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Abstract

Several approaches exist to model the evolution of dynamical
systems with large populations. These approaches can be
roughly divided into microscopic ones, which are usually
stochastic and discrete, and macroscopic ones, which are
obtained as the limit behavior when the populations tend to
infinity and are usually deterministic and continuous. We study
the dynamics obtained by both approaches in systems with
one deterministic equilibrium. We show that such dynamics
can exhibit rather different behavior around the deterministic
equilibrium, in particular, the limit behavior can tend to an
equilibrium while the stochastic discrete dynamics oscillates
indefinitely. To evaluate such stochastic oscillations quan-
titatively, we propose a system of differential equations on
polar coordinates. The solution of this system provides several
measures of interest related to the stochastic oscillations, such
as average amplitude and frequency.
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1 Introduction

The population dynamics of many biochemical systems
can be naturally modelled by continuous-time Markov chains
(CTMCs). In these processes, the population of each species is
given by an integer number and the occurrence of a reaction is
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represented by an event (or jump). The time to the next event
follows an exponential distribution whose mean depends on
the rate associated to the reaction and the population of each
species that takes part in the reaction. The resulting dynamics
are therefore stochastic.

Alternatively, the dynamics of such systems can be de-
scribed by considering population densities instead of absolute
populations. When the size (or volume) of the system is
significantly large, limit theorems [15, 9, 12] offer an appealing
mathematical tool to compute the average behavior of the
system densities. In particular, limit theorems provide a system
of ordinary differential equations (ODEs) whose solution is the
limiting behavior of the densities when the system size tends
to infinity. In contrast to the CTMC dynamics, the trajectory
described by an ODE is continuous and deterministic.

Although the use of ODEs is straightforward and they rep-
resent a mathematically proven average behavior (continuous
and deterministic), they might also provide a somewhat myopic
view of the original discrete and stochastic system since only
the average behavior is being considered. This can lead to
conclusions about the dynamics in which important properties
such as oscillations, commutations, stochastic resonance, etc.
are passed over [10, 2, 7, 1, 5].

This paper is an extension of previous work [13] and focuses
on evaluating stochastic oscillations that are frequently seen as
equilibrium points in the limiting ODE. Identifying oscillatory
behavior and estimating quantitative properties like amplitude
and frequency is crucial to correctly analyze real biological
systems where such behavior is essential [8, 11], e.g., reactions
associated to circadian rhythm.

The method proposed here to evaluate stochastic oscillations
is based on the design of an ODE that expresses the system
behavior in polar coordinates. The method is also applicable to
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other application domains in which similar stochastic models
are considered, e.g., population dynamics, chemical reactions,
ecological models, etc.

The main feature of the proposed ODE is its ability to cor-
rectly average quantitative values of the stochastic oscillations
such as amplitude and frequency. In contrast to approaches
that make use of probabilistic model checking [4, 3] that can
suffer from the state explosion problem and has had limited
success in both analyzing and identifying oscillating behavior,
and approaches that require ad hoc Lyapunov functions to
check stability [2], the approach proposed here does not suffer
from the state explosion problem and can be systematically
applied to processes modelled as continuous-time Markov
chains. The overall approach to design the mentioned ODE
on polar coordinates can be summarized in three steps:

(1) Definition of the ODE for the limiting behavior: The
ODE for the limiting behavior, as the size of the system
tends to infinity, can be straightforwardly obtained from
the definition of the considered continuous-time Markov
chain by applying well known results related to limit
theorems [15, 12].

(2) Computation of the deterministic equilibrium point: A
state is said to be a deterministic equilibrium point if
at that state all populations remain constant indefinitely.
More formally, the derivatives of the ODE representing
the limiting behavior of the system are null at deter-
ministic equilibrium points. Thus, equilibrium points
can be obtained by computing the points that make the
derivatives equal to zero. In the remainder of the paper
we will assume that the system under study has a unique
deterministic equilibrium point.

(3) Definition of the ODE on polar coordinates and evaluation
of oscillations: In order to describe the average behavior
of a system around a given point we will use polar
coordinates instead of cartesian ones. More precisely, the
(unique) deterministic equilibrium point will be taken as
the origin for the polar coordinates. For each event of
the system, the increments produced by the occurrence of
such an event on each polar coordinate will be computed.
This allows us to compute the expected increment of
each variable and in turn to define the average dynamic
behavior of those variables over time. This results in
an ODE for the polar coordinates. Such an ODE can
be used to compute the amplitude and frequency of the
system around the considered equilibrium point in the
steady state.

Running example. As a running example a simple popula-
tion dynamics system described in [2, 17] is considered. The
system is similar to those arising when modelling biochemical
reactions [16] and predator-prey systems [19]. The state of
the system is given by two populations (integer variables) S
and I representing the number of susceptible and infected
individuals. There are three events, Birth, Contagion, Death,
that modify the state of the system. Table 1 shows the effect

and rates of each event, e.g., event Contagion decreases the
number of susceptible individuals by one, increases the number
of infected individuals by one and has rate wc = (β·S·I)/V .
Parameters a, b and β are related to the rates of Birth, Death and
Contagion respectively, and V represents the size (or volume)
of the system.

Table 1: Events and rates of the running example
Event Effect Transition rate
Birth {S, I} → {S+1, I} wb = a·V
Contagion {S, I} → {S−1, I+1} wc = (β·S·I)/V
Death {S, I} → {S, I−1} wd = b·I

The described system dynamics can be expressed by means
of the following chemical reactions:

∅ wb−−→ S S + I
wc−−→ 2I I

wd−−→ ∅

Let us focus on the concentrations x1= S
V and x2= I

V of the
populations of susceptible and infected individuals. When the
parameters of the CTMC satisfy some convergence conditions,
its limiting behavior as V tends to infinity can be expressed
as an ODE [15, 6]. In the Appendix it is shown that these
conditions are satisfied by the CTMC under consideration.
The limiting behavior of the CTMC can be expressed by the
following ODE:

dx1

dt
= − β·x1·x2

dx2

dt
= β·x1·x2 − b·x2

(1)

Figure 1 shows the time evolution of S = V ·x1 given
by both the solution of ODE (1) and just one stochastic
simulation run of the CTMC. The parameters used in
Figure 1 are a=1, b=10, β=10 and V=104. For these
parameters the ODE dynamics has a unique equilibrium
point (xeq

1 , x
eq
2 )=(1, 0.1), thus in terms of populations the

equilibrium point is (Seq , Ieq)=(104, 103).
Notice that whereas the ODE shows damped oscillations

tending toward its equilibrium point (Seq=104, Ieq=103), the
CTMC dynamics exhibits sustained oscillations [2, 18]. Thus,
for this example, the ODE representing the limiting behavior
does not capture the sustained oscillations of the CTMC.

Figure 2 shows the frequency spectrum of the stochastic
trajectory of Figure 1, i.e., it represents the signal in the
frequency domain. A clear peak appears around the frequency
0.5. This phenomenon cannot be observed if the results of
several runs of the CTMC are then averaged. In other words,
the averaged populations converge to the solution of the ODE,
but the ODE does not imitate the oscillations present in the
CTMC dynamics around the equilibrium. Further explanations
on this phenomenon are provided in the next section.

The goal of the paper is to develop an ODE that provides
a complementary view of the dynamics of the CTMC that
correctly averages sustained oscillations. The paper is or-
ganized as follows: Section 2.1 describes the stochastic and
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Figure 1: Trajectory S according to the ODE (1) and the CTMC
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Figure 2: Frequency spectrum of the trajectory of S

deterministic models for the systems under consideration. The
behavior of both models around the deterministic equilibrium
point is analyzed in Section 3. Section 4 proposes an ODE
based on polar coordinates to average stochastic oscillations.
An epidemic system is described and analyzed in Section 5.
Section 6 concludes the paper.

2 Stochastic and Deterministic Models

2.1 Stochastic Models

The dynamics of many biological systems with discrete
populations can be naturally expressed in terms of CTMCs.
The following parameters allow us to describe the dynamics
of the concentrations of the populations over time. In the
following, N denotes the set of natural numbers, R the set of
real numbers and Z the set of integers.

Definition 1 (System parameters).

• V ∈ R>0 is the size (or volume);
• q ∈ N is the number of species;

• n0 ∈ Zq≥0 is the initial population of the q species;
• α = {α1, . . . , αE} is a set of E ∈ N events;
• δ = {δ1, . . . , δE} defines the system change after the oc-

currence of events, i.e., δj ∈ Rq determines the population
density change produced by αj;

• w = {w1, . . . , wE} is a set of functions such that wj :
Rq≥0 → R≥0 defines the transition rate of event αj , i.e.,
wj(x) is the transition rate of αj when the population
density is x.

For a population n ∈ Zq≥0, its density (or concentration) is
x=n/V . The exact meaning of V can depend on the appli-
cation domain: in physics and chemistry it usually represents
volume; in epidemiological models it often means the overall
population or the size of the environment being considered.
Although some variables, such as x, depend on time, for
readability we will use x rather than x(t).

For the running example, the system parameters, where
numerical subindices are substituted by letters for clarity, are:

• V=104 and q=2;

• n0=(S0, I0), where S0=14000 and I0=500 are the initial
numbers of susceptible and infected individuals respec-
tively,;

• α = {αb, αc, αd} = {Birth,Contagion,Death};

• δ = {δb, δc, δd} =
{(

1
V , 0

)
,
(
− 1
V ,

1
V

)
,
(
0,− 1

V

)}
;

• w = {wb, wc, wd} = {a·V, β·x1·x2·V, b·x2} where a=1,
b=10 and β=10.

The system evolution follows the usual dynamics of a CTMC:
when an event αj takes place, the population density is updated
from x to x+δj . The time to the next event is exponentially
distributed. For a given density x, the mean of the exponential
distribution associated to event αj is 1/wj(x). We will restrict
our attention to CTMCs that satisfy the mass-action law, i.e.,
those processes whose reaction rates are proportional to the
product of the concentrations of the participating species.

2.2 Deterministic Models

The vector field for species i∈{1, . . . , q} is given by [18]:

Fi(xc) =
E∑
j=1

δj ·wj(xc) (2)

where xc ∈ Rq≥0 denotes the state of the process. In
the deterministic model the state xc represents the average
behavior of the stochastic model, that is the reason why the
different notations x and xc are used for the Markovian and the
deterministic models respectively.

When the parameters of the CTMC satisfy certain condi-
tions [15, 6], its limiting behavior is given by the following
set of differential equations:

dxc

dt
=

E∑
j=1

δj ·wj(xc) (3)
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Figure 3: ODE (1) trajectory and final states of simulations

A state xeq is said to be a deterministic equilibrium point if
it holds that

∑E
j=1 δj ·wj(xeq) = 0. As already mentioned,

this paper focuses on systems having a unique deterministic
equilibrium. The ODE given in (3) is a deterministic approx-
imation for the densities of the species in the system. For the
particular system parameters of the running example ODE (3)
corresponds to ODE (1).

Figure 3 shows the evolution of the ODE (1) in the phase
space over 20 time units. Each dot in the figure corresponds
to the state of a simulation run of the CTMC after 20 time
units. Conversely, as Figure 1 demonstrates, at time 20 the
deterministic trajectory has already reached its equilibrium
point. It can be observed that the center of mass of the black
dots lies on the equilibrium point towards which the ODE
converges. This is an expected result since the system satisfies
the conditions of the limit theorems [15].

wb

(s−1, i+1)

wc (s+1, i)(s, i)

(s, i−1)

S

I

wd

Figure 4: Phase space evolution of the CTMC

The static picture of Figure 3 does not show that each
particular run is not tending to the deterministic equilibrium
point. This at first glance surprising phenomenon can be
intuitively explained. Figure 4 shows the potential evolutions,
i.e., changes produced by the events, of the state of the CTMC
together with the rates associated to them. If (seq , ieq) is

a deterministic equilibrium point, all the components of the
vector field cancel out, i.e., (2) becomes null, and therefore the
solution ODE remains at (seq , ieq). However, the CTMC does
not remain at the deterministic equilibrium indefinitely since
the rates of the events at this point are positive. Moreover, at
the deterministic equilibrium all three rates are equal, hence
the CTMC will evolve similarly to a random walk in a neigh-
borhood close to the equilibrium. In fact, as pointed out in [18],
non-extinction deterministic equilibria have associated a region
of stochastic instability. This intuitive explanation is developed
mathematically in the next section.

3 System Behavior around the Equilibrium Point

This section compares the evolution, with respect to a de-
terministic equilibrium point, of ODE (3) and the CTMC. In
particular, we focus on the evolution of the euclidian distance
squared from the system state to the equilibrium point.

Let xeq ∈ Rq be a deterministic equilibrium point, i.e.,∑E
j=1 δj ·wj(xeq) = 0. Let us define the distance of a point

x ∈ Rq to xeq as:

D(x, xeq) =
q∑
i=1

(xi − xeq
i )2 (4)

The variation of D(xc, xeq) per time unit, where xc is the
continuous trajectory provided by (3), is given by:

dD(xc, xeq)
dt

=
q∑
i=1

d(xci − x
eq
i )2

dt
(5a)

=
q∑
i=1

2·(xci − x
eq
i ) · dx

c
i

dt
(5b)

=
q∑
i=1

(
2·(xci − x

eq
i ) ·

E∑
i=1

δji · wj(xc)
)

(5c)

where δji is the density change of the ith species due to the
occurrence of event αj . The expression in (5b) is obtained
by applying the chain rule, and (5c) is obtained by using
Equation (3).

In order to compute the time evolution of (4) on the CTMC,
we will first obtain an expression for the expected change of
D(x, xeq) after the occurrence of an event. To obtain such
an expression, the embedded Markov chain is used. In the
following, all the expressions related to expected values depend
on the current state x, i.e., they are conditional expectations.
For brevity, the current state will be omitted in the expressions,
e.g., E[∆D(x, xeq) |x] will be shortened to E[∆D(x, xeq)].
Let us define R(x) as the average number of events per time
unit:

R(x) =
E∑
j=1

wj(x)

By the product rule of the difference operator we have:

∆(xi−xeq
i )2 = 2·(xi−xeq

i ) ·∆xi + (∆xi)2
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and hence the expected increment of D(x, xeq) after an event
is:

E[∆D(x, xeq)] = E
[
q∑
i=1

∆(xi−xeq
i )2

]
(6a)

= E
[
q∑
i=1

(
2·(xi−xeq

i ) ·∆xi + (∆xi)2
)]

(6b)

=
q∑
i=1

E[(∆xi)2] +
q∑
i=1

2·(xi−xeq
i ) · E[∆xi] (6c)

=
q∑
i=1

E[(∆xi)2] +
q∑
i=1

(
2·(xi−xeq

i ) ·
∑E
j=1 δji · wj(x)

R(x)

)
(6d)

Since at state x, the average number of events per time unit is
R(x), the average change of the distance squared per time unit
is given by:

dE[∆D(x, xeq)]
dt

= R(x) · E[∆D(x, xeq)] (7a)

= R(x)·
n∑
i=1

E[(∆xi)2] +
q∑
i=1

(
2·(xi−xeq

i )·
E∑
j=1

δji·wj(x)
)
(7b)

By making use of Equations (5c) and (7b), the following
equality for the same concentrations of the continuous and
discrete trajectories, xc = x, is obtained:

dE[∆D(x, xeq)]
dt

= R(x)·
n∑
i=1

E[(∆xi)2] +
dD(xc, xeq)

dt

More precisely, if x is not a deadlock point, i.e., there
is at least one event αj with strictly positive wj(x), then
R(x)·

∑n
i=1E[(∆xi)2] > 0 and it holds that:

dE[∆D(x, xeq)]
dt

>
dD(xc, xeq)

dt
(8)

Equation (8) implies that ODE (3) is not averaging correctly
the distance to the equilibrium point of the CTMC dynamics.

Due to the mass-action law, R(x) is proportional to V for
a given concentration x, i.e., R(x)=O(V ) where O(V ) is the
Landau notation to describe limiting behaviors. On the other
hand, the changes in the concentration x produced by events are
O(1/V ), hence

∑q
i=1 E[(∆xi)2] = O(1/V 2) implying that:

R(x) ·
(

q∑
i=1

E[(∆xi)2]
)

= O
(

1
V

)
Therefore as V tends to infinity, R(x) ·

∑q
i=1 E[(∆xi)2] van-

ishes and the ODE (3) improves its quality with respect to
the average distance to equilibrium. Nevertheless, in many
practical cases V is finite, and the term R(x) ·

∑q
i=1 E[(∆xi)2]

cannot be ignored, since it can cause interesting oscillatory
behaviors.

(seq , ieq)

(s, i)

∆φ

S∆S

∆r

I

∆I

Figure 5: System evolution from event Contagion

4 Stochastic Oscillations

4.1 Polar ODE

The previous section showed that, while stable behavior can
occur in the solution of the ODE (3), the Markov process can
exhibit sustained stochastic oscillations around the determinis-
tic equilibrium. In order to study the behavior of the CTMC
around the deterministic equilibrium, we propose to average
the distance to the deterministic equilibrium for the different
potential evolutions, i.e., events, of the CTMC. To achieve this
goal, an ODE based on polar coordinates is designed. The
origin of such coordinates is the deterministic equilibrium xeq

around which the system dynamics is to be studied. Recall
that deterministic equilibrium points can be easily computed
by solving the system of equations

∑E
j=1 δj ·wj(xeq) = 0

(see Equation (3)). In contrast to the classical approach
that focuses on the cartesian coordinates, polar coordinates
explicitly refer to the distance to an equilibrium state. After
some mathematical considerations, an ODE that averages the
distance and angle to the deterministic equilibrium is obtained.
We will constrain our attention to systems with two species,
i.e., q=2.

Figure 5 shows the system evolution after the event Conta-
gion for the cartesian (S, I) and polar (r, φ) coordinates. For
the polar coordinates the deterministic equilibrium (seq , ieq) is
taken as the origin. The choice of (seq , ieq) as origin is quite
natural since we desire to study the system dynamics around
this point.

In order to define the state of the process in polar coordinates,
radial and angular coordinates are required. The distance, or
radial coordinate, of a point x to the equilibrium point xeq is
given by the function rad(x):

r = rad(x) =
√

(x1−xeq
1 )2 + (x2−xeq

2 )2 (9)

For a given x, the angular coordinate of φ is given by:

φ= atan(x2−xeq
2 , x1−xeq

1 ) (10)

where atan(y, x) : R×R → R is the arctangent of a point
with cartesian coordinates (x, y). The range of atan(y, x) is
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(−π, π].
For the running example, the expected increment at state x of

the radial coordinate is given by:

E[∆r] =

∑E
j=1 wj(x)·rad(x+δj)

R(x)
− rad(x) (11)

and the expected increment of the angle φ is:

E[∆φ] =

∑E
j=1 wj(x)· atan(x+δj)

R(x)
− atan(x) (12)

where atan is as in (10) but now has one bidimensional
argument instead of two unidimensional ones.

There are two problems associated with equation (12). First,
when the state is close to angle φ = π, the function atan might
yield values close to π for the angle after a given event, and
close to −π for the angle after another event if the abscissa is
crossed. The average of those angles will be close to 0, which
is not meaningful. Second, the angular coordinate φ might be
used not only to localize the state of the system but also to
evaluate the overall number of degrees traveled by the system
around the equilibrium. To cope with these two issues E[∆φ]
is redefined as follows:

E[∆φ] =∑E
j=1 wj(x)·

(
atan(x+δj)+g(x, δj))
R(x)

− atan(x) (13)

where g(x, δj) equals:
−2·π if atan(x)<−π2 and atan(x+δj)>π

2

+2·π if atan(x)>π
2 and atan(x+δj)<−π2

0 otherwise

(14)

The term g(x, δj) is used to check whether φ has crossed the
value π. If the crossing is clockwise, then g(x, x+δj) = −2·π,
while if it is counterclockwise, then g(x, x+δj) = 2·π. Thus,
g(x, x+δj) allows the increments of E[∆φ] to be smooth.

More precisely, the inclusion of g(x, x+δj) in the compu-
tation of E[∆φ] solves the two mentioned problems: a) the
average of angles close to π is now ensured to be close to π;
b) if φ is updated according to its increments computed with
g(x, x+δj) it will record the number of degrees traveled by the
system around the equilibirum.

At a given state x, the average number of events per time unit
is R(x). Hence, the term R(x) · E[∆r] is the average speed of
change of r. Given that the same reasoning applies to φ, the
following ODE can be used to describe the behavior over time
of r and φ:

dr

dt
= R(x)·E[∆r]

dφ

dt
= R(x)·E[∆φ]

(15)

where E[∆r] and E[∆φ] are given by Equations (11) and (13)
respectively. Given that x is just the cartesian coordinate of
(r, φ), ODE (15) is composed of 2 equations and 2 variables.
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Figure 6: Time evolution of ODEs (3) and (15)
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Figure 7: Phase space evolution of ODEs (3) and (15)

4.2 Averaging Stochastic Oscillations

Consider again the running example. Figures 6 and 7 show
the evolution of both ODEs, (3) (labelled cartesian ODE)
and (15) (labelled polar ODE), over time and in the phase space.
It can be observed that, while (3) exhibits damped oscillations,
(15) tends to a limit cycle with clear sustained oscillations.

The ODEs present complementary views both useful for
analyzing the CTMC dynamics. While (3) focuses on the
limiting behavior of the concentrations as V goes to infinity,
(15) describes the dynamics in terms of polar coordinates for
a given V which uncovers the oscillating behavior around the
equilibrium.

The ODE (15) can be used to evaluate the average oscil-
lations of the CTMC. To compute the average distance to
the equilibrium, r, of the oscillation in the steady state, the
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following formula can be used:

r = lim
τ→∞

1
τ
·
∫ τ

0

rdt (16)

For the running example r = 1.801 · 10−2, thus the
average distance in terms of populations (not densities) to the
deterministic equilibrium is r·V = 180.1. This value is in good
agreement with the average distance to the equilibrium of the
dots shown in Figure 3.

In (15) the term dφ/dt is the angular speed ω of the system
for angle φ. Thus the average angular speed of the system in
steady state is given by:

ω = lim
τ→∞

1
τ
·
∫ τ

0

ωdt = lim
τ→∞

φ

τ
(17)

For the running example f = ω/(2·π) = 0.535 which matches
the peak exhibited in Figure 2. This can be interpreted as if
the dots in Figure 3 were orbiting around the equilibrium point
at an average frequency of 0.535. The next section shows that
other values of interest can also be obtained from the ODE on
polar coordinates.

5 Case Study

This section applies the ideas developed in the previous
sections to an epidemic system [18] that is a more realistic
version of the running example. First, the system parameters
are defined, then the suggested approach to evaluate stochastic
oscillations is applied.

5.1 Description of the System

With respect to the running example, two new events are in-
cluded: an event Death S associated to the death of susceptible
individuals, and an event Recovery, meaning that an infected
individual is restored to health. Moreover, a more realistic rate
for event Birth is considered. Table 2 summarizes the existing
events, their effect and their rate.

Table 2: Events of the epidemic system

Event Effect Transition rate
Birth {S, I} → {S+1, I} wb = S+I

1+(b·(S+I))/V

Death S {S, I} → {S−1, I} wdS = mS · S
Contagion {S, I} → {S−1, I+1} wc = β · S · I

V

Recovery {S, I} → {S+1, I−1} wr = r · I
Death I {S, I} → {S, I−1} wdI = mI · I

Let the size of the system be V = 5·103 and the initial
populations be n0=(7000, 250), i.e., the initial concentrations
are x0=(1.4, 0.05). We will consider the following values
for the constants: b=0.4, β=10, mS=0.2, mI=5 and r=3.
This way the stochastic system is fully defined: the number of
species is q=2 (susceptible and infected), α is a set of 5 events,
δ and w are determined by the values in Table 2.
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Figure 8: Time evolution of variable S
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The time trajectory of variables S and I of the stochastic
system are shown by the skewed lines in Figure 8 and Figure 9
respectively. Figure 10 shows the frequency spectrum of S.
The highest peaks appear for values of the frequency in the
interval (0.2, 0.5).

In order to evaluate the oscillations, the following three steps
will be followed: 1. Definition of ODE (3) for the limiting
behavior of the system; 2. Computation of the deterministic
equilibrium point for such ODE; 3. Evaluation of oscillations
by using ODE (15) describing the evolution of polar coordi-
nates and Equations (16) and (17).

5.2 ODE for the Limiting Behavior

As for the running example, it is quite straightforward to
write down an ODE that defines the limiting behavior of the
extended system as V tends to infinity. The proof for the
obtained ODE is very similar to the one presented in the
Appendix for the running example. For the concentrations
x1=S/V and x2=I/V , the equations of the ODE are given
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Figure 10: Frequency spectrum of S of the epidemic example

by:

dx1

dt
=

x1+x2

1+b·(x1+x2)
− mS · x1 − β·x1·x2+r·x2

dx2

dt
= β·x1·x2 − mI ·x2 − r·x2 (18)

The trajectories of S and I given by ODE (18) are shown
as the plots labelled “Cartesian ODE” in Figures 8 and 9.
Notice that these eventually reach a constant value, the so called
deterministic equilibrium point. This can be better appreciated
in the phase space plot of Figure 11.

For the given parameters of the epidemic system, the point
(xeq

1 , x
eq
2 ) = (4000/V, 502/V ) is the unique equilibrium point

in which both populations are positive. We will study the
oscillating behavior of the system around this point.
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Figure 11: Trajectories in phase space of ODEs (18) and (15)

5.3 Evaluation of Oscillations

According to Section 4, ODE (15) describes the average
time evolution of the distance and angle with respect to the
equilibrium point (xeq

1 , x
eq
2 ). The time trajectories of S and

I given by (15) are shown by the plots labelled “Polar ODE”
in Figure 8 and Figure 9 respectively. We see that, using
this approach, the sustained oscillations of the system are
clearly visible. The trajectory in the phase space is the line
representing a limit cycle in Figure 11. The limit cycle towards
which the trajectory tends can be examined to obtain the
amplitude of the oscillations. Variables S and I oscillate in
the interval [3831, 4186] and [411, 603] respectively, thus, the
amplitudes of both variables are 177.5 and 96 respectively.
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Figure 12: Time trajectory of r · V to the equilibrium
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(
dφ
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)
according to ODE (15)

Figure 12 and Figure 13 show the time evolution of the
average distance, r·V , to the deterministic equilibrium and the
average angular speed

(
dφ
dt

)
around this point respectively.

From these plots, it can be determined that, once the system
is oscillating, the maximum (minimum) distance to the deter-



IJCA, Vol. 19, No. 2, June 2012 109

ministic equilibrium is 86.1 (182.5), and that the maximum
(minimum) angular speed is 3.875 (1.087).

By means of (16) and (17), the average distance to the
equilibrium and frequency of the oscillations can be obtained.
For the epidemic system the average distance is r·V = 136 and
the average frequency is f = ω/(2·π) = 0.352.

6 Conclusions

Macroscopic models have been widely used in different
application areas as biology, chemistry and ecology. Such
models enjoy a solid mathematical grounding in the theory
of limit theorems which provide the conditions required to
approximate a large stochastic discrete system by a system
of ordinary differential equations (ODE). Although important
conclusions can be obtained from the solution of such a
system of equations, it must be taken into account that it
might also mask interesting features of the system dynamics
as oscillations.

The paper focuses on systems with a unique deterministic
equilibrium point, and the dynamics of the original stochastic
discrete model and its limiting behavior around that equilibrium
have been studied. It has been shown that the ODE associated
to the limiting behavior does not average correctly the varia-
tions of the distance to a deterministic equilibrium point. More
precisely, while the solution of the ODE is stable at such a
point, the original continuous-time Markov chain is unstable
in a neighborhood of this point.

In order to average correctly the evolution of the distance
to the equilibrium and the angular speed, an ODE based on
polar coordinates has been developed. This ODE can be
used to compute several measures of interest related to the
oscillations, such as time evolution of the average distance
to the equilibrium, time evolution of the angular speed, av-
erage amplitude and frequency of each variable, etc. The
developed ODE must be understood as a complementary tool
to understand the behavior of the stochastic discrete model:
while the initial ODE describes the overall cartesian tendency
of populations, the proposed ODE describes the oscillating
behavior of the populations. This way, the proposed ODE
represents a systematic way of evaluating quantitatively the
behavior of the system around an equilibrium point.

References

[1] G. Abramson and S. Risau-Gusman. ”Assessing the
Quality of Stochastic Oscillations”. Pramana, Journal of
Physics, 70(6):1047–1054, 2008.

[2] J. Aparicio and H. Solari. ”Sustained Oscillations
in Stochastic Systems”. Mathematical Biosciences,
169(1):15–25, 2001.

[3] P. Ballarini and M. L. Guerriero. ”Query-based
Verification of Qualitative Trends and Oscillations in
Biochemical Systems”. Theoretical Computer Science,
411(20):2019–2036, 2010.

[4] P. Ballarini, R. Mardare, and I. Mura. ”Analysing
Biochemical Oscillation through Probabilistic Model
Checking”. Electron. Notes Theor. Comput. Sci.,
229(1):3–19, 2009.

[5] L. Cardelli. Algorithmic Bioprocesses, Chapter Artificial
Biochemistry, Springer, pp. 429–462.

[6] R. Darling. Fluid Limits of Pure Jump Markov Processes:
a Practical Guide. arxiv:math.pr/0210109, Oct. 2002.

[7] R. DeVille, C. Muratov, and E. Vanden-Eijnden. ”Non-
meanfield Deterministic Limits in Chemical Reaction
Kinetics”. The Journal of Chemical Physics, 124
(231102), 2006.

[8] J. Dunlap, J. Loros, and P. DeCoursey. Chronobiology:
Biological Timekeeping. Sinauer Associates, 2003.

[9] S. Ethier and T. Kurtz. ”Markov Processes: Characteri-
zation and Convergence”. John Wiley, 1986.

[10] D. Gillespie. ”Exact Stochastic Simulation of Coupled
Chemical Reactions”. The Journal of Physical Chemistry,
81(25):2340–2361, 1977.

[11] A. Goldbeter. Biochemical Oscillations and Cellular
Rhythms: The Molecular Bases of Periodic and Chaotic
Behaviour. CUP, 1997.

[12] J. Jacod and A. Shiryaev. Limit Theorems for Stochastic
Processes. Springer, 2002.
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Appendix

This appendix first reports the main Theorem in [6], and
then applies it to the Markov process of the running example
presented in Section 1.

A.1 Fluid Limit of a Pure Jump Markov Process

Assume that for each N>1 we have a Markov
chain 〈XN

n 〉n≥0, on a state space IN ⊆ E (where
E is an euclidian space), whose increments have
mean µN [x] = E[Xn+1−Xn |Xn=x] and covariance
ΣN [x] = Var[Xn+1−Xn |Xn=x] respectively.

Let 〈νN [t]〉t≥0 be a Poisson process, with event times τ1 <
τ2 < · · · , which is dependent on 〈XN

n 〉n≥0 in the following
sense: there is some bounded rate function cN : IN → R>0,
such that each inter-event time τn+1−τn is exponential with
mean 1

cN [x] on the eventXN
n =x. As in [14], the formula ΥN

t ≡
XN
ν[t] defines a pure jump Markov process 〈ΥN

t 〉t≥0. In other
words ΥN

τn
=XN

n , so 〈ΥN
t 〉t≥0 has the same increments as does

〈XN
n 〉n≥0, and these occur at the random times τ1 < τ2 < · · · .

Let us define bN [x] as bN [x] = cN [x]·µN [x], and let D ⊆ E
be any closed set such that D ⊇ ∪N>2IN . We fix a relatively
open set S ⊆ D and define SN ≡ S ∩N>2 IN . In addition,
let us assume that the parameters of these processes satisfy
the following convergence criteria (in the below κ1[δ], κ2, κ3

denote positive constants, and the inequalities hold uniformly
in N ).

• Initial conditions convergence: assume that there is some
a ∈ S, the relative closure of S in D, such that for each
δ>0:

P[‖ΥN
0 − a‖ > δ] ≤ κ1[δ]

N
(19)

• Mean dynamics convergence: assume that there is a
Lipschitz vector field b : D → E such that:

supx∈SN
‖bN [x]− b[x]‖ → 0 (20)

• Noise convergence to zero:

supx∈SN
cN [x] ≤ κ2·N (21)

supx∈SN

(
Trace[ΣN [x]]+‖µN [x]‖2

)
≤ κ3

N2
(22)

Since b is Lipschitz on S ⊆ D, there is a unique solution
〈y[t]〉0≤t≤ζ[a] in S, where ζ[a] ≡ inf{t≤0 | y[t] 6∈ S} ≤ ∞, to
the ordinary differential equation:

ẏ[t] = b[y[t]] and y[0] = a . (23)

Theorem 1. Assume the convergence criteria (19), (20),
(21) and (22) hold, let a ∈ S and fix δ>0. For any finite z<ζ[a]
we have:

P
[

sup0≤t≤z‖ΥN
t −y[t]‖ > δ

]
= O

(
1
N

)
(24)

A.2 ODE for the Running Example

Recall, for the cartesian description of the running example
we have:

• x0=(S0/N, I0/N);

• A={Birth,Death,Contagion};

• D={(1/N, 0), (−1/N, 1/N), (0, 1/N)};

• W = {a·N, β·x1·x2·N, b·x2·N).

The initial condition ΥN
0 =x0 trivially satisfies (19) by choosing

a=x0. The expression associated to µN [x1, x2] is:

µN [x1, x2] =
( 1
N ·wb −

1
N ·wc

wb+wc+wd
,

1
N ·wc −

1
N ·wd

wb+wc+wd

)
=
(

1
N
· wb − wc
wb+wc+wd

,
1
N
· wc − wd
wb+wc+wd

)
The expression for Trace[ΣN [x1, x2]] is:

Trace[ΣN [x1, x2]] = E[x2
1]− E[x1]2 + E[x2

2]− E[x2]2

=

1
N2
·wb +

1
N2
·wc

wb+wc+wd
− 1
N2
·
(

wb − wc
wb+wc+wd

)2

+

1
N2
·wc +

1
N2
·wd

wb+wc+wd
− 1
N2
·
(

wc − wd
wb+wc+wd

)2

=
1
N2
·

(
wb+wc

wb+wc+wd
−
(

wb − wc
wb+wc+wd

)2

+
wc+wd

wb+wc+wd
−
(

wc − wd
wb+wc+wd

)2
)

Finally the expression for cN [x1, x2] is:

cN [x1, x2] = wb+wc+wd = a·N + β·x1·x2·N + b·x2·N

Thus, there exists a set SN in which (21) and (22) are satisfied.
The product cN [x1, x2]·µN [x1, x2] is bN [x1, x2] = (a −
β·x1·x2, β·x1·x2 − b·x2). Hence, the limiting vector field
is b[x1, x2] = (a − β·x1·x2, β·x1·x2 − b·x2). Given that
‖bN [x] − b[x]‖ = 0, (20) is satisfied. Furthermore, b is
Lipschitz on D. Thus, all the assumptions of Theorem 1 are
verified and the limiting behavior of the Markov process is
given by ODE (1).
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