
Approaching Minimum Time Control of

Timed Continuous Petri nets ⋆
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Abstract: This paper considers the problem of controlling timed continuous Petri nets under
infinite server semantics. The proposed control strategy assigns piecewise constant flows to
transitions in order to reach the target state. First, by using linear programming, a method
driving the system from the initial to the target state through a linear trajectory is developed.
Then, in order to improve the time of the trajectory, intermediate states are added by means
of bilinear programming. Finally, in order to handle potential perturbations, we develop a
closed loop control strategy that follows the trajectory computed by the open loop control
by calculating a new state after each time step. The algorithms developed here are applied to a
manufacturing system.
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1. INTRODUCTION

Petri nets (PNs) are frequently used for modeling, analysis
and synthesis of discrete event systems. The distributed
state or marking of a PN is given by a vector of natural
numbers which represent the number of tokens in each
place. Similarly to most formalisms for discrete event
systems, PNs suffer from the state explosion problem. One
possible way to overcome this problem is fluidification, a
classical relaxation technique.

Continuous Petri nets are a fluid approximation of classical
discrete Petri nets (David and Alla (2005); Silva and
Recalde (2004)). Unlike conventional PNs, a transition in
a continuous Petri net can be fired in a “non negative
real” quantity. This leads to continuous markings instead
of discrete ones. Similarly to discrete PNs, time delays can
be associated to the firing of transitions, the resulting net
is called timed continuous Petri net (contPN).

As in discrete PNs, different server semantics can be
adopted for the firing of transitions. Among them the most
widely used semantics are finite server and infinite server.
In Mahulea et al. (2009), it is shown that infinite server
semantics provides a better approximation of the steady
state throughput than finite server semantics for a wide
class of Petri nets under some general conditions.
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A contPN system with infinite server semantics is a
subclass of Piecewise Linear Systems (PWL), with input
constraints. A PWL system is composed of several linear
subsystems together with switching rules (Bemporad and
Morari (1999)). Many works deal with stability analysis
or control law design of such systems (Montagner et al.
(2006); Yang et al. (2006); Habets et al. (2006); Balduzzi
et al. (2000)). However, most of these methods cannot be
directly applied to contPNs, because of their particular
dynamic input constraints.

Control of contPNs with infinite server semantics has
already been considered in the literature. In Mahulea
et al. (2008b) it is shown that, the optimal steady state
control problem of timed contPN system can be solved by
means of Linear Programming Problem (LPP) when all
transitions are assumed to be controllable. The transitory
control problem is also considered by means of implicit and
explicit MPC control strategy (Mahulea et al. (2008a)). A
Lyapunov-function-based dynamic control algorithm was
proposed in (Xu et al. (2008)), which can ensure global
convergence of both system states and input signals. In
contrast to the method in this last work, where step plus
ramp trajectories under closed loop control are considered,
the technique proposed in this paper for the computation
of a control law for direct linear trajectory is based on
linear programming instead of nonlinear programming.
This implies that the complexity of this new approach is
significantly lower given that it can be solved in polynomial
time. Interestingly, the time of the obtained trajectories
by both methods are very similar in general. The method
in Xu et al. (2008) introduces the notion of intermediate
states, leading to a piecewise linear trajectory that is
computed by solving a BiLinear Programming Problem
(BLP).



In this work, we extend the control strategy presented in
Apaydin-Ozkan et al. (2009) which aims at driving the
system from an initial state to a target one by minimizing
the time of a linear trajectory. The proposed strategy
computes first the control actions to drive the system
to the target state through a straight line (Section 3).
Such control actions are the result of solving a LPP.
Then, in Section 4, intermediate states, not necessarily
on the line connecting the initial and the target marking,
are computed, by means of a BLP, in order to obtain
faster trajectories. Moreover, an algorithm that recursively
refines the initially obtained trajectory is given. These
computations are then used to develop a closed loop
scheme which is explained in Section 5. In Section 6, a
manufacturing system is taken as a case study and studied
to reach a certain marking in minimum time. Finally, some
conclusions and future directions are drawn in Section 7.

2. CONTINUOUS PETRI NETS

We assume that the reader is familiar with discrete PNs. In
contPN systems, the firing of transitions is not restricted to
the natural numbers but to the nonnegative real numbers.

2.1 Timed Continuous Petri nets

Definition 1. A continuous PN system is a pair 〈N , m0〉
where N = 〈P, T, Pre, Post〉 is the net structure with
the set of places P , the set of transitions T , pre and post

matrices Pre, Post ∈ R
|P |×|T |
≥0 , and m0 ∈ R

|P |
≥0 as the

initial state.

Let pi, i = 1, . . . , |P | and tj , j = 1, . . . , |T | denote the
places and transitions. For a place pi ∈ P and a transition
tj ∈ T , Preij and Postij represent the weights of the arcs
from pi to tj and from tj to pi, respectively. Each place
pi has a marking denoted by mi ∈ R≥0 . The vector of all
token loads is called state or marking, and is denoted by

m ∈ R
|P |
≥0 . For every node v ∈ P ∪ T , the sets of its input

and output nodes are denoted as •v and v•, respectively.

A transition tj ∈ T is enabled at m iff ∀pi ∈
• tj , mi > 0

and its enabling degree is given by

enab(tj, m) = min
pi∈•tj

{

mi

Preij

}

which represents the maximum amount in which tj can
fire. An enabled transition tj can fire in any real amount
α, with 0 < α ≤ enab(tj, m) leading to a new state
m′ = m+α·C·j where C = Post−Pre is the token flow
matrix and C ·j is its jth column. If m is reachable from
m0 through a finite sequence σ, the state (or fundamental)

equation is satisfied: m = m0 + C · σ, where σ ∈ R
|T |
≥0 is

the firing count vector, i.e., σj is the cumulative amount
of firings of tj in the sequence σ.

Under any time interpretation, the state equation has
an explicit dependence on time, denoted by τ : m(τ) =
m0 +C ·σ(τ) which through time differentiation becomes
ṁ(τ) = C · σ̇(τ). The derivative of the firing sequence
f(τ) = σ̇(τ) is called the firing flow. Depending on how
the flow is defined, different firing semantics appear, being
the most used ones infinite and finite server semantics.

This paper deals with infinite server semantics for which
the flow of a transition tj is defined as:

fj(τ) = λj · enab(tj, m(τ)) = λj · min
pi∈•tj

{

mi(τ)

Preij

}

(1)

where λj is a constant value representing the firing rate of
transition tj . Since the flow of a transition depends on its
enabling degree which is based on the minimum function,
a timed contPN with infinite server semantics is a PWL
system with polyhedral regions and everywhere continuous
vector field. The state space (or reachability set) R of a
contPN system can be divided into regions (disjoint except
possibly on the borders), as follows: R = R1∪...∪Rγ where

γ ≤
∏|T |

j=1 |
•tj |. Intuitively, each Rz denotes a region where

the flow is limited by the same subset of places (one for
each transition). More formally, two markings ma and mb

belong to the same region Rz iff [∀ t ∈ T and ∀ pu, pv ∈ •t
it holds that ma(pu) ≤ ma(pv) ↔ mb(pu) ≤ mb(pv)].

For a given Rz , we can define the constraint matrix

Πz ∈ R
|P |
≥0 as follows. Let m be an interior point of Rz,

then Πz is defined as:

ΠΠΠz
ji =







1

Preij

, if
mi

Preij

= min
ph∈•tj

{

mh

Prehj

}

0, otherwise
(2)

If marking m belongs to Rz, we denote Π(m) = Πz the
corresponding constraint matrix (if m is a border point
and belongs to several regions, Π(m) is the constraint
matrix of any of these regions). In the constraint matrix,
each row j = 1, 2..., |T | has only one non-null element in
the position i that corresponds to the place pi that restricts
the flow of transition tj . On the other hand, the firing rate
of transitions can also be represented by a diagonal matrix
Λ = diag{λ1, ....λ|T |}. Using this notation, the nonlinear
flow of the transitions at a given state m is written as:

f = ΛΛΛ ·Π(m) · m (3)

Example 2. Let us consider the PN in Figure 1. Assume
λ = [4 1 3 1]T , m0 = [7.5 4.5 4 2 1.5 5 4 2.5]T and
mf = [7 5 5 1 1 4 5 3]T .

p1

p4

p3

p2
p5

p6

p7

p8

t1

t4

t3

t2

Fig. 1. A PN taken from (Zhou et al. (1990))

Independently of m0, the system dynamics is described as
follows:



ṁ1 = f4 − f1 = λ4 · m4 − λ1 · min{m5, m1, m8}
ṁ2 = f1 − f2 = λ1 · min{m5, m1, m8} − λ2 · min{m2, m6}
ṁ3 = f2 − f3 = λ2 · min{m2, m6} − λ3 · min{m3, m7, m8}
ṁ4 = f3 − f4 = λ3 · min{m3, m7, m8} − λ4 · m4

ṁ5 = f2 − f1 = λ2 · min{m2, m6} − λ1 · min{m5, m1, m8}
ṁ6 = f3 − f2 = λ3 · min{m3, m7, m8} − λ2 · min{m2, m6}
ṁ7 = f4 − f3 = λ4 · m4 − λ3 · min{m3, m7, m8}
ṁ8 = f2 + f4 − f1 − f3 = λ2 · min{m2, m6} + λ4 · m4

−λ1 · min{m5, m1, m8} − λ3 · min{m3, m7, m8}
(4)

Note that m0 and mf are in different regions:

• m0 ∈ R1 : {m | m5 ≤ m1, m5 ≤ m8, m8 ≤
m7, m8 ≤ m3, m2 ≤ m6}

• mf ∈ R2 : {m | m5 ≤ m1, m5 ≤ m8, m8 ≤
m7, m8 ≤ m3, m6 ≤ m2}

For example, the system dynamics for R1 is:






































ṁ1 = m4 − 4 · m5

ṁ2 = 4 · m5 − m2

ṁ3 = m2 − 3 · m8

ṁ4 = 3 · m8 − m4

ṁ5 = m2 − 4 · m5

ṁ6 = 3 · m8 − m2

ṁ7 = m4 − m8

ṁ8 = m2 + m4 − 4 · m5 + 3 · m8

(5)

2.2 Controlled Timed Continuous Petri Nets

In this section, we consider contPN systems subject to
external control actions, and assume that the admissi-
ble control law can only slow-down the firing speed of
transitions (Silva and Recalde (2004)). If a transition can
be controlled (its flow can be reduced or even stopped),
we will say that it is a controllable transition (Mahulea
et al. (2008b)). In this work, it will be assumed that all
transitions are controllable.

Definition 3. The controlled flow, w, of a timed contPN
is defined as w(τ) = f(τ) − u(τ), with 0 ≤ u(τ) ≤ f(τ),
where f is the flow of the uncontrolled system, i.e., defined
as in (1), and u is the control action.

Therefore, the control input u is dynamically upper
bounded by the flow f of the corresponding unforced
system. Under these conditions, the overall behaviour of
the system in which all transitions are controllable is ruled
by the following system:

ṁ = C · [f − u] = C · w
0 ≤ u ≤ f

(6)

The constraint 0 ≤ u ≤ f can be rewritten as
0 ≤ f − u ≤ f . From the definition w = f − u and
using (3), the constraint can be expressed as:

0 ≤ w ≤ Λ · Π(m) · m (7)

The following sections show how to compute a control
action u that drives the system from the initial marking
m0 to a desired target marking mf . Section 3 describes a
method to obtain a linear trajectory. Section 4 makes use
of such a method to compute piecewise linear trajectories
in order to improve the time to reach mf . Notice that
in order to be reachable, mf necessarily satisfies the
state equation, i.e., mf = m0 + C · σ. Our procedure
consists of assigning piecewise constant controlled flow
w that satisfies dynamic upper bounds. In the sequel,

we assume that m0 and mf are interior points of the
reachability space, i.e., the markings are strictly positive.
The assumption that m0 > 0 ensures that the system
can straightforwardly move at τ = 0 in the direction of
mf ; the assumption that mf > 0 ensures that mf can
be reached (Júlvez et al. (2003)) in finite time (Mahulea
et al. (2008b)).

3. COMPUTATION OF LINEAR TRAJECTORIES

In this section, we will distinguish two cases: (A) m0 and
mf are in the same region and (B) they are in different
regions. In this last case the crossing points of the straight
line and borders must be considered.

(A) m0 and mf are in the same region Rz . Then all
the states on the straight line connecting them are also
interior points of Rz since all the regions are convex.
The following LPP computes the correspondig control law,
where x = w · τf ,

min τf

mf = m0 + C · x (a)
0 ≤ xj ≤ λj · Π

z
ji · min

{

m0i, mf i

}

· τf ,
∀ j ∈ {1, .., |T |} where i satisfies Πz

ji 6= 0 (b)

(8)
The equations correspond to: (a) the time dependent
equation of the straight line connecting m0 to mf , (b)
derives from the flow constraints in (7). Notice that (8)(b)
is a linear constraint because m0i

and mfi
are known.

(B) m0 and mf are in different regions. The line connect-
ing m0 and mf can be divided in several segments, each
one starting in a border (or in m0 for the first segment)
and ending in a border (or in mf for the last one). Then
LPP (8) is applied on each of these segments.

Algorithm 1 computes the total time τf by using LPP in
(8) for the linear trajectory ℓ from m0 to mf which crosses
n ∈ {1, 2, .., γ} borders. In this algorithm, mi

c stands for
state at the intersection of ℓ and the ith crossed border
(starting from m0) i ∈ {1, 2, .., n}. Let m0

c and mn+1
c

denote m0 and mf , respectively and wi denote the flow
obtained from the state mi

c to the state mi+1
c . Note that, if

ℓ does not cross any border, then n = 0, that is m0
c = m0

and m1
c = mf .

Algorithm 1 Linear trajectory

Input: 〈N , m0〉, mf

Compute the line ℓ connecting m0 and mf

Compute the intersection of ℓ and the crossed bor-
ders: m1

c , m2
c , .....mn

c

m0
c = m0, mn+1

c = mf

for i = 0 to n do
Determine τi+1 by solving LPP in (8) with m0 = mi

c

and mf = mi+1
c

end for
Output: τ1, w

1, τ2, w
2, ..., τn+1, w

n+1, τf =
∑n+1

i=1 τi

Proposition 4. Let 〈N , λ, m0〉 be a contPN system with
m0 > 0. If mf > 0 belongs to R:

• LPP(8) is feasible
• The control action given by Algorithm 1 ensures that

mf is reached in finite time.



Proof. Since mf is a reachable marking, then there
exists x such that the state equation 8(a) is satisfied.
By taking τf sufficiently large 8(b) can be satisfied
since λj · Πz

ji · min
{

m0i, mf i

}

> 0. Then, by (Júlvez et al.
(2003)) the linear trajectory from m0 to mf can be fol-
lowed by the system since m0 > 0 and mf > 0, i.e. ,
all intermediate states are not spurious. Moreover, since
mf > 0, by (Mahulea et al. (2008b)) mf can be reached
in finite time.

Example 5. Let us consider the control law design for
the contPN in Example 2 (Figure 1). Assume the
same λ, m0 and mf . Note that the line ℓ con-
necting m0 and mf crosses only one border: m2 =
m6 and the crossing point is calculated as: m1

c =
[7.33 4.67 4.33 1.67 1.33 4.67 4.33 2.67]T , m0

c = m0,
m2

c = mf . The trajectory is illustrated in Figure 2
where the dotted line is the border between two regions.
According to Algorithm 1, in the first iteration LPP (8)
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Fig. 2. Trajectory for Example 5

with m0 = m0
c and mf = m1

c is solved. Its constraints
are:

7.33 = 7.5 + x4 − x1

4.67 = 4.5 + x1 − x2

4.33 = 4 + x2 − x3

1.67 = 2 + x3 − x4 (a)
1.33 = 1.5 + x2 − x1

4.67 = 5 + x3 − x2

4.33 = 4 + x4 − x3

2.67 = 2.5 + x2 + x4 − x1 − x3

0 ≤ x1 ≤ 4 · 1.33 · τf

0 ≤ x2 ≤ 4.5 · τf (b)
0 ≤ x3 ≤ 3 · 2.5τf

0 ≤ x4 ≤ 1.66 · τf

The optimal solution is τ1 = 0.2 t.u. and w1 = 2.49,
w2 = 1.67, w3 = 0, w4 = 1.67. In the second iteration,
i.e., m0 = m1

c and mf = m2
c , the constraints are

7 = 7.33 + x4 − x1

5 = 4.67 + x1 − x2

5 = 4.33 + x2 − x3

1 = 1.67 + x3 − x4 (a)
1 = 1.33 + x2 − x1

4 = 4.67 + x3 − x2

5 = 4.33 + x4 − x3

3 = 2.67 + x2 + x4 − x1 − x3

0 ≤ x1 ≤ 4 · τf

0 ≤ x2 ≤ 4 · τf (b)
0 ≤ x3 ≤ 3 · 2.67 · τf

0 ≤ x4 ≤ τf

The optimal solution is τ2 = 0.67 t.u. and w1 = 1.5,
w2 = 1, w3 = 0, w4 = 1. The total time to go from m0 to
mf through the line ℓ is τf = 0.2 + 0.67 = 0.87 t.u. And
the obtained open loop control is:

u(τ) =





















































4 · m5(τ) − 2.49
m2(τ) − 1.67

3 · m8(τ)
m4(τ) − 1.67






, if 0 ≤ τ ≤ 0.2







4 · m5(τ) − 1.5
m2(τ) − 1
3 · m8(τ)

m4(τ) − 1






, if 0.2 < τ ≤ 0.87

(9)

Figure 3(a) illustrates the convergence of the marking m1

under the designed control law, while Figure 3(b) shows
the control signal u1, w1 and their upper bound.
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Fig. 3. Evolution of (a) m1 and (b) u1, w1 and and their
upper bound for Example 5

4. REDUCING THE TIME BY COMPUTING A
PIECEWISE LINEAR TRAJECTORY

Following Xu et al. (2008), this section makes use of
intermediate state in order to improve the time duration to
reach mf . From a technical point of view, the approach is
different in the sense that the piecewise linear trajectory
will use the borders of the regions and, possibly, inside
regions the trajectory is refined recursively.

The designed control in the previous subsection takes the
system from m0 to mf through a linear trajectory by
minimizing the time duration. In some cases, i.e., when
the initial or final state have a small value, this may
limit the speed of the response. In order to improve the
time spent to move from m0 to mf , intermediate states
denoted by mk where k ∈ {1, 2...s}, that do not necessarily
lie on the line from m0 to mf , are computed. The new
trajectory is obtained as the union of s+1 linear segments:
m0 → m1 → m2 → ... → ms → mf . In order lighten the
computation load, we consider the intermediate states in
the range:

RI =
{

m | mi ≤ max{mfi
, m0i

}, mi ≥ min{mfi
, m0i

},
i ∈ {1, 2, .., |P |}

}

,
(10)

Given that we assume that m0, mf > 0, all m ∈ RI

are positive and reachable (Júlvez et al. (2003)). We will
describe how to compute intermediate states that lie on
the borders and in the interior of the regions, separately.

4.1 Intermediate states on the borders

Let the line from m0 to mf cross s borders, and pass
through s + 1 different regions: R1, R2, ..., Rs+1 with



corresponding constraint matrices Π1, Π2...Πs+1. We
assign constant flows for each transitions during each line
segments and the intermediate states on each border:
m1, m2....ms. Under these assumptions, the following
BLP with m0 = m0 and ms+1 = mf and with the
variables m1, m2,....,ms−1, ms, τk , xk = wk · τk,
k ∈ {1, ...s} obtains the intermediate states that yield a
minimum time for the piecewise linear trajectory:

min
s+1
∑

k=1

τk

mk+1 = mk + C · xk+1, k ∈ {0, 1, 2, .., s} (a)

(

ΠΠΠk −ΠΠΠk+1

)

· mk = 0, k ∈ {1, 2, .., s} (b)

mk
i ≤ mk+1

i if m0i
≤ mfi

i ∈ { 1, 2..|P |}, k ∈ {0, 1, 2, .., s} (c)
mk

i ≥ mk+1
i if m0i

≥ mfi

i ∈ { 1, 2..|P |}, k ∈ {0, 1, 2, .., s} (d)

0 ≤ xk
j ≤ λj · Π

k
ji · min{mk−1

i , mk
i } · τk,

with pi st. Πk
ji

6= 0, j ∈ {1, 2...|T |}, k ∈ {1, 2..s} (e)
(11)

The constraints correspond to (a) the time dependent
equation to connect mk to mk+1; (b) mk is on the crossed
border; (c & d) mk is contained in the hypercube defined
by the corners mk−1 and mk+1; (e) the constraints on the
controlled flow.

4.2 Intermediate states inside regions

In the case that m0 and mf are in the same region Rz a
recursive method can be used to determine intermediate
states in Rz . In this method, we keep computing inter-
mediate states until the time cannot be improved by a
considerable amount. The same recursive method can also
be applied to find additional intermediate states between
mk and mk+1, since they are on the borders of the same
region. In this case, the BLP that will be solved in each
step can be simplified to the following where m0 and mf

are known; τ1, τ2, md, x1 = w1 · τ1, x
2 = w2 · τ2 are

variables:
min τ1 + τ2

md = m0 + C · x1

mf = md + C · x2, (a)

md = m0 + C · σ, md, σσσ ≥ 0 (b)

min{mfi
, m0i

} ≤ md
i ≤ max{mfi

, m0i
},

∀i ∈ {1, 2...|P |} (c)

0 ≤ x1
j ≤ λj · Π

z
ji · min{m0i

, md
i } · τ1,

with i st. Πk
ji

6= 0, j ∈ {1, 2...|T |}

0 ≤ x2
j ≤ λj · Π

z
ji · min{md

i , mfi
} · τ2,

with i st. Πk
ji

6= 0, j ∈ {1, 2...|T |} (d)
(12)

Algorithm 2 expresses the recursive method we propose.
It computes new intermediate states until the stopping

criterion is satisfied: time of the trajectory cannot be
decreased more than a given relative value ǫ. In the
algorithm, path is a global variable storing the ordered set
of couples of states in the trajectory and the relative times
to reach them. The number of states in path is denoted by
size(path) and the ith element of the set path is denoted
by path(i).

Algorithm 2 Piecewise Linear Trajectory

Input: 〈N , m0〉, mf , ǫ
Global variable: path
Compute the line ℓ connecting m0 and mf

Determine the number of crossed borders: s
if s = 0 then

Solve (8) to obtain τf

path0 = {(m0, 0), (mf , τf )}
else

Solve (11) to obtain τf

path0 = {(m0, 0), (m1, τ1), ..., (mf , τf )}
end if
τx = τf , path = path0

for i = 1 : size(path0) − 1 do
(mx, τx) = path0(i) , (my, τy) = path0(i + 1)
Call Split((mx, τx), (my, τy), ǫ)

end for
Calculate the total time for path, i.e., τy

Output:path

Split((mx, τx), (my, τy), ǫ)

Solve (12) to obtain τ1, τ2, md

if
τy − (τ1 + τ2)

τy

> ǫ then

Insert (md, τ1) in path
Change (my, τy) in path by (my, τ2)
Call Split((mx, τx), (md, τ1), ǫ)
Call Split((md, τ1), (my, τ2), ǫ)

end if

Example 6. Let us consider once again the contPN system
in Example 5 (Figure 1). Since the linear trajectory
between m0 and mf crosses only one border, s = 1
and solving (11) with s = 1 yields 0.83 t.u. as a total
time. And the new path is m0 → m1 → mf , where
m1 = [7.5 4.5 4.5 1.5 1.5 4.5 4.5 3]T . For an additional
intermediate state, say m′1, between m0 and m1, we solve
(12) for m0 = [7.5 4.5 4 2 1.5 5 4 2.5]T and mf = m1.
Similarly, for an additional intermediate state between
m1 and mf , say m′2, we solve (12) for m0 = m1 and
mf = [7 5 5 1 1 4 5 3]T . And the new path m0 → m′1 →
m1 → m′2 → mf is obtained, where:

m′1 = [7.5 4.5 4.26 1.74 1.5 4.74 4.26 2.76]T

and

m′2 = [7.45 4.78 4.55 1.22 1.22 4.45 4.78 3]T .

The total time is reduced to 0.74 t.u. with the control
action u(τ) = [4 · m5(τ) − 1.74 m2(τ) − 1.74 3 ·
m8(τ) m4(τ) − 1.74]T for 0 ≤ τ ≤ 0.15; u(τ) = [4 ·
m5(τ) − 1.74 m2(τ) − 1.74 3 · m8(τ) m4(τ) − 1.75]T

for 0.15 ≤ τ ≤ 0.29; u(τ) = [4 · m5(τ) − 1.43 m6(τ) −
0.21 3 · m8(τ) m4(τ) − 1.22]T for 0.3 ≤ τ ≤ 0.52;



u(τ) = [4·m5(τ)−3.04 m6(τ)−2.04 3·m8(τ) m4(τ)−1]T

for 0.52 ≤ τ ≤ 0.74. The trajectories for one and three
intermediate states are illustrated in Figure 4(a) and 4(b),
respectively. In these figures the dotted line shows the
border between R1 and R2. The total time duration for
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Fig. 4. Trajectory for (a)1 int. state and (b)3 int. state for
Example 6

several intermediate states can be found in Table 1. The
experiments were performed by a Matlab program running
on a PC with Intel(R) Core(TM)2CPU T5600 @ 1.83GHz,
2.00 GB of RAM.

Table 1. Intermediate States

Number of int. states 0 1 3 9 13

Total duration (t.u.) 0.87 0.83 0.74 0.73 0.72
CPU time (sec.) 0.03 0.11 0.32 1.65 2.32

5. CLOSED LOOP CONTROL

Using Algorithm 2 we obtain an open loop controller.
Obviously, in a real system, perturbations affect the evo-
lution and when the control law is implemented, such
perturbations must be handled to minimize their effect. In
this section we assume that the PWL trajectory path =
{m0, m′1, ..., m′s, mf} has been computed using Al-
gorithm 2. The online implementation proposed in this
section follows this trajectory by calculating a new state
after each time step.

For the online implementation we consider the discrete-
time representation of the system (Mahulea et al. (2008a)).
Our approach will be: for each segment of trajectory,
during each discrete-step k we will apply the maximum
possible flow obtained by solving a LPP. The procedure is
a closed loop control and in fact, can be seen as a model
predictive control scheme with timing horizon 1 and having
as optimization index the minimization of the time. In
(Mahulea et al. (2008a)) it is proved that using this control
scheme the closed loop system is asymptotically stable.

The discrete-time representation of the continuous-time
system (6) is given by:

m(k + 1) = m(k) + Θ · C · w(k)
0 ≤ w(k) ≤ Λ · Π(m(k)) · m(k)

(13)

Here Θ is the sampling period (τ = k ·Θ) and m(k) is the
marking at step k, i.e., at time k ·Θ. The sampling period
should be small enough to avoid spurious states. For all
p in P the following should be satisfied (Mahulea et al.
(2008a)):

∑

tj∈p•

λj · Θ < 1 (14)

In order to design the closed loop control for path (see
output of Algorithm 2), Algorithm 3 is developed. Here
s denotes the number of intermediate states. In the algo-

rithm, the procedure is applied to each segment ( m′j ,

m′j+1
) of the path. Therefore, the first problem will be

to reach m′1 from m0. In order to do this, LPP (15)
computes at k · Θ the maximum distance that can be
executed from the actual marking, m(k), in the direc-
tion of m′j+1 during the next Θ t.u. This LPP tries to
maximize the distance during the next Θ that can be
executed from the actual marking (constraint 1) such that
the obtained intermediate marking m′

next belongs to the
straight line from the actual marking m(k) to the final
one m′j+1 (constraints 2 and 3) while the controlled flow
is dynamically bounded (constraint 4). Then the same

procedure is applied when the initial marking is m′1 and

m′2 should be reached and so on. The procedure stops
when a marking sufficiently close to mf is reached. We
will denote by z the perturbation that affects the flow
(see equation (16)).

If there is no perturbation, the total time to reach the
desired marking by closed loop procedure can be smaller
than the time obtained by the open loop procedure. This is
due to the fact that the flow in the open loop control that
drive the system from a marking m′j to a marking m′j+1

is constant and it is bounded by these two markings. In the
closed loop implementation, the flow at step k is bounded
by the actual marking and m′j+1. Obviously, being the
actual marking a convex combination of m′j and m′j+1

the flow may be greater. On the other hand, because of
discrete time implementation, the time of the closed loop
control can be greater in some cases. For example, let us
assume that the optimal time computed by the offline
controller to go from m′j to m′j+1 is 0.3 t.u. Taking a
sampling time equal to 0.25 and assuming a maximum
flow during trajectory equal to 1, in the absence of any
perturbation, at least two steps are required to reach the
desired marking. This corresponds to, at least, 0.5 t.u.
what is greater than the time given by the open loop
controller (which is 0.3 t.u.).

Example 7. Let us consider the contPN system consid-
ered in Example 6 (Figure 1) with the same initial
and target marking: m0 = [7.5 4.5 4 2 1.5 5 4 2.5]T

and mf = [7 5 5 1 1 4 5 3]T . In Example 6, path
was obtained as path = {m0, m′1, m′2, m′3, mf}
where m′1 = [7.5 4.5 4.26 1.74 1.5 4.74 4.26 2.76]T ,
m′2 = [7.5 4.5 4.5 1.5 1.5 4.5 4.5 3]T and m′3 =
[7.45 4.78 4.55 1.22 1.22 4.45 4.78 3]T .
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Fig. 5. A contPN model of a flexible manufacturing system

Algorithm 3 Closed Loop Control

Input: 〈N , m0〉, mf , path, s, ρ

m′0 = m0; m′s+1
= mf ;

m(0) = m′0; k = 0;
for j = 0 to s do

while ||m(k)−m
′j+1||

||m(k)|| > ρ do

Solve the following LPP

max α
s.t. m′

next = m(k) + Θ · C · w
m′

next = (1 − α) · m(k) + α · m′j+1

0 ≤ α ≤ 1
0 ≤ w ≤ Λ ·Π(m(k)) · min{m(k), m′

next}
(15)

Advance one step and obtain the new marking

m(k + 1) = m(k) + Θ · C · (w + z) (16)

k = k + 1
end while

end for

According to inequality (14), Θ ≤ 1/7 must be satis-
fied. Let us assume that Θ = 0.01 and no perturbation.
According to Algorithm 3, we consider first the segment
(m0, m′1). That is, LPP (15) is solved at k = 0 to calcu-
late the maximum distance that can be executed from m0

during Θ t.u in the direction of m′1. This yields w(1) =
[2.02 2.02 0 2.02]T . Applying the corresponding control to
the system m(1) = [7.5 4.5 4.02 1.98 1.5 4.98 4.02 2.52]T

is reached.

Let ρ = 10−2, then since ||m(1)−m
′1||

||m(1)|| > ρ, LPP(15) is

solved considering m(1) the initial marking. The obtained
controlled flow is w(2) = [1.99 1.99 0 1.99]T corresponding
to m(2) = [7.5 4.5 4.04 1.96 1.5 4.96 4.04 2.54]T .

After the execution of Algorithm 3, mf is reached from
m0 after 66 discrete steps which correspond to 0.66 t.u.
This is smaller than the time obtained by the open loop
computation which was 0.74 t.u.

6. CASE STUDY

In this section we will apply our heuristic method for
minimum time control to a manufacturing system. The
net in Figure 5 (Zimmermann et al. (2001)) represents a
flexible manufacturing system. Let us assume the speed
of all operations take 1 t.u., i.e., λ = 1. A product is
composed from two different parts, A and B. Parts A
are processed in machine M1 and then in machine M2
while parts B are processed in machine M2 and after
in machine M1. The intermediate products are stored
in B 1A and B 1B, and the final products respectively
in B 2A and B 2B. Machine M3 assembles parts A and
parts B producing in this way the final product which is
temporally stored in B 3. The parts are moved on pallets.
Hence, in this system we have 3 sequential machines, 4
intermediate deposits and one terminal deposit.

Let us assume that initially, there are 35 pallets of
type A (m0[Pallets A] = 35); 25 pallets of type B
(m0[Pallets B] = 25); one machine of each type from
which the first two are initially in Idle state, while the third
one is in working state (m0[M1 Iddle] = m0[M2 Iddle] =
m0[M3 Work] = 1); one final product of type A and one
of type B produced (m0[B 2A] = m0[B 2B] = 1); a max-
imum of 10 parts of type A and B can be produced at each
time (m0[Max A] = m0[Max B] = 10); and finally, the
capacity of the buffer to store the final products just before
the recycling of pallets is equal to 25 (m0[B 3 Empty] =
25). Let us consider the task of producing 10 final product
as fast as possible, i.e., in minimum time. Let the final
marking for this control goal be: mf [Pallets A] = 27,
mf [Pallets B] = 17, mf [Max A] = mf [Max B] = 10,
mf [M1 Iddle] = mf [M2 Iddle] = mf [M3 Iddle] = 1,
mf [B 3 Empty] = 15 and mf [B 3] = 10. As previously
established, it is assumed that the initial and target mark-
ings are strictly positive, i.e. , m0(p), mf (p) ≥ µ. In this
example µ = 0.01. Driving the system from m0 to mf

through the linear trajectory (see LPP (8)) by assigning
constant flows to transitions takes 1000 t.u.



Table 2. Intermediate States

place m0 m
′1

m
′2

m
′3

m
′4

mf

Pallet A 35.0100 33.5000 31.0000 30.0000 28.5008 27.0000

M1 A 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

B1 A 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

M2 A 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

MAX A 10.0100 10.0000 10.0000 10.0000 10.0000 10.0000

M1 IDLE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

M2 IDLE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pallet B 25.0100 23.5000 21.0000 20.0000 18.5008 17.0000

M2 B 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

B1 B 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

M1 B 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

Max B 10.0100 10.0000 10.0000 10.0000 10.0000 10.0000

B2 A 1.0100 1.0100 0.5100 0.0149 0.0100 0.0100

B2 B 1.0100 1.0100 0.5100 0.0149 0.0100 0.0100

M3 Idle 0.0100 0.5100 0.5100 1.0001 1.0099 1.0100

M3 Work 1.0100 0.5100 0.5100 0.0199 0.0101 0.0100

B3 Empty 25.0100 23.0000 20.0000 18.0148 16.5009 15.0000

B 3 0.0100 2.0100 5.0100 6.9952 8.5091 10.0100

In order to improve the time and refine the trajectory,
we apply Algorithm 2 with ǫ = 10−3. The resulting path
is composed by 4 intermediate states. Therefore 5 line
segments, i.e., path = {m0 → m′1 → m′2 → m′3 →

m′4 → mf} (see Table 2) are obtained. The time spent
through this PWL trajectory is 802 t.u. The controlled
flows, w, at each segment are given in Table 3.
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Applying the closed loop control developed in Section
5 assuming Θ = 0.01 which satisfies inequality (14)
and no perturbation, the total time to drive the system
from m0 to mf through the path is obtained as 800
t.u. Under closed loop control, the evolution of markings
of places B 2B and B 3; and the controlled flows of
transitions S M3, E M3 are shown in Figure 6 and Figure
7, respectively.

In order to see the effect of the perturbation on the closed
loop controlled system, we introduce a perturbation on the
flow of transitions E M1 B, S M3, E M3 and Out during
the time intervals [0 150] [300 400]. The perturbation

applied to transitions S M3, E M3, i.e. zS M3, zE M3 (see
equation (16)), is shown in Figure 8.
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Under this noisy condition, when the closed loop control is
applied, the total time is obtained as 945 t.u. The evolution
of markings of places B 2B and B 3, and the controlled
flows of transitions S M3, E M3 are shown in Figure 9
and Figure 10, respectively.



Table 3. Controlled flows

transition (m0, m
′1) (m′1, m

′2) (m′2, m
′3) (m′3, m

′4) (m′4, mf )

S M1 A 0.0100 0.0100 0.0100 0.0099 0.0100

E M1 A 0.0100 0.0100 0.0100 0.0099 0.0100

S M2 A 0.0100 0.0100 0.0100 0.0099 0.0100

E M2 A 0.0100 0.0100 0.0100 0.0099 0.0100

S M2 B 0.0100 0.0100 0.0100 0.0099 0.0100

E M2 B 0.0100 0.0100 0.0100 0.0099 0.0100

S M1 B 0.0100 0.0100 0.0100 0.0099 0.0100

E M1 B 0.0100 0.0100 0.0100 0.0099 0.0100

S M3 0.0100 0.0120 0.01495 0.0100 0.0100

E M3 0.0140 0.0120 0.01985 0.0100 0.0100

Out 0.0000 0.0000 0.0000 0.0000 0.0000

7. CONCLUSIONS

The control problem addressed in this paper consists of
reaching a target state by approaching minimum time
through a piecewise linear trajectory. Besides the piecewise
linear dynamics of continuous Petri nets, the control
method handles the fact that the input constraints depend
on the current marking, i.e., the inputs are dynamically
constrained.

The method proposed in this paper computes first a
“rough” piecewise linear trajectory that is refined after-
wards in those intervals that allow an improvement. The
heuristics makes use of BLPs to obtain intermediate states
and LPPs to compute linear trajectories. The refinement of
the trajectory is achieved recursively. Finally, in a similar
way to a receding horizon scheme, we proposed a closed
loop method that ensures that the final marking is reached.

The approach presented in this paper has a relatively
low complexity compared to previous works and thanks
to the possibility of performing trajectory refinements it
produces close to optimal results in general. This feature
together with the fact of being embedded in a close loop
scheme makes it feasible for large plants suffering from
noisy measures.
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