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Abstract: In this paper, we present an online algorithm for state estimation of timed choice-
free Petri nets. We assume that the net structure and initial marking are known, and that the
set of transitions is divided in observable and unobservable one. Given an observed word and
assuming that the time durations associated to the unobservable transitions are unknown, our
problem is to estimate the possible states in which the timed net system can be. This work
extends the notion of basis markings defined for untimed Petri nets considering now the time
information. The proposed algorithm deals with three main steps: (1) wait for a new observation
and compute the set of basis markings without considering the time; (2) update the set of time
equations that contain the time restriction for the unobservable transitions; (3) update the set
of basis markings removing the time-inconsistent markings. The extension of the algorithm to
general nets is discussed, as well.

1. INTRODUCTION

Reconstructing the state of a system from available mea-
surements is a fundamental issue in several applications.
State observation can be seen as a self-standing problem,
but also as a pre-requisite for solving problems of different
nature. This problem has been extensively investigated
in time driven systems. On the contrary, despite the at-
tention payed by several authors in the last years, there
are relatively few works addressing this topic in discrete
and hybrid systems, thus several related problems are still
open.

In the case of discrete event systems modeled by Petri nets,
different approaches for observability have been recently
proposed. In [6] the problem was that of reconstructing the
initial marking (assumed only partially known) from the
observation of transition firings. In [8] this approach was
extended to the observation and control of timed nets. In
other works it was assumed that some of the transitions of
the net are not observable [3] or undistinguishable [5], thus
complicating the observation problem. In [1] the author
has studied the possibility of defining the set of markings
reached firing a “partially specified” step of transitions
using logical formulas, without having to enumerate this
set. In [9] the authors have discussed the problem of
estimating the marking of a Petri net using a mix of
transition firings and place observations.

In this paper, we study the problem of state estimation
of discrete event systems modeled by timed Petri nets.
We assume that the set of transitions is split into two
subsets: observable and unobservable. The firing of the ob-
servable transitions can be detected, while the firing of the
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unobservable transitions cannot and the time durations
associated to unobservable transitions are unknown. The
main idea is to extend the notion of basis markings to
timed nets. The set of basis markings is proposed in [7] to
characterize the set of consistent markings, i.e., the set of
possible markings of a PN after an observed word. Know-
ing the set of basic markings, the set of consistent markings
is obtained from the first one by firing the unobservable
transitions.

Using some reduction rules, we show how to reduce both
the structure and the state space of the unobservable net.
The reduction rules merge indistinguishable transitions, in
order to simplify the estimation procedure. To reconstruct
the marking of the original net it is necessary to determine
the markings of the input/output places of merged transi-
tions. These markings can be expressed as the solution of
a linear system that expresses their dependence from the
marking of the new places.

Assuming that the time durations of the unobservable
transitions are not known, we compute together with the
set of basis markings a set of time equations. This set
represents the relation between the observation and time
durations of unobservable firing sequences. The set of time
equations is used after to reduce the set of basic markings
since according to the time information.

The online algorithm that we propose estimates the state
of a timed PN and is based on the following three main
steps: (1) compute the set of basis markings; (2) compute
the set of time equations; (3) reduce the set of basis
markings according to the set of time equations.

This paper is organized as follows: a background on Petri
nets are given in Section 2; in Section 3 we characterize the
time duration of a firing sequences; reduction rules are in
presented in Section 4; and, an online algorithm for state
estimation of timed PN is introduced in Section 5.

Proceedings of the 18th World Congress
The International Federation of Automatic Control
Milano (Italy) August 28 - September 2, 2011

978-3-902661-93-7/11/$20.00 © 2011 IFAC 8687 10.3182/20110828-6-IT-1002.01523



2. TIMED PETRI NET SYSTEMS WITH
UNOBSERVABLE TRANSITIONS

In this section, we recall the basic definition of timed Petri
net system (for a general introduction, see [10]).

Definition 1. A PN system is a pair 〈N ,m0〉, where N =
〈P, T,Pre,Post〉 is a net structure with a set of places
P ; a set of transitions T ; the pre and post incidence

matrices Pre,Post ∈ N|P |×|T |
≥0 ; and m0 ∈ N|P |

≥0 is the

initial marking, where |P | is the number of places and |T |
is the number of transitions.

The incidence matrix is C = Post−Pre. For every node
v ∈ P ∪ T , the set of its input and output nodes are
denoted as •v and v•, respectively. A directed circuit of
PN is a sequence pi1ti1pi2ti2 · · · pintin, where pij ∈ P, tij ∈
T, pij ∈ •tij , tij ∈ •pi,j+1, and ∀j 6= k, pij 6= pik. A net
having no directed circuits is called acyclic.

A transition t ∈ T is enabled at a marking m if and only
if m ≥ Pre[·, t]. If a marking m

′ is reachable from m

by firing a sequence σ = ti1ti2 · · · tin, where tij ∈ T, j =
1, 2, . . . , n: the fundamental state equation can be written

as m
′ = m + C · σ, where σ ∈ N|T |

≥0 is the firing count

vector of σ; m[σ〉 denotes that σ is firable from m, while
m[σ〉m′ means the firing of σ drives m to m

′.

The set of transitions T is partitioned into two sets: To

and Tu, where To is the set of observable transitions, whose
firing can be detected by an external observer, and Tu is
the set of unobservable transitions. The firing sequence σo

is an observable firing sequence, if t ∈ σo, then t ∈ T o; σu

is an unobservable firing sequence, if t ∈ σu, then t ∈ T u.
An observation function λ : σ → T ∗

o , where T ∗
o is the

Kleene closure of To, extracts a sequence of observable
transitions λ(σ) from σ. Let σ = σu

1σ
o
1σ

u
2σ

o
2 · · ·σ

u
n, then

λ(σ) = σo
1σ

o
2 · · ·σ

o
n−1. Observable transitions are repre-

sented as white rectangles, while unobservable ones as
black rectangles.

ε3 ε4ε1 t5t2 p2p1 p3 p4

Fig. 1. Example of w = λ(σ)

Example 2. For the PN in Fig. 1, observable transitions
are t2, t5, and unobservable transitions are ε1, ε3, ε4. Let
σ = ε1t2ε3ε4t5, then the observed word of σ is w = λ(σ) =
t2t5.

Definition 3. A timed PN system is a triple 〈N , θ,m0〉,

where 〈N ,m0〉 is a PN system and θ ∈ R|T |
≥0 is the time

vector that associates to each transition tj a constant time
delay, θj = θ[tj ].

The time duration of a transition is deterministic, i.e., if a
transition t is enabled at time τ , t is fired at τ + θ[t]. The
single server semantic is used, which means a transition
cannot be enabled simultaneously more than once.

We make the following assumptions: (A1) the initial mark-
ing and net structure are known; (A2) the unobservable
induced subnet is acyclic; (A3) The time durations of
observable transitions are known, while the time durations
of unobservable transitions are unknown.

The second assumption implies that there are not spurious
solutions in the unobservable subnet, i.e., all markings,
solution of the state equation are reachable. Therefore, the
set of basis markings can be characterized using the state
equation.

Even if the initial marking is known, because of the
partial observation, the state of timed PN’s cannot be
determined by observation. To characterize the possible
set of markings we use a subset of it, which is called the
set of basis markings. Knowing this set of basis markings,
the consistent markings, which are the possible markings
in the net system, can be obtained by simply firing the
unobservable transitions from the basis markings.

Definition 4. [7] Given a marking m and an observable
transition t ∈ To, we define the set of explanations of t at
m as Σ(m, t) = {σ ∈ T ∗

u |m[σ〉m′,m′ ≥ Pre[·, t]}.

The set ofminimal explanations of t atm as Σmin(m, t) =
{σ ∈ Σ(m, t)|∄σ′ ∈ Σ(m, t) : σ

′ � σ}, where σ
′ � σ

means that for every t, σ′[t] � σ[t] and there exists t such
that σ′[t] < σ[t].

In the following, the set of basis markings without time is
introduced. The set of basis markings of observation w is
Mb(w) and denotes the possible markings according to w.

Definition 5. The set of basis markings of observation

w = vt is defined as Mb(w) = {m ∈ N|P |
≥0 |∀m

′ ∈
Mb(v) : ∀σ ∈ Σmin(m

′, t),m′[σt〉m}. For empty word
ǫ, Mb(ǫ) = {m0}.

p2 p3 p4p1 ε3ε2 t1

Fig. 2. Example of the set of basis markings

Example 6. Let us consider the PN’s in Fig. 2 with m0 =
[1, 1, 0, 0]T . The unobservable transitions are ε2 and ε3,
while the observable transition is t1. Assume t1 has been
observed.

The set of basis markings before any observation is
Mb(ǫ) = {m0}, where ǫ is the empty word. When w = t1
is observed, the set of explanations is Σ(m0, w) = {σ1 =
ε3, σ2 = ε2ε3}. Therefore, the set of minimal explana-
tions is Σmin(m0, w) = {σ1}. By firing σ1t1, the marking
m1 = [1, 0, 0, 1]T is obtained and the new set of basis
marking is Mb(t1) = {m1}.

For a marking m in the set of basis markings, there exists
σ such that m0[σ〉m. The sequence σ is composed by the
observable transitions and unobservable firing sequences,
which are minimal explanations. In order to represent the
firing sequences that drive the marking from m0 to m,
based on the set of minimal explanation, we present the
set of minimal firing sequences.

Definition 7. Given a marking m and an observed word
w = ti1ti2 · · · ti,n−1tin, we define the set of firing se-
quences consistent with w as Γ(m, w) = {σ ∈ T ∗|σ =
σu
1 ti1σ

u
2 ti2 · · · ti,n−1σ

u
ntin,m0[σ〉m}.

Based on Γ(m, w), we define the set of minimal firing
sequences as Γmin(m, w) ⊆ Γ(m, w), that ∀σu ∈ σ, σu

is a minimal explanation of corresponding marking and
observation.
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Definition 8. The set of basis markings at time τ of
a timed Petri net is defined as Mb(w, τ) = {m ∈
Mb(w)|∃σ ∈ Γmin(m, w), σ = σ′t, λ(σt) = w, t is
observed at τ}.

The firing sequences consistent with w defines firing se-
quences whose observation word is w and lead the system
to marking m. The set of basis markings at time τ de-
scribes markings obtained from sequences in Γmin(m, w).

3. TIME DURATION OF FIRING SEQUENCE

In order to estimate the state of a timed PN, it is important
to know the time duration of a firing sequence. In this
section, we define and analyze such time duration.

Let us consider a firing sequence σ = t1t2 · · · tn. The time
duration of σ is denoted by ι(σ) and it is defined as the
time duration from the enabling of t1 to the firing of tn:

ι(σ) = τn − (τ1 − θ1). (1)

Proposition 9. Let σ = t1t2 · · · tn, the following equation
is satisfied:

max{θ1, . . . , θn} ≤ ι(σ) ≤
n
∑

i=1

θi. (2)

If one and only one transition from σ is enabled at each
time instant, then

ι(σ) =

n
∑

i=1

θi (3)

Proof. If there exists overlapping of time durations, the
time duration of the firing sequence is less than the sum
of the time durations of all transitions (2). If there is no
overlapping, then (3) holds. �

The previous proposition can be generalized to sequences
that can be partitioned into subsequences. For example,
if σ = σ1σ2 · · ·σn and at each time moment, the enabled
transitions belong to one and only one subsequence σi,
then:

ι(σ) = ι(σ1) + ι(σ2) + · · ·+ ι(σn). (4)

p8

p6

t6p7

p5 t5

p1

p3

t2

t1

p4t3

t4
t7

p9p2

Fig. 3. Example of ι(σ) = ι(σ1) + ι(σ2) + · · ·+ ι(σn)

Example 10. Let us consider the PN in Fig. 3 with m0 =
[1, 0, 0, 0, 0, 0, 0, 0, 0]T and θ = [1, 2, 3, 1, 2, 3, 1]T . Since
it is a deterministic PN, the following observed word is
obtained w = t1t2t3t4t5t6t7 at the following time instants
1, 3, 4, 5, 7, 8, 9.

Let us write w as w = σ = σ1σ2σ3σ4σ5, with σ1 =
t1, σ2 = t2t3, σ3 = t4, σ4 = t5t6, σ5 = t7. According to

(1), the time durations are ι(σ) = 9, ι(σ1) = 1, ι(σ2) =
3, ι(σ3) = 1, ι(σ4) = 3, ι(σ5) = 1. Since the condition in(4)
is satisfied,

ι(σ) = ι(σ1) + ι(σ2) + ι(σ3) + ι(σ4) + ι(σ5)
= 1 + 3 + 1 + 3 + 1 = 9.

4. REDUCTION RULES

The firing of unobservable transitions cannot be distin-
guished by observation. In order to reduce the state space
of the unobservable subnet, reductions can be used. In this
section, based on [2], reduction rules are proposed to unob-
servable subnet of an ordinary timed Petri net system. The
rules should be applied before state estimation to reduce
complexity.

4.1 First Reduction Rule

p2 p3

pn

p1

p1,n−1

ε2

ε1,n−1

ε1 pnpn−1 εn−1

εn+2

tn+1

εn+2

tn+1

.

.

.

.

.

.

.

.

.

.

.

.

· · ·· · ·

Fig. 4. Illustration of the reduction rule # 1

In Fig. 4, ε1, · · · , εn−1 are unobservable and, |p1•| = 1;
|•pi| = |pi•| = |•εj | = |εj•| = 1, i = 2, . . . , n − 1, j =
1, . . . , n−1. The unobservable firing sequence ε1ε2 · · · εn−1

moves a token from p1 to pn and can be merged into
one transition ε1,n−1, such that, in the reduced net,

m[p1,n−1] =
∑n−1

i=1 m[pi], θ1,n−1 =
∑n−1

i=1 θi.

4.2 Second Reduction Rule

pn

pn+2

p1

pn,n+1
εn

tn+3

ε1

ε1,n+1pn+1

p1,n+1

εn,n+1

pn+2

εn+4

εn+1 tn+3
εn+4

· · ·

· · ·

· · ·

· · ·

· · · · · ·

· · · · · ·

Fig. 5. Illustration of the reduction rule # 2

In Fig. 5, ε1, · · · , εn+1 are unobservable transitions and
|pi•| = 1, i = 1, . . . , n; |•pn+1| = n and |pn+1

•| = 1. The
unobservable firing sequence ε1εn+1 (. . . , εnεn+1) moves
a token from p1 (. . . , pn) to pn+2. Therefore, ε1 and εn+1

(. . . , εn and εn+1) can be merged into one transition
ε1,n+1 (. . . , εn,n+1), such that, m[pi,n+1] = m[pi] +
m[pn+1], θi,n+1 = θi + θn+1.
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4.3 Third Reduction Rule

p7

p5 p6
p1 t4t1

ε3

p3 p4ε2

p7p35 p46p1 t4t1 ε23

Fig. 6. Illustration of the rule # 3

In Fig. 6, unobservable transitions ε2 and ε3 cannot be
distinguished in the firing sequence t1ε2ε3t4 or t1ε3ε2t4.
Therefore, ε2 and ε3 can be merged into one transition
ε23, such that, the time duration is θ23 = max{θ2, θ3}.
The marking of the reduced net satisfies:

• m[p35] = m[p3] +m[p5],m[p46] = 0.
• m[p35] = 0,m[p46] = m[p4] +m[p6].

5. ESTIMATE THE STATE OF CHOICE-FREE NETS

The state estimation mainly includes three steps: (1) the
set of basis markings is computed without considering
time; (2) the set of time equations is obtained; (3) the set of
basis markings is reduced based on the time information.

5.1 Computation of Mb(wtj , τj)

The set of basis markings at time τ = 0 is Mb(ǫ, 0) =
{m0}. Let us assume that the current set of basis markings
at time τ is Mb(w, τ), where w is the actual observation.
When the firing of a new transition tj is observed at time
τj , the following operations should be performed in order
to compute Mb(wtj , τj).

(1) Let Mb(wtj , τj) = ∅,
(2) For each m ∈ Mb(w, τ),

(a) compute Σmin(m, tj),
(b) let M′ = {m′|m[σtj〉m′, σ ∈ Σmin(m, tj)},
(c) let Mb(wtj , τj) = Mb(wtj , τj) ∪M′.

For each basis marking m of the previous set, the set of
minimal explanations is computed in Σmin(m, tj). There-
fore, when tj is observed after the firing of the minimal
explanations of Σmin(m, tj) from m, the new set of basic
markings is obtained.

p3

p4 p5

p2

p1 ε3

ε4

ε2

t1

Fig. 7. PN system used in Example 11

Example 11. Let us consider the PN’s in Fig. 7 with
θ1 = 1 and m0 = [1, 1, 1, 0, 0]T . The set of minimal firing
sequences for the empty word is Γmin(m0, ǫ) = ∅, and the
set of basis marking at time 0 is Mb(ǫ, 0) = {m0}.

If w = t1 is observed at time 4, Mb(t1, 4) is computed as
follows: (1) Mb(t1, 4) = ∅; (2) Σmin(m0, t1) = {ε3, ε4};
(3) M′ = {m1 = [1, 0, 1, 0, 1]T ,m2 = [1, 1, 0, 0, 1]T},

where m0[ε4t1〉m1, m0[ε3t1〉m2; (4) Mb(t1, 4) = {m1,
m2}.The sets of minimal firing sequences are Γmin(m1, w)
= {ε4t1},Γmin(m2, w) = {ε3t1}.

5.2 Obtention of the set of time equations

The set of basis markings in the previous section is com-
puted without considering any time consideration. Assum-
ing that the time durations associated to the unobservable
transitions are not known, in this section we provide a
procedure to obtain a set of equations to characterize all
possible time durations associated to these unobservable
transitions. It will be shown also how this set of time
equations can be used to remove those time-inconsistent
markings from the set of basis markings.

Let us assume that the time instant at which tj was
observed is τj , while the current set of basis markings
is Mb(wtj , τj). To each set of basis markings we asso-
ciate a set of time equations. These equations are ob-
tained as the union of different equations. Let Γ =
⋃

m∈Mb(wtj,τj)
Γmin(m, wtj) be the set of all minimal

firing sequences of all basis markings. The following time
equation is obtained:min{ι(Γ)} = τj , where ι(Γ) is the set
of time durations of each sequence in Γ. The time equation
obtained at time τ is marked as oτ .

Example 12. In Example 11, the set of basis markings
at time 4 has been computed. The set of minimal firing
sequences are Γmin(m1, t1) = {ε4t1} and Γmin(m2, t1) =
{ε3t1}. Therefore, Γ = {ε3t1, ε4t1} and the time equation
is o4 = min{ι(ε3t1), ι(ε4t1)} = 4.

This has the following intepretation: because t1 has been
fired at 4 and since for its firing, ε3 or ε4 should fire the
firing delay of at least one of the following sequences ε3t1
and ε4t1 should be 4.

If t1 is observed again at time 6, the sets of minimal
explanations are Σmin(m1, t1) = {ε3}, Σmin(m2, t1) =
{ε4, ε2ε3}, implying the set of basis markings isMb(t1t1, 6)
= {m3 = [1, 0, 0, 0, 2]T ,m4 = [0, 1, 0, 0, 2]T}. and the
sets of firing sequences consistent with w = t1t1 are
Γmin(m3, t1) = {ε4t1ε3t1} and Γmin(m4, t1) = {ε3t1ε4t1,
ε3t1ε2ε3t1}, while the corresponding time equation is o6 =
min {ι(ε4t1ε3t1), ι(ε3t1ε4t1), ι(ε3t1ε2ε3t1)} = 6.

Let us analyze the time durations of the sequences in o6.
First of all, according to the definition of the time duration
of a sequence, ι(ε4t1ε3t1) and ι(ε3t1ε4t1) provides the same
information. The time durations of the two firing sequences
are the same. Hence one of this sequence can be removed
from o6. Removing for example the second one, we obtain
o6 = min {ι(ε4t1ε3t1), ι(ε3t1ε2ε3t1)} = 6.

According to o4, θ3 ≥ 4− θ1 = 3. We will show that in o6,
ι(ε3t1ε2ε3t1) > 6 hence it is never the one that gives the
minimum and can be removed.

ι(ε3t1ε2ε3t1) ≥ θ3 + θ3 + θ1 = 2θ3 + θ1 ≥ 7

Therefore, ε3t1ε2ε3t1 is inconsistent with the time infor-
mation. It can be deleted from o6, so o6 = ι(ε4t1ε3t1) = 6,
and the corresponding basis marking should be removed,
i.e., Mb(t1t1, 6) = {m3 = [1, 0, 0, 0, 2]T}.
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As it was illustrated by the previous example, some basis
markings are time-inconsistent with the observation. On
the other hand, some time equations that are obtained
can be redundant.

In order to remove an element ι(σj) from a minimum
function oj the following procedure can be used: (i) let
σj = σ1

jσ
2
j . . . σ

r
j such that (4) is satisfied, i.e., the time

duration of σj is the sum of time durations of the sub-
sequences: ι(σj) = ι(σ1

j ) + ι(σ2
j ) + . . . ,+ι(σr

j ); (ii) find

σi
k,l, i = 1, . . . in O such that they are subsequences of

σl
j , l = 1, . . . , r; according to (2), ι(σl

j) ≥ ι(σi
k,l), ∀i; (iii)

if
∑

i ι(σ
i
k,l) > τj , where τj is the time instant when oj is

computed, ι(σj) should be removed from oj .

Proposition 13. LetO be the current set of time equations,
where

O =















min{ι(σ1,1), ι(σ1,2), . . . , ι(σ1,k1
)} = τ1,

min{ι(σ2,1), ι(σ2,2), . . . , ι(σ2,k2
)} = τ2,

...
min{ι(σq,1), ι(σq,2), . . . , ι(σq,kq

)} = τq,















and let oj be the time equation obtained at time τj > τq,
where oj : min{ι(σj,1), ι(σj,2), . . . , ι(σj,kj

)} = τj , with
q, kq, j ∈ N>0.

Let ι(σj) ∈ {ι(σj,1), ι(σj,2), . . . , ι(σj,kj
)} and decompose

σj as σj = σ1
jσ

2
j . . . σ

r
j . Find all σi

k,l in O such that σi
k,l is a

subsequence of a σl
j and fι(σi

k,j) ≥ σl
j , ∀l. If

∑

i ι(σ
i
k,j) > τj

then remove ι(σj) from oj .

Proof. Obviously, If the previous conditions are satisfied,
ι(σj) > τj . Hence it is not timed-consistent with the
observation. �

5.3 Algorithm for state estimation

In this section, we present an algorithm for state esti-
mation of systems modeled by timed PN’s. When a new
observation is available, the four steps in Algorithm 1 are
performed.

Algorithm 1 Estimate the state of timed PN’s

1: Compute the set of basis markings Mb(wtj , τj) based
on the current observation tj at τj .

2: Compute the time equation oj .
3: Reduce oj based on Prop. 13.
4: Reduce the set of basis markings Mb(wtj , τj) accord-

ingly.

p3

p7

p2

p6p5 p1
t5

ε3

t1

ε7

ε6

ε2

ε4p4

Fig. 8. Example of the algorithm

Example 14. Let us consider the PN in Fig. 8. with
observable transitions t1 and t5, θ1 = θ5 = 1, and

the initial marking m0 = [p1, p2, p3, p4, p5, p6, p7]
T =

[1, 0, 0, 0, 0, 0, 0]T . Apply reduction rule # 1, transitions
ε2 and ε3 are merged into ε23, and places p1 and p2
are merged into p12. Fig. 9 shows the reduced model.
The initial marking m0 = [p12, p3, p4, p5, p6, p7]

T =
[1, 0, 0, 0, 0, 0]T

p3

p6

p12

ε23

t1

ε4

ε6

p7

p5t5

ε7 p4

Fig. 9. A PN system to illustrate the steps of the state
estimation algorithms.

The state estimation algorithm is applied on the reduced
PN in Fig. 9. Let us assume the following observations: t1
at 5, 9 and t5 at 10.

• At time 0, the set of basis markings is Mb(ǫ, 0) = {m0}
and the set of time equations is O = ∅.

• At time 6, t1 is observed (w = t1). The set of minimal
explanations is Σmin = (m0, t1) = {σ1 = ε23ε6, σ2 =
ε23ε4}, meaning that σ1 or σ2 has been fired in order to
enable t1. By firing σ1t1 and σ2t1, the set of basis markings
is obtained as Mb(w, 6) = {m1 = [1, 2, 0, 0, 0, 0]T ,m2 =
[1, 0, 1, 1, 0, 0]T , and the sets of minimal firing sequences
are Γmin(m1, w) = {σ1t1} and Γmin(m2, w) = {σ2t1}.
The time equation at time 6 is min{ι(σ1t1), ι(σ2t1)} = 6,
the only equation that will compose O.

• At time 9, w = t1t1 and the sets of minimal explanations
are Σmin(m1, t1) = {σ1, ε4},Σmin(m2, t1) = {σ2, ε6}.

By firing σ1t1 and ε4t1 from m1, we obtain m3 =
[1, 4, 0, 0, 0, 0]T and m4 = [2, 1, 1, 0, 0, 0]T , respectively;
by firing σ2t1 and ε6t1 from m2, m4 and m5 =
[1, 0, 2, 2, 0, 0]T are obtained. Therefore, Mb(w, 9) =
{m3,m4,m5} and

Γmin(m3, w) = {σ3 = σ1t1σ1t1},
Γmin(m4, w) = {σ4 = σ1t1ε4t1, σ6 = σ2t1ε6t1},
Γmin(m5, w) = {σ5 = σ2t1σ2t1}.

From previous sets the time equation at time 9 is obtained
as min{ι(σ3), ι(σ4), ι(σ5), ι(σ6)} = 9.

Observe that σ3 = σ1(t1σ1)t1 satisfying Prop. 13, and
ι(σ3) = ι(σ1) + ι(t1σ1) + ι(t1). Form the equations of
O can be observed immediately that ι(t1σ1) ≥ 6 and
ι(σ1) = ι(t1σ1) − θ1 ≥ 5. Therefore, ι(σ3) ≥ 5 + 6 +
1 = 12 > 11. Hence, ι(σ3) should be removed. For the
same reason, ι(σ5) is also redundant and can be removed.
The set of time equations becomes:

O =

{

min{ι(σ1t1), ι(σ2t1)} = 6,
min{ι(σ4), ι(σ6)} = 9.

}

The set of basis markings is reduced to Mb(w, 9) = {m4}.

• At time 10, t5 is observed (w = t1t1t5). The set of
minimal explanations is Σmin = (m4, t5) = {ε7}. Firing
ε7t5, the set of basis markings is obtained as Mb(w, 10) =
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{m6 = [2, 1, 0, 1, 0, 0]T}, and the set of minimal firing
sequences as Γmin(m6, w) = {σ7 = σ4ε7t5, σ8 = σ6ε7t5}.
The time equation obtained at this time moment is
min{ι(σ7), ι(σ8)} = 10. Hence, the set of time equations
is

O =

{

min{ι(σ1t1), ι(σ2t1)} = 6,
min{ι(σ4), ι(σ6)} = 9,
min{ι(σ7), ι(σ8)} = 10.

}

Being an online procedure, seems that the set of time
equations is growing indefinitely. However, dealing only
with time deterministic Petri nets, this is not true and
there exists a moment from which any other time equation
does not provide new information and the set of time
equations is not updated anymore.

In the following, we discuss the time in a structurally live
(SL) and structurally bounded (SB) choice-free net with
a minimal T-semiflow x. We assume the upper bound of
time duration of every transition is u, and then the upper

bound of a firing vector σ is u(σ) = u ·
∑|T |

i=1 σ[i]. Let mh

be home state, i.e., it can be reached from every reachable
marking[4]. Based on [11], mh will be reached by a firing
sequence σh, with σh ≤ x.

Proposition 15. In a SL&SB choice-free net with minimal
T-semiflow x, if the initial marking is live, it is not
necessary to update the set of time equations after the
time instant 2 · u(x).

Proof. Because the net is SL&SB and the initial marking
is live, then there exists a circle in the reachability graph
and a home state mh. From m0, after firing σh, the home
state is reached and the system behavior starts to repeat.
Therefore, from this moment, it is not necessary to update
the set of time equations. �

5.4 Extension to nets with choices

p2

t1
ε5ε4

ε3ε2

p3

p4p1

Fig. 10. Example of PN’s with choice

Let us consider the PN in Fig. 10 with ε2 and ε4 immediate
transitions, i.e., θ2 = θ4 = 0, θ1 = 1, andm0 = [1, 0, 0, 0]T .
Assume t1 is observed at time 4. Obviously, ε2ε3 or ε4ε5
has been fired to enable t1, but we don’t know exactly
which one. Since t1 has been observed at 4, we can say
that ι(ε2ε3t1) or ι(ε4ε5t1) is 4, but we cannot say nothing
about the time duration of the other. Hence, we cannot
say that the minimum of ι(ε2ε3t1) and ι(ε4ε5t1) is 4.

Therefore, to apply the algorithm to general nets, there
exist two possibilities: (1) reduce the net using the re-
duction rules, to obtain a choice-free one (2) treat each
choice separated, i.e., enumerate all possible combinations
of firing sequences. This approach is similar with the one
of state estimation of untimed PN’s.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we provide an algorithm for state estimation
of timed choice-free PNs. First, an algorithm to compute
the set of consistent markings is given and then, the
time information are grouped into a set of time equations
that is used to reduce the set of consistent markings.
Some reduction rules are presented that can be used also
to reduce the state space of the timed systems merging
the indistinguishable transitions. Finally, we discuss the
general case, i.e., nets with choices, and we show that the
procedure is similar with the standard one of untimed Petri
nets. As a future work we plan to extend these rules and
also to implement the algorithm in MATLAB.
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