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Abstract— This paper proposes anevent-driven optimal con-  of time (the sampling period) elapses, but when the mode
trol strategy for hybrid systems composed of continuous-time of the system or the input value changes. Thus, events
m_tegral dynamics with inputs and of finite state machines only happen when something perturbs the linearity of the
triggered by endogenous and exogenous events. Endogenous ti d . Th in advant fth h
events are caused by continuous states or continuous inputs continugus y_namlcs.. (_a .m??un advantages oi e approac
crossing certain linear thresholds or by the elapse of time are the following: 1) it minimizes the number of variables
intervals, while exogenous events are forced by changes of required to compute a trajectory of the system during a given
binary and continuous inputs. The advantages of the proposed time interval; 2) trajectory errors due to mode switches at
strategy are the reduction of the amount of computation intersampling instants are eliminated.

requireq to ;olve optimal pontrol problems! and the reduction of We shall bett lain the | t f1h d
approximation errors typical of discrete-time approaches. We e S all be .er explain the impor an(.:e of the second one.
examine several performance objectives and constraints that [N @ discrete-time model, the mode is assumed constant
lead to mixed-integer linear or quadratic optimization problems  during the whole sampling period. However, when the real
and we exemplify the approach on a simple example. system is continuous-time, this assumption is, in general,
no longer true. We call the error generated by this wrong
assumptiormode-mismatch errofFigure 1 reports an exam-
Optimal control aims at finding the input profile thatple of a large trajectory deviation due to mode-mismatch
generates the optimal behavior of a dynamical system witror. The system is a two-dimensional piecewise affine

respect to a given performance index while respecting afsetéystem defined over polyhedral regions. The initial state is
constraints. For hybrid systems [1], this problem is in gahe ;, = [1 1], the desired final state i8; = [6 3.5]7. A

hard to solve if a continuous-time model is considered [2]discrete-time model of the system is obtained with sampling
[4], while it can be efficiently solved by Mixed Integer period 7, = 1. The discrete-time model is able to reach the
Programming (MIP) techniques if the system is modelleggrget stater; from z, in one step by applying the input
in discrete-time [5]. Nevertheless, sampling continube  * — 5. However, whenu* is applied constantly during the
systems introduces errors, that in case of hybrid dynamiggne interval [0, 1] the behavior of the original continuous-
might become large, due to discontinuities of the state tepdaime system is different from the discrete-time one. The
equations. The standard approach to reduce this effect isd@aight dashed line is the trajectory of the discrete-time
increase the sampling rate, therefore requiring more s8nplmodel, while the solid line is the corresponding continuous
to control the system during a given time interval. Thigime trajectory. The value of the modét) is not constant
may not be computationally feasible given that in generajuring the whole sampling period and the large difference
the computational complexity to obtain the optimal contro|s due to the fast dynamics in the region containing The
profile increases exponentially with respect to the numbgjroblem can be mitigated by reducing the sampling period,
of sampling steps. Also, when dealing with systems witlhyt this generates an useless amount of computation when
different operative modes, a uniform (small) sampling timghe system is in the first region, where the dynamics is slow.
must be chosen basing on the fastest mode, often resumAg)etter approach would be to Change the input exacﬂy when
in oversampling. the mode changes, as we detail in the rest of the paper.

In the literature several mathematical models have been Event-driven control approaches were app||ed Succeysfu”
proposed for hybrid systems. This paper focuses on a sulgrswitched piecewise affine systems [11], where the switche
class of continuous-time Piecewise Affine (PWA) [6] syshetween different dynamics are triggered by external deci-
tems, closely related to Linear Hybrid Automata (LHA) [7], sions and the mode dynamics are autonomous. Switched time
[8]. We propose a different approach to control such systengptimal control of systems with a similar continuous state
exploiting preliminary ideas presented in [9] for continso dynamics has been proposed in [12]. The approach presented
Petri nets [10]: time-driven control is substituted by even here differs from [12] for two reasons: we consider systems
driven control. In contrast with discrete-time methods, il’With multiple inputs and constraint dependent switchelsanat
this approach events do not happen when a fixed amouffan autonomous systems with controlled switches, and we
propose mixed integer programming instead of linear pro-

I. INTRODUCTION

Work (partially) done in the framework of the HYCON Network of

Excellence. contract number FP6-IST-511368 gramming and feasible sequence enumeration as the solution
tDipartimento di Ingegneria dell'lnformazione, Univessidi Siena, technique.

bemporad dicarano@dii.unisi.it . " _ The rest of the paper is structured as follows: Section Il
iDep. Informética e Ingeniéa de Sistemas, Centro Pélinico Superior . .

de Ingenieros, Universidad de Zaragogdyez@unizar.es presents an abstract model of a continuous hybrid systeim tha

& Corresponding author. can be formulated as an event-driven system. An event+drive



Discrete-time vs Continuous-time

in which z;, € {0,1}" andu, € {0,1}"" are the discrete

components of state and input vectors, respectivebsu :

? {0,1}™ et e, £0,1}™ is a Boolean functiont, is

4 the instant of thek! event, thust, = inf,~;, ,{t

(up(t),e(t)) # (up(tp—1),e(tx—1))}, and forty <t < tpiq,

Discete-time model the binary state is kept constant &af(t) = =y (tx+1). The

discrete dynamics reacts to events that are asynchronous

variations of the endogenous binary inpatand of the ex-

ogenous binary inputs,, and the time instants, represent

Fig. 1. State trajectory eror introduced by mode-mismatctwéen '€ ir_IStams in Wh_iCh some of those signals C_ha_nge, _causing

discrete-time (dashed) and continuous-time (solid) a switch on the binary state,, delayed by an infinitesimal

time. The value ofi(t) in Equation (1) is assigned by the

Mode Selector (MS) through the scalar product:

Continuous-time model

( @ i(t) =[12...8] fus(@p(t), up(t), e(t)), (4)

aFSM e
where fyg @ {0,1}"F™ e £01}® is a Boolean
[ =reew | [e=noimesn)] function and[1...1] - fass = 1, V(a(t), up(t),et)) €
) 0 1}”b+mb+ne
MS | J EG {0, :
tc = Bjuc+ f; Tc

ﬁ_. i=1..s A. Integral Piecewise Affine Systems

ISAS The icHA is an abstract model that can be converted
into a computational continuous-time model called integra
Piecewise Affine system. Continuous-time Piecewise Affine
systems are dynamical models in which the state space is
partitioned into regions and in each region the dynamics are
formulation for the PWA system is reported in Section Ill. Indefined by affine differential equations.

Section 1V several criteria for optimal control are prophse  pefinition 1: An integral Piecewise Affine (iPWA) sys-

Fig. 2. Integral continuous time Hybrid Automaton (icHA)

and Section V presents an example. tems is a PWA system that has integral dynamics in each
mode:
II. INTEGRAL CONTINUOUSHYBRID AUTOMATON
A continuous-time version of the Discrete Hybrid Automa-  @.(t) = Bjgyuc(t) + fig), (5a)
ton (DHA) [13] is considered here, in which the continuous ,, (1+) = Gitt): (5b)

dynamics are integral and which will be calledtegral . ) @ - - -
continuous (time) Hybrid AutomatoficHA). As the DHA, el Higalt) + Jiyu(t) + Wiyt < Ky, (50)
the icHA is constituted by four components shown in Fig- Hiyyue(t) + Jigyyus(t) + Wiyt < Ky (5d)
ure 2: an integral Switched Affine System (iSAS), an Event

Generator (EG), a Mode Selector (MS) and an asynchronous

Finite State Machine (aFSM). The continuous-time iSAShe partition of the full stater(t) = [z.(t) zy(t)]" is
represents a collection of possible integral dynamics, (i.ePolyhedral and depends also on the binary inpyt Con-

the system modes) for the continuous state, straints (5¢) and (5d) involve only and u., respectively,
because of definition (2) of endogenous binary inputs. Note
Te(t) = Bigyue(t) + fie), (1)  that the binary state update function (5b), in whigftt) =

in which z. € R™ andu. € R™ are the continuous lim, _ g+ xp(t+7), follows by embedding (3) in the inequal-

components of the state and input vectors, respectivety aitieS (5c) and (5d), so that the binary state is obtained as
: ' X 7! mode- nden nstant [14]. Wi me that there i
ieZ={1,2,...s} is the system mode. The EG is deflnedg ode-dependent constant [14]. We assume that there is

. " an infinitesimal delay between the evaluation of the mode
by the linear threshold conditions and the update of the binary state, thus the discrete-state
e2(t) = 1] « [EF [:cct(t)] <Ffl,i=1,...n (2a) trajec_:tory is left-continuous. This is not reductive_ sincany
wipy - 1 pulue®] < pul -1 b physical systems the components whose state is modelled by

[ei(t) =1 = [Bf [""] < F'] i= 1.0 (2D) z;, have a finite trigger time (consider for instance CMOS
wheren? + n = n, ande = [e?...e% e¥...e2,]T € !ogic g_ates). The translation of icHA in_to a PWA form results
{0,1}" is the vector of endogenous binary input variabledn a@n iPWA system; such a translation can be performed
The discrete state dynamics are defined by an aFSM as in [15], by enum_eratmg all the fea_3|ble combinations .of

discrete valued variables and by finding the corresponding

Ty(tht1) = farsm(To(te), up(te), e(tr)), (3)  polyhedral cells.

x
€
u
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[1l. EVENT-DRIVEN MODEL OF INTEGRAL CONTINUOUS  wherek € {0, 1, ...} is the event counter. The events can be
HYBRID AUTOMATA endogenous or exogenous. The endogenous events are due

In this paper event-driven optimal control for icHA/iPWA o switches on system dynamics, while the exogenous events

systems is proposed, in which both the input values ar@f€ forced on purpose by the controller. In both cases, at the

the durations between two consecutive events are decisigient instants the input levels can change. The event-based

variables, under possible operating constraints. As altresformulation of the state update equation (7) becomes

the number of different control values per time unit is not

constant as in discrete-time control, kF))ut it changes withPe(F 1) = ze(k) + Bigya(R)uc(k) + firya(k) (82)

the event rate. As a new input is computed only when an t(k+1) t(k) +q(k) (8b)

event occurs, the computation effort is certainly smalhant wherek is the event counter; (k) = z(t;), q(k) is the time

the discrete-time approach. Furthermore, the mode—m&ﬁmatmterval between events and & + 1, andu(k) is the input

error is eliminated, since when the mode changes the NP ue during such an interval. The additional state vagiabl

Is recomputed, according to a pos_5|bly new _dynamlcal mOd?('k) represents time expressed as a function of the event
Model (5) must be converted into a suitable form tha}ndex thust(k) — ¢, is the time instant at which the'"

can be tackled by Mixed Integer Programmmg (MIP) teChévent occurs. Equation (8a) is still nonlinear because ef th
niques [16]. ngjc(mwmb) benshe set of ,Blecew'se COnStantproduct between variableg k) and u.(k), but as in [9] it
functionsu = [ ], u: R — R™< > {0, 1} 7 such thatu(t) s hoesiple to introduce a new vectotk) = q(k)u. (k)
is constantvt € [ty, tr41), k =0,1,... whereto < <. representing the whole effect of the input between two
'S a sequence of time instants. Inmthe foIIowmg we W'”consecutive events (k) is the integral over time periog( k)
assume the input function. : R — R™* € PCm, 0" of the inputu.(k)). Thus the controlled variables are the
A. Event-Driven Dynamics of Continuous States input integralv(k) and the input duratiog(k). The input
Consider a PWA system whose continuous state dynamies(k) = ZE:; applied to the system is computed from them.
are defined byi.(t) = A;pzc(t) + Biyu(t) + firy and The relations between andv come from the constraints
consider a time intervalty,¢;] in which the system does that define the partitions (5¢), (5d), from possible opegati
not switch modeit € [to, ;] the trajectory is defined by constraints on states and inputs, and from the cost function
ic(t) = Awc(t)+Buc(t)+ f, whereA = Ay, B = B;1,), that will be specified in the sequel.
I = fiu,) are computed by (5¢) and (5d). The closed form

solution forz(t), ¢ € [to, ts] is well known. B. Generation of Endogenous Events

Consider a signal,. : R — R™« sgch thatu. € PC, let Assume the system is in modeluring[t;., t;1). Suppose
to <ty <...<t, =ty and let{u,};_; be the associated for the sake of simplicity that modeis associated with the
constant values. The state valuet atis polyhedral region

wc(t‘f) — eA(tf_tO)mc(to)-i- Hixc(t) < Kiv (9)

h=1 oty e et a particular case of (5c¢), (5d) in which inequalities inelv

/ e = dr Buy, +/ e*7=7dr f, (6) only continuous states (the general case can be obtained
k=0 7k b straightforwardly). The event occurring &t, is generated

which is an affine function of the input values,, but when one of the inequalities in (9) is violated, thus all of

is nonlinear with respect to the time instartis Hence, them must be satisfied duy., tx.1):

the optimal control problem for a system whose dynamics

are defined by (6) and where both and ¢, are decision (i(t) =1) = Hyiwe(t) < K3, VE € [t trt). (10)

variables is in general nonconvex [2]. If the interest i

restricted to systems that have an integral dynamics-(0),

Equation (6) becomes.(ty) = z.(to) + Zz;é B(tgi1 —

tr)u(ty) + o020 (tksr — ) f(ty), sinceu € PC. Consider

now an iPWA system, choose the input functiere PC in (i(k) =17) = Hy(z.(k) + Boo(k) + fiq(k)) < Ky + &;1.

Because of the integral dynamics of iPWA systems, con-
straint (10) can be enforced in the event-driven model (15)
by adding the mixed logical/continuous constraint

such a way that the mode switches occur only at the instants (11)
t, and consider instants, as the instants at which eventswhere ¢; > 0 is an arbitrarily small tolerance, e.g. the
occur. Thus, the state trajectory in the interitgl t], where machine precision, and = [1...1]7. Constraint (11)
t=tp,is implies that if the mode aty, is 7, at ¢4, the system state
he1 is within the region associated with modeenlarged by;.
ze(t) = 2o(to) + Z (Bi(tk)(tk+1 — ti)ue(ty) The tole_rancesi can be seen as the ma’FhematicaI instru-
—o ment to slightly enlarge region thus allowing the system

to cross the borders that define such a region. Consider a
single inequalityhz. < k. The effect of adding:; at the
1For the sake of notation the subscript.., m;) will be dropped in the right-hand side of (11) is to move outwards the halfspace

rest of the paper when the value @fi., my) is clear from the context. ~ PY m Thus, the maximal crossing distance in each axis

+ filtr) (te1 — tk))7 (7



direction is (ﬁ , Where¢;,l = 1,...,n. are the unitary problem described later in Section IV, or used to compute a
A v-p1) . . .

axis-directed vectors. PWA representation of the form (15) defined below by using
The tolerance introduces a tiny mode-mismatch error théte approach of [15].

can be reduced as much as desired by taking a small enougffhe endogenous events generated by discrete state tran-

&4, without increasing the solution complexity. The follogin sitions are expressed exactly as the ones in Equation (11),

proposition proves that (11) forces the state to remainén trsince discrete-state transitions are also triggered bgatfin

region obtained by enlarging regianby ¢;, up to the next thresholds on states and inputs, and by exogenous events

event. caused by changes of binary inputs
Proposition 1: If inequality (9) is satisfied for:.(k), and ) )
v(k) andg(k) are such that (11) is satisfied, then E. Event-Driven PWA Formulation

By collecting (5), (11), (13), (14) an event-driven integra

Hyxo(t) < Ky, +e;1, Vt € [ty tpia]. 12)  pwa system can be written as:

Proof: Since z.(ty) = z.(k) ande; > 0, (12) is Te(k 1) = ze(k) + Biryv(k) + fignya(k) (153)
satisfied fort = t. Since zu(tpy1) = zo(k + 1) =  tE+1) = t(k)+qk) (15b)
zo(k) + Byo(k) + frq(k), if (11) is satisfied, then also (12) zy(k+1) = g (15c¢)
is satisfied fort = t;41. Finally, (12) holdsvt € [ty t;41] . 2(k) v(k)
because the state trajectary(t), t € [tx,tx+1] is a linear i(k) Hik) |:t(k-):| + i) { a(k) } < Ki()(15d)
function of time and the inequality (12) defines a convex set. )

[ ]

- ) Equations (15a) and (15c) define the evolution of con-
As a consequence Of. Proposition 1, the state trajectopy, g and discrete states, respectively, in the evewdr
gelongds to I’egIOQL during [ty ty+1 — o], whereo > 0 o mework. Equation (15b) defines the time evolution and
eXen s Orii’ ando — O.aigf —>.O'h d intain th (15d) defines the polyhedral partition after the intersecti
L 441 the system might switch mode or maintain t Swith operating and event-generation constraints. Not¢ tha

same ”?Ode-.The second case happens when the inequalitys e eyent counter antk) is the corresponding time
(9) is still satisfied at;1, which means that an exogenous; -t

event occurred; otherwisét; 1) # i(t;) and the event was
an endogenous one. F. Resets

C. Operating Constraints Discontinuities of the continuous state trajectory can be

Operating constraints on the state can be embedded in fhlyoduced by resets. Additionaset modesi < {s +

set of constraints (9). Input bounds< u.(t) < uw can be 1,..., s} are included, (15a) is modified inte, (k + 1).:
written as the linear constraints (Bize(k) + hi) + Bigyv(k) + fige(k), and (15b) into
t(k+1) = t(k) + Giq(k). In modesi = {1...s}, E; =

uq(k) <wv(k) <uq(k). (13)  I(n.xn.) (wWhereI is the identity matrix),2; = O, x1)

Different input bounds for different modes can be enforce%nd G(; =L V\}h”e (I)n rese;nrgocges O: N{cie—kthla\.t. }ggits
i — Y(nexme)r Ji = Y(n.x1) i — Y.

as [i(k) = 1] — [uzq(k) < v(k) < Uq(k)], wherew; and -
- . ? o U are instantaneous.
u; are the input upper and lower bounds while in made

Additional operating constraints may be imposed on time IV. EVENT-DRIVEN OPTIMAL CONTROL
intervals between two events . .
Consider the optimal control problem

g=qk) =3 (14) min  J(z,t,q,v) (16a)
For example a finitej imposes a maximum time for each o _
control action, in order to prevent the system from runnimg i st. system dynamics (15) (16D)
open loop for too long. A minimum duratiapensures a min- g(z,t,q,v) <0, (16¢)
imum time interval between two events (and thus between z(0) =z, t(0) = to. (16d)

two mode switches), therefore avoiding undesirable effect

such as high frequency chattering and Zeno behaviors [1#¢here J is a convex function ofz,t,¢,v), t = {t(k)}},
are the time instants at which the events occur,=

D. Discrete Dynamics {$(k)}g:o are the corresponding state valueg, =
When the event-driven model is obtained from model (5{¢(k)}, ' are the durations of the time intervals between
the discrete state dynamics is directly defined by the pelyhéwo consecutive events and= {v(k)}; ' are the input in-
dral partition (5c), (5d) and by the mode-dependent constategrals durind¢y, t1). Constraint (16c) represents possible
vectors in (5b) (see [14]). If the discrete dynamics is foradditional constraints in the optimal control problem aid
mulated as an event-driven FSM it can be reformulated asisthe number of allowed events.
set of mixed-integer (in)equalities as described in [13icts By converting model (15) into an equivalent MLD
(in)equalities can be directly embedded in the optimizatiomodel [15], problem (16) can be solved by mixed integer



programming for different objective functions (16a) and; = t; be the switching instantsand r(¢) be piecewise

constraints (16c). constant ovefto, ty]. Thenmax;cp, ¢, [|7c(t) — 7(t)||c =
Typically it is required that the system state reaches maxjcion—11{l|zc(tr) — 7(tk) oo }-
desired target state; after (at most)NV events, Proof: maxy,<i<¢, [|2c(t) —7(f)]|cc = maxo<r<n—1 {

N — 17 maxye, ¢, 1Ze(t) =7(t)]| o0 }. FUNCtion||z.(t) —7(t)| o is
z(N) = zy. (A7) convex on(tk,tx+1], Since it is the composition of a convex
Sometimes, to prevent infeasibility of the optimal controfunction (the norm defined over a bounded polyhedron)

problem, it is useful to soften (17) by adding instead with a linear function (the state trajectory of the iPWA
system between two consecutive switches). Thus, it attains

pllz(N) —zsllso (18) its maximum value at the border, eithertabr atty ;. Since

in (16 h is 2l ot n al _the state values at the mode switch instaptare contained
in (16a), where is a large weighting constant. In alternative,in the set of state values at the event instamsk)}{f:o,

one can consider a convex desired targetiseaind impose  gi5q the last equality in (21) holds. n
the constraintz(N) € X} (either as a hard or a soft
constraint). A target time can be formulated similarly. V. NUMERICAL EXAMPLE

The objective criterion in (16a) defines how the target In this section we consider “train—gate” example [8],
state must be reached. Minimum time, minimum effort, ane well known benchmark for hybrid systems, commonly
minimum displacement criteria are considered in this papeised for verification purposes but proposed here as
The Minimum-Timecriterion looks for the sequendg,v) a control problem. We define the dynamics by non-
that minimizes the time needed to bring the system figm autonomous differential equations(t) = u(t) + f;, with
to the final statecy. This can be obtained by minimizing a; — f; < u; < b; — f;, instead of the differential inclusions

N1 of [8] used for verification. Both examples were modelled
_ in HYSDEL [13] (see http://www.dii.unisi.it/
@, t4,v) Z a(k). (19) “dicairano/sources/eventdriven.html ). We

] i ) . performed the tests on a Pentium Xe@r8 GHz with
Note that thev variables are not involved in (19), but still | GByte RAM running Cplex).0 and Matlab6.5.

are involved in (17).

k=0

TheMinimum-Effortcriterion looks for the sequence, v) v 71 < —10 Ti=05 | —005<u <005
that brings the system to the final statg or target set Cr || -10<z; <10 | fi =042 | —0.08 <wuj < 0.08
X[ with the minimum control effort. Let/(x,t,q,v) = é 107:31<> 1o< : f} :0(.)8 700.00655 u1<§0060455

. . . T2 S 2 = —U. Su2 S 0.
o |.u(t)|dt be the L; norm of the input function, which T 0<22 <102 | f,=0 | —0.06 <us <0.045
provides a measure of the effort to control the system.
With respect to the event instan{@;}y ., |[u(’)|z, = TABLE |
i\[:_ol tt:“ |u(t)|dt, and sinceu is constant in each period CHARACTERISTICS OF THE TRAIN-GATE DYNAMICS

[tk,tr+1), We obtain
N1 N1 The gate can be either (completely or partiathypen (O)
_ _ _ or closed (CI) A train can be in ararriving (Ar), crossing

@ tq.v) = JuCllz, = Z a(k)ulk)] = 1;) ()l (Cr) or leaving (L) situation, depending on its position. In
(20) these three situations the whole train—gate system is in an
where u(k) is the control level chosen at the” event, active (Ac)situation, while when the train is “far” from the
q(k) = t(k + 1) — t(k) is the period duration, and(k) gate the system iglle (I) and the train speed; is constant.
is the input integral as defined in Section IlI-A. The system is modelled as an iPWA system (5). The

The Minimum-Displacementriterion looks for the trajec- automaton that defines the system active-idle behavior has
tory that brings the state to the target state (or to the two binary states I[(Ac) and an asynchronous exogenous
target sett), while minimizing the maximum displacement binary input,“approaching” (app). The transition from the
from a desired continuous state trajecteryThis amounts idle state to the active state is the consequence aipgn

k=0

to minimize theL., norm of the state deviation signal, that also sets the train position to the initial ealu
z1 = —20. The transitionAc — I is fired whenz; > 40.
J(x,t,q,v) = ||z(-) = r()||o., = The iPWA system characteristics are reported in Table I,
max |z.(t) — r(t)|ee = max |zc(k) — r(k)|so, (21) Whgrexl is the trair_1 position ana, is the gate posit_ion. '_I'he
t€ltosts] ke[0,N] regions of the continuous state space where the binaryistate

wheret; = t(N), r € PC,,. and the changes of the value OfAc are obtained by partitioning the axis in three intervals,

r are registered as exogenous events. A special case) is reprgsenting the traip modefb, CrandL, and t.he axisez,
s, t € [to,t7]. The last equality in (21) is a consequencéelat've to the gate, in two intervals representidgand C!.
of the following proposition Where the binary state i§ there is only one partition in the

Propos_ition 2:Let 956(?)1 vt e [t07tf]' be the continuous 2In general the number of mode switchisis smaller than the total
state trajectory of an iIPWA systenty < t; < ... <  number of eventsV because of exogenous events.
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Fig. 3. Train—gate trajectory with minimum time control

(1]

continuous state space in which the dynamics d@re= 1 2l
andi, = 0 (constant train speed and gate position blocked).
Consider the following problem: from the initial state

(wo,,0,) With 9, = [-20 1]7 and zo, = Ac, the train
must safely cross the gate in minimum time. The minimum
time criterion (19) with target state; = ([40.3 1], I) was
applied withV = 6, with the safety constraint imposing that 4!
the trajectory never crosses the regi@iv, O).

Figure 3 shows the partitions of the continuous-state space
(plus additional regions indicating the thresholds trigug 5]
the transitionAc — I) and the optimal trajectory generated
by the event-driven approach for the above stated problem.
The target stater; is reached in93.8 time units, with a  [©
trajectory that does not cross the unsafe region. The CPU-

(3]

time to compute the optimal trajectory 1s23 seconds. [7]
| N | ts | tepu (SEC.) | Lyior (time units) | tszf’) (time units) | (8]
5 | 20.00 0.45 3.82 40.00
6 | 16.66 1.46 21.83 33.32
10 | 10.00 8.58 9.82 20.00 [9]
15 | 6.66 66.77 6.55 13.32
20 | 5.00 747.14 4.82 10.00
[10]
TABLE I
NUMERICAL RESULTS OF THE TIMEDISCRETIZATION APPROACH [11]
APPLIED TO THE TRAIN-GATE SYSTEM.
[12]

Table Il reports the results of a time-discretization ap-
proach on the same problem. The time horizoi (8 time
units and the minimum time criterion is applied by using13]
state error cost. In Table IN is the number of time steps,
ts is the sampling period,,,, is the computation time. Note [14]
that by the approach of this paper the constraints are satisfi
along the whole trajectory, while in the time-discretinati
approach they can be enforced only at the sampling instanfﬁ]
Thus, t,;,; is the period in which the discrete-time solution
violates the safety constraint, ang"?’ = 2t, is its upper

bound. [1el

[17]
VI. CONCLUSIONS

In this paper we have proposed an event-driven approach
for optimally controlling a class of hybrid systems whose
continuous-state dynamics are integral piecewise affine. T

advantages are the reduction of the computations required f
solving optimal control problems and and the avoidance of
mode-mismatch errors. It may seem too reductive to consider
only iPWA dynamics. However such dynamics have been
widely studied for many purposes and a rich model library
exists. As an example piecewise integral dynamics have been
used in the context of linear hybrid automata (LHA) [7],
for verification purposes. Moreover, complex dynamics can
be approximated by piecewise affine integral ones [8]. In a
future work we will investigate the relation between LHA
and icHA in deeper details, as well as the application of our
techniques to MIP-based verification.
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