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Abstract—This paper addresses the decentralized control  In this work, the decentralized control of large scale
of large scale systems that are modeled with timed contin- systems which are modeled with timed continuous Petri nets
uous Marked Graphs (ContMG). Decentralized structures is addressed. As a starting point, it is assumed that the
are first obtained decomposing the system into subnets by systems we handle are modeled with marked graphs. This
cutting the original net through sets of places, and adding paper mainly focuses on driving the system from an initial
marking structurally implicit places. Then, local control laws  state to a desired final state. A large scale system is first
are computed separately. Algorithms are proposed to make the structurally decomposed into smaller subsystems, then the
locally computed laws to be compatible and fireable when the local control law for each subsystem is computed separately
global state of the system is considered. It is proved that using A supervisory controller is introduced to update the lgcall
the control laws computed with the proposed algorithms, the computed control laws in order to make them admissible
final state of the overall system can be reached in minimum when considering the system globally, without knowing the
time. A manufacturing system is taken as case study to illustrate detailed structures of local subsystems. With these cbntro

the control method. laws, all the local controllers work independently, and the
final state can be reached in minimum time.
I. INTRODUCTION Compared with the approach proposed in [3], in this

method, subsystems do not have to be monserfiflow
and the final states of the places used to cut the system are
specified in the control problem and can also be reached in
minimum time.

This paper is organized as follows: Section Il briefly

Petri Nets (PN) is a well known paradigm used for
modeling, analysis, and synthesis diEcrete event systems

(DES). Similarly to other modeling formalisms for DES, it
also suffers from thestate explosiorproblem. To overcome

it, a classical relaxation technique calldgidification can be recalls some basic concepts. Section IIl states the control

;Se(.j' In the framewqu of Petri nets, it IeadsQontmuou; problem, as it is here addressed. In Section IV, a strudyural
. etri nets{7], [1.7].' An |mpqrtant advantage of this relaXf"‘t'ondecomposition method for marked graphs is discussed, which
s that more eff_|0|ent algorithms are available for the asigly i \,seq here to obtain decentralized structures. Sectiay p
e.g., reachability and controllability problems [13], [11 |'goses the approach for decentralized control of large syste

leferent works about control of Petri nets can be f_ound iNSaction VI gives an example of manufacturing systems. The
the literature [9], [4], [2], etc. In the context of decerizad conclusions are in Section VII.

(distributed) control, distributed timed automata is dissed

in [12]. In [10], the decentralized control of Petri nets is Il. BASIC CONCEPTS

_cons!dered by means of the supervision based on plaCeThe reader is assumed to be familiar with basic Petri net

invariants. An architecture for distributed implemeraatof concepts (see [7], [17] for a gentle introduction)

Petri nets in control applications is proposed in [15]. A P ' 9 '

distributeq control strategy is designed in [8]'for forbétd A continuous Petri Nets

state avoidance for discrete event systems which are nibdele _ _ _ _

as Petri nets. Definition 2.1: A continuous Petri net system is a pair

Coming back to the continuous Petri nets, in [3], &N, mg) where V' = (P, T, Pre, Post) is a net structure

reachability control problem of timed distributed contius where:

Petri net systems is studied. The paper considers Petri nets .
. o P andT are the sets of places and transitions respec-

composed of several subsystems that communicate through

channels modeled by places. The proposed algorithm allows tvely- ;

the subsystems to reach their respective target markings a» Pre, Post € R‘ZHOX‘ ' are the pre and post incidence

different time instants and keep them as long as required. matrices.

_ _ . e Mg E R‘jo is the initial marking (state).
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m. A transitiont; € T is enabled atm iff Vp; € °t;,
m(p;) > 0 and its enabling degree is given by

. m(pi)
enab(t;, m) = p?él,rtlj {Pre(pi,tj)}

which represents the maximum amount in whith can
fire. Transitiont; is calledk-enabledunder markingm, if
enab(t,m) = k. An enabled transitiort; can fire in any
real amounty, with 0 < o < enab(tj, m) Ieadmg to ,a new Fig. 1. Marked Graph and Marking Structurally Implicit Placevith
statern’ = m+a-C(.,t;) whereC = Post — Preis the  jniiial marking mo (p1) = mo (pr) = mo(po) = mo(p12) = mo(pra) =
token flow matrixand C(-, 5) is its j** column. mo(pis) = 1.

If m is reachable frommn through a finite sequeneg the
state (or fundamental) equation is satisfied= my+C'- &,
wherea € RLTE is thefiring count vectori.e., 5(t;) is the marking of other places is said to Imearking structurally
cumulative amount of firings of; in the sequencer. A implicit. More formally:

vector ' is said to be a fireable firing count vector, if there pefinition 2.3: [18] Let N/ = (PUp, T, Pre, Post). The

exist a corresponding sequengevhich can be fired. . . o . .
Marked Graph(MG) is a well known subclass of Petri netSplacep is marking structurally implicit placgiff there exists
in which each place has exactly one input arc and exactly = 0 such thatC(p, T) =y - C(P,T).

one output arc. Thus they are structurally choice-freemall ~ FOr strongly connected MGs, a marking structurally im-

concurrency and synchronization but not decisions. plicit place p verifies:
Property2.2: [5] Let N be a MG, \ is consistentand Clp,) = Z C(p;,-) for ¥ € Plte,t,) )
its unigue minimal Tsemiflowis « = 1, wherel is a vector pjET

with all component equal to 1. wher _ e — »* an ¢t ) is th t of simol
In timed continuous Petri ne€lont PN) the state quation patisefti(ie., tﬁé tSathg v’vi?h:u?(rg;;égtetsj ngdzi, ?fgio ze
has an explicit dependence on time(r) = my+C - &(7) [6].
which through time differentiation becomeg&(r) = C -
&(7). The derivative of the firing sequencl(r) = &(r)
is called thefiring flow. Depending on how the flow is
defined, many firing semantics appear, being the most used
onesinfinite and finite server semantics [17]. For a broad mg(p) = my"™(p) = min Z mo(p;j)|m € Plte,ts)
class of Petri nets it is shown that infinite server semantics pjET
offers better approximation to discrete systems than finite ()
server semantics [14]. This paper deals with infinite server Example2.4: Fig. 1 shows a MG. It is easy to
semantics for which the flow of a transitian at time 7 is  ghserve that fromt,, to t, there exist two sim-
the product of the firing rate);, and the enabling degree of
the transition atn(7):

Given a marking structurally implicit plage the minimal
initial marking to makep implicit is [6]:

ple paths, 71 = {tiepistizpistipitepsts} and my =
{ti2p15t13p16t1p2tspats}. ThereforeP(t o, ts) = {m1, m2}.
With respect tdP(t12,t4), the added placg;s_4 is mark-
ing structurally implicit with input transitiort;, and output
For the sake of clarityr will be omitted in the rest of the transitiont¢,. Similarly, if considering the path froms; to
paper when there is no confusiofit;), m andm(p;) will ¢, T3 = {tspsteprtrpstspiotopiitiopratii ), P51 is the
be used instead of (¢, 7), m(r) andm(p;, 7). corresponding marking structurally implicit place. Thése

m(pi, ) }

ft5,7) = Aj - enab(ty, m(7)) = A; .p?éi}%j {W )
1

B. Implicit Places and Continuous Marked Graphs a loop path fromtyy, w4 = {t11, p13, ti0, P12, t11}, therefore
A place p is calledimplicit when it is never the unique P11.11 iS constructed.
place restricting the firing of its output transitions. Henan In order to compute the minimal initial marking to make

implicit place can be removed without affecting the behavio,,, , implicit, the sum of markings in each path from, to
of the rest of the system, i.e., the language of firing SERRENC,, is considered. Because the sum of markings of places in

of the original discrete system is preserved [18]. ) . . . .
Normally, implicit places are determined by the structuré* Is 2, while for, it is 1, according to (3), the minimal

but also depend on their initial markings. A plae¢hat can IS chosen, so one token should be put ipte 4. Similarly,

be made implicit (with a proper initial marking:o(p)) for  two tokens inps 11, and one token ipqq 1.

any initial marking of the rest of the system is callgttuc- When the net system is considered as continuous, the
turally implicit place A structurally implicit place whose minimal initial marking of marking structurally implicit
minimal initial marking can be linearly deduced from theplaces can also be calculated using (3).



IIl. PROBLEM STATEMENT

The classical centralized control theory has been proved
inefficient for large scale distributed systems, in whick th
communication delay, time synchronization problems be-
come significant. Therefore distributed or decentralizextc
trol is extensively explored in recent decades. In a deakntr
ized controlled system, normally a complex dynamic system,
the controllers are not centralized in one location, but are (a) NV1(non-dotted part) and\V1 (with dotted
distributed in the subsystems, while typically, each calter part)
can only access local resources and limited informatiomfro
its neighbor subsystems. B

Under the framework o€ontMG the large scale system is P ol
decomposed into subsystems that are modeled@otitMGs
and controlled by the local controllers. Each local comrol

HZTRE )

can obtain information from its neighbor subsystems thhoug ' ,,

the interface places and transitions. The problem we deal R

with is: how to design the control action for each local

controller which works independently, and drive the system (b) NVa(non-dotted part) andA\'s (with dotted part)

from an initial markingm, to a final markingm .
Fig. 2. Cutting of marked graph

IV. STRUCTURAL DECOMPOSITION OFMARKED GRAPHS

In this section we adapt the decomposition method de- In Fig. 2, the complemented subr@&t/; is obtained after
veloped in [6]. The idea is the following: given a stronglycopying B = {ps,pi14}, U2 = {t5,t11} and addingl P, =
connected MGV, it is first split into two subnetsV; and  {ps 11, p11.11} to Ny, while CA, is obtained after copying
N> according to a set of placeB, after that thecomple- B = {ps,p14}, Ui = {t4,t12} and addingI P> = {p12.4}
mented subnet&C ) are derived through adding markingto A5. Notice that cutB and interfacd/ are shared in both
structurally implicit places. subnets.

Definition 4.1: Let N' = (P U B, T, Pre, Post) be a In order to calculate the initial marking @f . that makes

strongly connected MGB is said to be aut iff there exists itthiTp?iiC_it' Wf ?_a\ée_;(r)] find out the pi}lrt_h_frotrnl to ?h S“C‘:Ih_
subnets\'. = (P,. T,. Pre,. Post,). i — 1.2, such that at (3) is satisfied. There are some efficient algorithmswhi

can be used, e.g., the algorithm of Floyd-Warshall [1].

() MU, =T, TiNTy =10 Sometimes for a complex system, only one cut is not suf-
() PUP, =P, PLNP,=10 ficient, because the complemented subsets are still difficul
(i) LFUB=°T\UT\*, P,UB="T, UT,* to handle. Therefore, the above decomposition process can

where U = *B U B* is said to be interface, which is be executed in multiple hierarchical levels. Fig. 3 present

partitioned intol7,, Uy, such that; Ul = U, U; = T,"U. the complement.ed subpets obtained after cutfing i_n Fig.
2(b) one more time, witlB = {pg, p12, p13}. After this two

Example4.2: The non-dotted part in Fig. 2 are the subqgq cutting, the original system is decomposed into three
nets\i, Nz obtained from the MG in Fig. 1, which is cut ¢/}, CAy; and CAVas. It should be noticed that the order
by B = {ps,p14}, with the interfacell = {t4,t5,t11,t12}  Of cutting is not important, if the net in Fig. 1 is first cut
while Uy = {t4,t12}, Uy = {t5,t11}. by B1 = {ps, p12, P13}, then byBy = {ps, p14}, the exactly

After cutting, the two subsysterié; and A, are indepen- S&me subnets are obtained.
dent, because all the constraints from the rest of the system
are removed. Therefore different behaviors are introduced V- DECENTRALIZED CONTROL OFLARGE SCALE
The complemented subnét obtained after adding marking SYSTEMS

S:c”tjﬁ turaII)t/ |m|z::0|tt place_s as approximations of othertpa The decentralized structure of a large scale system may be

° e_ Sys em that are missing. obtained using the decomposition method presented in sec-
Definition 4.3: Let N' = (P U B, T, Pre, Post) be a tion IV. In this section it shown that th@N-OFF controller

strongly connected MGV; = (P;, T;, Pre;, Post;) be the developed in [19] can be applied to each subsystem, leading

subnets associated with a cBt The complemented subnet (0 the overall final state in minimum-time. o

CN; is obtained from\; by copying B andU;, adding the A firing count vectoré' driving the system ton is said

. L . to be minimal if it can not be written as& = ¢+ k - x,
marking structurally implicit places with respect to thehsa wherek > 0, C'is a firing count vector driving the system

Plte,ts) N Nj, te,ts € Uj, .5 = 1,2,i # j. The set of to m;, andz is a Tsemiflow An ON-OFF controller for
places being added t; is denoted byl P; . structurally persisten€ontPN is proposed in [19]: ifF is



Definition 5.1: Let & be firing count vectors driving
(CNi,mp) to m}, i = 1,2. &' and & are said to be
compatibleif 71(t) = 7%(t), Vt € U.

Definition 5.2: Let &' and&? be compatible firing count
vectors. Themergeof them is defined asz'? = &' @ &2,
such thatvt € T;, 12(t) = 7'(t), i = 1,2.

Example5.3: Let us consider the MG in Fig. 1 and its
complemented subnets obtained using But= {ps,p14},
and interfacell' = {t4,t5,t11,t12} in Fig. 2. Table | shows
their initial, final markings and the firing count vectors.eTh
initial markings of the added marking structurally implici
places are computed from (3), while their finial markings
arem}(pg,,ll) =21, m}-(pllfll) =1, andm?(plgA) =1.5.
Observe tha# is the minimal firing count vector driving/
from mg to my, i.e., my = mg + C - . Its projection

in CNy, &L, = [1.7 23 1.5 1.1 0.7 0.6 1.6 2.1]7 is
(b) CN'22 fireable and drives’V; from m{ to m}, but it is not

Fig. 3. Complemented subnets: second cut i, minimal. The minimal firing count vector in this case is
L., = [1.1 1.7.0.9 0.5 0.1 0 1 1.5]7. Fortunately, the

minimal, for any?;, simply let it ON before the cumulative projection can be obtained from the minimal one by adding
flow of ¢, reaches#(t,), and after that let iOFF. m; is 0.6 times the Bemiflowof CA'y, ie.,&,,; = &,,;,+0.6-1.
reached in minimum-time using this strategy.

Because MGs is a subclass of structurally persistent nets,
this ON-OFF strategy can be applied. In the following, it is

TABLE |

MARKINGS AND FIRING COUNT VECTORS

. s . . T 2 > =1 =2
shown how to compute the control law (minimal firing count| ” F O T S e PRI I
vector) in a decentralized way. o o o T e
In the sequel, we will use the following notations: v o | ooa) 2| g
i . e . H H 0(0.4) 0(0.4) t 11 1.1(0.5) 1.1(1.1)

(1) mg: the initial marking ofC\;, directly projected from | 7 o) | ooy | o || b | o7 | oron | or0m

my. For everyp € P, U B, m{(p) = mo(p), while for »6 oo 002 | 6 | o5 509

. .. . . P . B t

every added implicit placg € 1F;, m (p) = my™™ (p). e 0(0.4) 0.4y || g | 06 06(0.6)
(2) m;: the finial marking ofCV;, directly projected from | 7 =~ | [0 ot I o))

my. Foreveryp € P,UB, m(p) = my(p). Every place | ri1 | 009 Yo || va | 6 | e | reae

p € IP; belongs to different circuit il A/;, and since P13 0(0.6) 000.6) || t13 | 21 | 215

CN; is a strongly connected MG, each circuit forms a| 2+ | (00 | 10 | "

P-semiflow[16], m’(p) can be easily computed. P16 0(0-4) gg»;ﬂ;

- .. - . P5_ .
(3) &: the minimal firing count vector driving\', my) to o 1)

P12.4 1(1.5)

my.
4) & . the firin nt v r ; directly proj . . . .
@) ]ﬁ'rgr% _t, eFor e?/ecror et Tectg ?;C)J\G 9(t(;0ty projected g now, the time has been ignored and the previous

oma =1y i Tprj\t) = kL) . result holds for untimed system. If all transitions are colat
(5) &i,,: the minimal firing count vector driving

lable, a markingn is reachable in the untimed model, if it is

reachable in the timed one; while if a markingis reachable

in the untimed model, then it is asymptotically reachable in

the timed one [13]. Therefore, similar results can be easily
The most interesting point of the decomposition approadixtended taCont M G. In particular, the projections of firing

in section IV is: if proper initial markings are put into the count vectors and reachable markings of the original system

added marking structurally implicit places to make thenmare preserved in the complemented subnets. In the sequel,

implicit, the projections of reachable markings and firingve assume the system is live.

sequences of the original system are preserved in the com4f the minimal firing count vectors of N'; andCN 5 are

plemented subnets [6], i.67 . can always be fired i@A/;  compatible, the merged vector is firable M. In the case

. T .
with initial marking m{, leading tom?. In the framework they are not compatible, lik&. . and &2, in Ex. 5.3

min
of continuous net system, this is also true, and the exact{pecausedt € U, 7. .. (t) # &2,.,(t)), a Tsemiflowcan be

m min

same proof can be constructed. added to one of them to make them compatible. Finally, the

(CNi,mj) to mj.

A. Decomposition with One Cut



merged vector obtained is actually equalsto whenCA o3 is cut again: there exists at least one sulthf;

Proposition5.4: Let (A, m,) be a live MG, with cutB  that iscritical. _ _
and corresponding interfadé. & is the minimal firing count WO complemented subnets are neighbors if they share

tor d e i hil h inimal a cut. Because every time we split one net into two, each
vector driving (N, mo) to my, while &;,;,, is the minima subnets has at least one neighbor. We will prove it is passibl

firing count vector dr|V|ng<CJ\/l,m0> to mf' There exists to make pairs of minimal firing vectors of neighbors to be
k >0, such tha& = (&, +k-1)®a67 ;... i, = 1,2,i # j. compatible and obtai@ after merging all of them.

Proof: We will first prove that there exists /a> 0 to Proposition5.7: Let (M, m,) be a live MG that is de-
make(&,,,;, +k-1) anda,,;,, compatible, then by merging composed inton subnets. Assuming\,, 1 < ¢ < n

them, & is obtained. . itical | d sub h h -
Since the projectiod”, , is a fireable vector ifCA;, mj) 'S @ critical complemented subnet, then there eust =

andm/, is reached, while?? , , is the minimal firing count 1,2,...,n such that:

man

vector driving the system tm}, we have:

mzn

n

E;T’j = Eiu’n ta;-1L,i=1,2,02>0 G = (a:;mn +oay - 1) (4)
1

whereo; > 0, oy = 0.
Proof: Since all complemented subnets are live MGs,
*;M (t) = 5;“.”(15) +o;,VteU,i=1,2 & ., +a;-1is also fireable irCN;. For any two neighbor
subnetsC; andCN;, o, o; > 0 can be found such that
& +a;-1anda’ ;. + ;-1 become compatible and

min

Without loss of generality, assumg < as. If only consid-
ering the common transitions ii:

—1 =9 =
Becauser,, ;(t) = 75,,(t) = G(t),Vt € U, we have

Gl +ar =%, () +a, Vel can be merged. According to Propgsition 5.4, after merging
all the firing count vectorsg’ = @._ (67, + «; - 1) is
Therefore, obtained, which can be fired iV, m), reachingm .
5 - .
Gl ()2, ()=as—ar=k>0VteU If all a; > 0, &' is not the minimal firing count vector,

then certain amount of $emiflowcan be subtracted froa’
Hence(62,,, + k- 1) and&} . are compatible, and all the until & = &'. [ |
common transitionst(c U) have the same firing counts. On  |et us observe that it is possible to have more than one
the other sideB are the common places 6\, andCN>  critical subnet, but considering there is a unique minimal
and*B U B*® = U, therefore, firing count vector in a live MG, given any critical subnet,
mo+C - (3L, & (@, +k-1)) = the sames is constructed.

m
! Example5.8: Let us examine the MG in Fig. 1 with the

. . ) iflitial and final markings as listed in Table. I. After cutiin
sequencg that can be fired, and its count vecigis equal _
to 0' EB( + k- ) with Bl = {p5,p14} and BQ = {pﬁ,p127p13} we get three

Smceamm, 2 are minimal’is also minimal. Because complemented subne@V; (Fig. 2(a)),CN1, CN22 (Fig.
the minimal f|r|ng count vector is unique in a live MG [19], 3). CA/; andCA2; are neighbors sharing cutting;, CA o1
$=01n® (G +hk-1)=5. B andCAN,, are neighbors sharing,. In Table Il there are
Example5.5: In Ex. 5.3,G,,;, andg?,;, are not compat- presented the corresponding minimal firing count vectdrs. |
ible. Observe thatt € U7 2. (t)—ak .. (t) =0.6. Clearly, is obtained:
after adding0.6- 1 to &. ., they are compatible and can be ,
merged:& = (& mm+06 1) @ a2 G = (Gryn+06-1)D52%,, ©&F,.
Notice that,& Umm

min*
is different from the direct projection Here CAVy |
from &, Whlle &2, is equal toaprj
k-1)@®

PR CN 5, both are critical subnets.
Infact, if & = (&7, + The rest of this section devotes to design an effective algo-

Trin: thenvt € T;,G(1) = &, (1), therefore ) 16 search a critical subnet, and compute correspondin
; 10 generater.

Because the system is a live MG, there always exists

the minimal f|r|ng count count vector and the projection are,
equal, i.e..g’ . =&

min — prj- In order to make it more understandable, let us construct
Definition 5.6: A Complemented Subnét/\/' is said to be a grath = <‘/‘7 W> to dep|ct the relations among Comp|e_
critical, if &, = &,.;, i-€.,Vt € Ti, &(t) = &, (1) mented subnets. Each nodelinrepresents a subnet, there
N o ) are arcs between nodesandu; if the corresponding subnets
B. Decomposition with Hierarchical Cut CN; andCN/; are neighbors. The weight of the arc fram
Let us now assume that has been cut into tw6\; and  to v; is given byw(v;,v;) = &, (t) — & . (t),Vt € U,

CNywith & = (& . +k -1)® &2, ,thend? , = &2 negative weight is also allowed here. So in the correspandin

min min? min prj?

CN5 is critical. If C/\/g is cut one more time mtai’/\/gl, graphG (Fig. 4), w(ve,v1) = 0.6, w(vy, v9) = —0.6, while
CN2e and suppos&?,,, = (2L, + ko - 1) @ 622, then  w(va,v3) = w(vs,v2) = 0. Let us denote byV (v;, v;) the

obviouslyCN s, is critical. The same result can be obtainedsum of the weights on the simple path framto v;.



TABLE Il Algorithm 1 Search a critical subnet

MINIMAL FIRING COUNT VECTORS |npUt: G — <V W>
T [ oW) [ 3,0 [ 72,020 [ F,©@2) | output: A nodev, € V
t | 1.7 1.1
ta | 2.3 1.7 1: Label all the nodes iV asnew
ts | 1.5 0.9 2: while more than one node il is labeled asiewdo
ty | 1.1 0.5 1.1 ) ‘ .
| 07 o1 o7 o7 3:  Choose a node; from V which is labeled asew
ts | 0.5 0.5 0.5 4. for j=1ton do
tr |1 1 5 if W (4,4) has not been computetien
ts | 0.6 0.6 oA
ts | 05 05 6 -computeW(z,g),
tio | O 0 0 7: if W(i,j) > 0 then
tin | 0.6 0 0.6 0.6 8 label v; asold;
t12 1.6 1 1.6 . .o
t | 21 15 9 else if W (i,7) < 0 then
10: label v; asold;
o6 0 11 break;
12: end if

ol oo

14:  end for
06 0 15:  if j =n andv; is labeled aewthen

16: return v;;
Fig. 4. The graphG = (V, W) constructed from the three complemented 17 end if

subnets in Ex. 5.8
18: end while
19: return The last node i/ that is labeled asew

Since a cut splits a net into two subnets, in grapkhere
only exists one directed simple path from a nageto v;
(also fromw;, v;), and W (vi, v;) = =W (vj,vi). If v and ¢ Control Structures
v; are neighbors, then obviousl (v, v;) = w(v;, v;).

It can be observed that. the sum of weights in the path fro There are two kinds of controllers in the decentralized
S _,g =) P Tontrol system: local controllers and a supervisory cdlero
v; 10 v; reflects therelative differenceof &7,,;,, to & In

. : min man’ Local controllers know only the structures of the local
Ex. 5.8, the relative difference af; to vy is w(vs,ve) = L "
: . subsystem. The local control law (minimal firing count
0, while the one ofvs to vy is W(vs,v1) = w(vs,ve) + ~i o g :
. ﬁ 1 vector) & .~ of subsystemCA/; is first computed inde-
w(vg,v1) = 0.6. Obviously we haves = (&,,,,, +0.6-1) @ min . . .
(&%, +0-1)® &2, . Actually, the non nocative valug,  Pendently in the corresponding controller. Since this mint
7 g Y. 9 * law may be not globally applicable, its value is sent to the

in (4) is equal toW (vg, vi). supervisory controller. After the updating information is
Property5.9: Let v, € V. If for any nodev; € V, received from the supervisory controller, the controllér o

W (vg,v;) > 0, thenCN, is a critical subnet. CN; can be implemented independently with the control law
Proof: If W(v,,v;) > 0, then leta; = W(vg,v;), Omin + i1

& = O (&AW (vg,vi)-1). Sincea, = W(vg,v,) = 0, The supervisory controller is mainly used to update the

gl = &*Zm._ ThereforeC\, is critical. locally computed control laws in order to make them globally

m admissible. Based on the local control laws of subsystems,

Algorithm 1 searches a critical subnet based on the graiaPh & is first constructed, and Algorithm 1 is applied

G First. all nodes are labeled asw Then for each node t© find a critical subnet€ \V,. Then the relative difference
v; labeled asnew the relative differences fromy; to all @i iS computed and sent t6\;. Let us observe that the

others nodes;, W (v;,v;) is computed. If one is found to only information required by the supervisory controllee ar
be negative them; is not critical and it is labeled asid. If the local control laws, therefore all computations are done
1 .

it is positive thenw; is not critical becauséV (v;, v;) must locally, so the communication cost is very low.

be negative, and; is labeled a®ld. When a node with all Algorithm 2, 3 are used by supervisory controller, local
relative differences non-negative is found, or there isyoniController respectively.

one node labeled awewis left, the program finishes. When
computing the sum of weights, of course the intermediate
values that have been computed before should be reused. InLet us consider theContMG system in Fig. 5 which
the worst case, the complexity @(@), wheren is the models a manufacturing system with three types of product
number of complemented subnets. lines which are assembled for one final product. The system

VI. CASE STUDY



Algorithm 2 Supervisory Controller

Input: & .
Output: o

1: Construct the graplir = (V, W);

2: Find out a critical subnef\/,, using Algorithm 1;

3: Computeq;: the relative difference of N, to CN;; (@) CN1
4

: Senda; to CN;, i =1,2,...,n; @
N e
O»=0O I

Algorithm 3 Local Controller: < tyl O t,,;l P
Input: C/\/?, mp, m}
Output: &%, o Ps 31 7y

. Computes . driving the system tan’;

1 min

2: Sendéd?, ., to the supervisory controller;

3: Receiveq; from the supervisory controller;
4: Updated? ;, < & .., + ;- 1;

5

- Apply ON-OFF control;

is cut into four subsystems through buffei3; (= {p1,p12},

By = {p13,p23}, Bs = {p24,p3s}) Of each product line, as

shown in Fig. 6, wherex 31, p27.31, P1.7, Po_15 and pig_o4

are the added marking structurally implicit places.
Assuming the initial and desired final marking are listed

in Table Ill. The corresponding minimal firing count vectors

are easily computed, and the result is shown in Table IV.

TABLE Il
INITIAL AND FINAL MARKINGS (d) CNs

- A - CN = CN - CNa Fig. 6. Complemented subnets from the system model in Fig. B, euit

mQ mo mo mQ

(my) (m ) (mj) (mj) By = {p1,p12}, B2 = {p13,p23}, B3 = {p24,p3s}
P1 3(0.6) P13 4(1.9) P24 3(0.3) P1 3(0.6)
P2 0(0.4) P14 0(0.3) P25 0(0.2) P12 0(0.4)
P3 0(0.8) P15 0(0.9) P26 0(0.7) P13 4(1.9)
P4 1(0.2) P16 1(0.1) oy 2(0.5) P23 0(0.3) . )
»s 2005) || p1i7 | 200:5) || pos 000.8) || p2s 3(0.3) Finally, the local controllers can apply their control lows
P6 0(0.7) P18 0(0.6) P29 0(0.9) P38 0(0.2)

pr 00.8) || p1o | 000.9) || pso 10.1) || pao 0(0.6) using an ON-OFF strategy. The global final marking is
bs 102 ) P20 200.5) ) a1 9(0-6) | pao 1(0.8) reached in 13.24 time units, that is the minimum time [19].

2} 0(0.7) P21 0(0.6) P32 2(0.5) P41 0(0.2)

P10 2(0.5) P22 0(0.3) P33 0(0.9) P42 0(0.2)
P11 0(0.4) P23 0(0.3) P34 0(0.6) P43 0(0.4)
P12 0(0.4) P35 1(0.1) Pag 0(0.8)
P36 2(0.5) || pas 1(0.2) VIl. CONCLUSIONS
P37 0(0.2) P46 0(1.0)
P38 0(0.2) P4t 2(1.0)
s B Decentralized control could be a solution of controlling
i — R es) systems that are too complex to be handled with centralized
e I B Tl 7els | oe | controllers. This work focuses on decentralized control of
pi624 | 0(49) large scale systems that are modeled with timed continuous

MGs, aiming to drive the system from an initial marking to

Graph G (presented in Fig. 7) is constructed, in whicha desired final marking. The model is first decomposed into
CN, is neighbor to all the other subnets with weightsubnets with sets of places, then control laws are computed
w(vyg,v1) = w(vg, v2) = 2.8, w(vg, v3) = 2.2. If Algorithm in a decentralized way. A supervisory control is introduced
1 is applied,C/N 4 is found as the critical subnet. to make the locally computed laws globally applicable. Afte

The relative differences of A, to all the other subnets that, anON-OFF strategy can be applied in each subnet, and
can be computed, which in this case is very straightforwardinal marking is reached in minimum time.
a1 = ap = 2.8, ag = 2.2. Therefore, the minimal firing  As a future work, we plan to investigate the possibility
count vector is generated a&:= (&.,,,+2.8-1)®(&2,,,+ of developing an automatic system cutting procedure and

min min

28-1) @ (62, +22-1)® o applying this control method to more general nets strusture

min min"*



(1]
(2]

(3]

(4]

(5]

Fig. 5. A manufacturing system model

TABLE IV

(6]
MINIMAL FIRING COUNT VECTORS
cN [ CN: cN
T ;'}n" n T ;?nin T c;'m." n T 34;1n1'n [7]
t 4.2 tg t1g 5.1 tq 7
to 3.8 tg 3.9 ti7 4.9 tr 3.2
tg 3 t10 3.6 ti1g 4.2 tg 2.8 [8]
ty 2.3 t11 2.7 t1g 3.4 tg 6.7
ts 1.5 t1o 2.1 toQ 2.5 t15 3.1
tg 0.8 t13 1.2 toq 1.9 t1g 7.3
ty 0.4 t14 0.6 too 1 tog 2.4
tg 0 t15 0.3 tog 0.4 tog 2.2
t3q 1.8 t3q 1.8 tog 0.2 tog 2.4 [l
tor 0 tor 2.2
t31 2.4 tog 1.8
tog 1
t 0
tay | a6 (101
t3o 1.5
[11]
[12]
[13]
Fig. 7. The graph constructed from Table. IV [14]
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