ is the minimal firing count vector and w(tj, δ) is the controlled flow
of tj at time δ, f(tj, τ) are the uncontrolled flow at time τ . (a) means that
if σ(tj) is not reached then tj is completely ON, i.e., u(tj, τ) = 0; else (b), tj
is completely OFF, i.e., u(tj, τ) = f(tj, τ).

It is proved in Appendix A that by applying this ON-OFF controller
to a CFPN system, the final state can always be reached in minimum-time.
It should be noticed that for continuous timed system under infinite server
semantics, once a place is marked it will take infinite time to be emptied
(like the discharging of a capacitor in an electrical RC-circuit). Therefore,
if there exist places that are emptied during the trajectory to mf , the final
marking is reached at the limit, i.e., in infinite time. Obviously, if mf > 0,
this situation does not happen.

The advantage of this ON-OFF control strategy is its low computational
complexity: only the minimal firing count vector needs to be computed,
and it is polynomial time. On the other side, the the minimum-time state
evolution is guaranteed.
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5. Case Study

The CPN in Fig.11 shows the model of a manufacturing system that con-
sists of three work stations: WS 1 and WS 2 and WS 3. There are two type
of raw materials A and B, processed by WS 1 and WS 2 respectively. The
obtained semi-products are deposited in buffers and will be finally assembled
in WS 3 to make the final products.
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Figure 11: A manufacturing system with three work stations.

Tab.2 gives the interpretations of the model:
It is assumed that both types of materials have quantities equal to 10,

while two machines are available for any processing, production lines in WS 2
and WS 3 have maximal capabilities equal to 5. The firing rates are: λ7 =
λ9 = 1/2, λ13 = λ15 = 1/3, λ18 = λ20 = 1/4 and for other transitions, all
equal to 1. Under this setting, the maximal throughput of transition E M2 C
(t20, which models the machine that produces the final product) in the steady
state is 0.29 ([3]). We will design the control laws for reaching this state using
the proposed decentralized control method.

It is natural to cut the original system into three subsystems CS1 to
CS3 corresponding to work stations WS 1 to WS 3. The buffer places are
B(1,2) = {p28, p29}, B(2,3) = {p30, p31} and the interface transition are U (1,2) =
{t1, t5, t9, t17, t20, }, B(2,3) = {t10, t15, t17, t20}. The complemented subsystems
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Table 2: The interpretation of the PN model in Fig.5

Labels Interpretation
x Rdy material x is ready
Mx y machine x processing y
Max Mx y the free machine x processing y
Blk blocked
B x the buffer of semi-product x
Max x the maximal allowed capacity of x
final the final product
x Raw raw material x
x finish the semi-product x finished
S Mx y machine x starts to process y
E Mx y machine x finishes the process of y
Dispatch dispatch raw materials to producing lines

are shown in Fig.12, the final states of subsystems and their corresponding
minimal firing count vectors are shown in Tab.3.
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Figure 12: The complemented subsystems obtained from the model in Fig.??

In this specific example, the T-semiflows of subsystems are unit vectors
I, by applying Alg.1, the solution is quite straightforward: α1 = α3 = 0 and
α2 = 0.29. So the control law of CS2 should be updated to σ2

min+0.29·I, the
control laws of CS1 and CS3 are σ1

min and σ3
min, respectively. By applying
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Table 3: Final states and minimal firing count vectors

CS1 (WS 1) CS2(WS 2) CS3(WS 3)
p m1

f t σ1
min p m1

f t σ1
min p m1

f t σ1
min

p1 0.29 t1 5.86 p13 0.29 t10 5.42 p21 0.29 t16 3.14
p2 0.29 t2 5.57 p14 0.29 t11 5.14 p22 1.14 t17 2.86
p3 1.71 t3 5.29 p15 0.86 t12 4.85 p23 0.86 t18 1.71
p4 0.29 t4 5.00 p16 0.86 t13 4.00 p24 0.29 t19 1.43
p5 0.29 t5 4.71 p17 0.29 t14 3.71 p25 1.14 t20 0.29
p6 1.71 t6 1.43 p18 0.86 t15 2.85 p26 0.86 t21 0.00
p7 4.43 t7 0.86 p19 0.86 t17 2.57 p27 0.29 t1 5.86
p8 0.57 t8 0.57 p30 4.57 t20 0.00 p28 4.43 t5 4.71
p9 1.43 t9 0.00 p31 0.29 p29 0.86 t9 0.00
p10 0.29 t17 2.86 p2a 2.57 p30 4.57 t10 5.71
p11 0.57 t20 0.29 p2b 2.43 p31 0.29 t15 3.14
p12 1.43 p32 1.86
p28 4.43 p3a 1.14
p29 0.86 p3b 5.86
p1a 2.57 p3c 2.43
p1b 2.43 p3d 2.57

the ON-OFF controller using these laws, the final state of the system is
reached in 15.17 time unites, which is the minimum-time.

6. Conclusion

This paper focuses on the minimum-time decentralized control of Choice-
Free continuous Petri nets. The addressed problem is how to drive the system
from an initial state to a desired final one.

We assume the original system can be viewed as divided by given sets of
places. It should be noticed that the number of interface transitions varies,
depending on how the cutting places are chosen. It may further influence
the computational complexity, because the size of complemented subsystems
are bigger if we use a cut that introduces many interface transitions. Two
rules are proposed to reduce subsystems, more specifically, the paths between
interface transitions can be reduced to some places. In the worst case, the
number of places may not be reduced, but since all intermediate transitions
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in the paths are removed, the subsystems are still highly simplified in gen-
eral, obtaining their abstractions. A coordinator is introduced to reach the
agreement among neighboring subsystems, by solving a simple LPP. The
coordinator does not need to know the detailed structures of subsystems:
only limited information — the minimal firing count vector and minimal T-
semiflow, are exchanged, ensuring the low communication cost. Applying
the ON-OFF strategy in each subsystem, the global final state is reached in
minimum-time.

As a future work, this decentralized control framework will be considered
to general PN systems. Then two potential problems need to be addressed:
1) the minimal firing count vectors may not be unique, and some of them
can cause the reachability problem of the final state; 2) the ON-OFF con-
troller may not be directly applied, because in some cases systems may get
a deadlock when pure ON-OFF strategy is used.

Appendix A.

By sampling the continuous-time TCPN system with a sampling period
Θ, we obtain the discrete-time TCPN ([8]) given by:

mk+1 = mk +C ·wk ·Θ
0 ≤ wk ≤ fk (A.1)

Here mk and wk are the marking and controlled flow at sampling instant k,
i.e., at τ = k ·Θ.

It is proved in [8] that if the sampling period satisfies (A.2), the reacha-
bility spaces of discrete-time and continuous-time PN systems are the same.

∀p ∈ P :
∑
tj∈p•

λj ·Θ < 1 (A.2)

It is assumed that the sampling period Θ is small enough to satisfy (A.2),
and the detailed proof is given in the setting of discrete-time. It can be
naturally extended to continuous-time systems.

Proposition Appendix A.1. Let ⟨N ,λ,Θ,m0⟩ be a discrete-time con-
tinuous CFPN system and mf be a reachable final marking with the cor-
responding minimal firing count vector σ. The ON-OFF controller is the
minimum-time controller driving the system to mf .
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Proof. We will prove that whenever there exists a controller G driving the
system to mf , it consumes at least the time of the ON-OFF controller. This
will imply that the ON-OFF controller is the minimum-time controller.

Assume a non ON-OFF controller G. Hence, there exists a transition tj
that is not sufficiently fired, i.e., not fired as much as possible, in a sampling
period k. In other words, tj has to be fired later in a sampling period l, l > k.
Let us assume, without loss of generality, that tj is not fired between the kth

and the lth sampling period. It is always possible to “move” some amounts of
firings from the lth sampling period to the kth one until tj becomes sufficiently
fired in k. According to Property 2.2 this move does not affect the fireability
of the other transitions. Iterating the procedure, all transitions can be made
sufficiently fired in all sampling periods and the obtained controller is an
ON-OFF one.

Obviously, the number of discrete-time periods necessary to reach the
final marking after moving firings from a sampling period l to another one k
with k ≤ l is at least the same. Hence the number of sampling steps is not
higher with the ON-OFF controller.

If we take sampling period Θ tending to 0, the ON-OFF controller for
continuous-time system (shown in (4.2)) is obtained. According to Proposi-
tion Appendix A.1, this is the minimum-time controller.
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