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Abstract— This paper addresses the decentralized control
of large scale systems that are modeled with timed contin-
uous Marked Graphs (ContMG). Decentralized structures
are first obtained decomposing the system into subnets by
cutting the original net through sets of places, and adding
marking structurally implicit places. Then, local control laws
are computed separately. Algorithms are proposed to make the
locally computed laws to be compatible and fireable when the
global state of the system is considered. It is proved that using
the control laws computed with the proposed algorithms, the
final state of the overall system can be reached in minimum
time. A manufacturing system is taken as case study to illustrate
the control method.

I. I NTRODUCTION

Petri Nets (PN ) is a well known paradigm used for
modeling, analysis, and synthesis ofdiscrete event systems
(DES). Similarly to other modeling formalisms for DES, it
also suffers from thestate explosionproblem. To overcome
it, a classical relaxation technique calledfluidificationcan be
used. In the framework of Petri nets, it leads toContinuous
Petri nets[7], [17]. An important advantage of this relaxation
is that more efficient algorithms are available for the analysis,
e.g., reachability and controllability problems [13], [11].

Different works about control of Petri nets can be found in
the literature [9], [4], [2], etc. In the context of decentralized
(distributed) control, distributed timed automata is discussed
in [12]. In [10], the decentralized control of Petri nets is
considered by means of the supervision based on place
invariants. An architecture for distributed implementation of
Petri nets in control applications is proposed in [15]. A
distributed control strategy is designed in [8] for forbidden
state avoidance for discrete event systems which are modeled
as Petri nets.

Coming back to the continuous Petri nets, in [3], a
reachability control problem of timed distributed continuous
Petri net systems is studied. The paper considers Petri nets
composed of several subsystems that communicate through
channels modeled by places. The proposed algorithm allows
the subsystems to reach their respective target markings at
different time instants and keep them as long as required.
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In this work, the decentralized control of large scale
systems which are modeled with timed continuous Petri nets
is addressed. As a starting point, it is assumed that the
systems we handle are modeled with marked graphs. This
paper mainly focuses on driving the system from an initial
state to a desired final state. A large scale system is first
structurally decomposed into smaller subsystems, then the
local control law for each subsystem is computed separately.
A supervisory controller is introduced to update the locally
computed control laws in order to make them admissible
when considering the system globally, without knowing the
detailed structures of local subsystems. With these control
laws, all the local controllers work independently, and the
final state can be reached in minimum time.

Compared with the approach proposed in [3], in this
method, subsystems do not have to be mono T-semiflow,
and the final states of the places used to cut the system are
specified in the control problem and can also be reached in
minimum time.

This paper is organized as follows: Section II briefly
recalls some basic concepts. Section III states the control
problem, as it is here addressed. In Section IV, a structurally
decomposition method for marked graphs is discussed, which
is used here to obtain decentralized structures. Section V pro-
poses the approach for decentralized control of large system.
Section VI gives an example of manufacturing systems. The
conclusions are in Section VII.

II. BASIC CONCEPTS

The reader is assumed to be familiar with basic Petri net
concepts (see [7], [17] for a gentle introduction).

A. Continuous Petri Nets

Definition 2.1: A continuous Petri net system is a pair

〈N ,m0〉 whereN = 〈P, T,Pre,Post〉 is a net structure

where:

• P and T are the sets of places and transitions respec-

tively.

• Pre,Post ∈ R
|P|×|T|
≥0 are the pre and post incidence

matrices.

• m0 ∈ R
|P|
≥0 is the initial marking (state).

For v ∈ P∪ T, the sets of its input and output nodes are
denoted as•v and v•, respectively. Letpi, i = 1, . . . , |P |
andtj , j = 1, . . . , |T| denote the places and transitions. Each
place can contain a non-negative real number of tokens, its
marking. The distribution of tokens in places is denoted by



m. A transition tj ∈ T is enabled atm iff ∀pi ∈ •tj ,
m(pi) > 0 and its enabling degree is given by

enab(tj ,m) = min
pi∈•tj

{

m(pi)

Pre(pi, tj)

}

which represents the maximum amount in whichtj can
fire. Transitiontj is calledk-enabledunder markingm, if
enab(t,m) = k. An enabled transitiontj can fire in any
real amountα, with 0 < α ≤ enab(tj ,m) leading to a new
statem′ = m+α ·C(·, tj) whereC = Post−Pre is the
token flow matrixandC(·, j) is its jth column.

If m is reachable fromm0 through a finite sequenceσ, the
state (or fundamental) equation is satisfied:m = m0+C ·~σ,
where~σ ∈ R

|T|
≥0 is the firing count vector, i.e., ~σ(tj) is the

cumulative amount of firings oftj in the sequenceσ. A
vector~σ is said to be a fireable firing count vector, if there
exist a corresponding sequenceσ which can be fired.

Marked Graph(MG) is a well known subclass of Petri nets
in which each place has exactly one input arc and exactly
one output arc. Thus they are structurally choice-free, allow
concurrency and synchronization but not decisions.

Property2.2: [5] Let N be a MG,N is consistentand

its unique minimal T-semiflowis x = 1, where1 is a vector

with all component equal to 1.
In timed continuous Petri net (ContPN ) the state equation

has an explicit dependence on time:m(τ) = m0 +C ·~σ(τ)
which through time differentiation becomeṡm(τ) = C ·
~̇σ(τ). The derivative of the firing sequencef(τ) = ~̇σ(τ)
is called thefiring flow. Depending on how the flow is
defined, many firing semantics appear, being the most used
ones infinite and finite server semantics [17]. For a broad
class of Petri nets it is shown that infinite server semantics
offers better approximation to discrete systems than finite
server semantics [14]. This paper deals with infinite server
semantics for which the flow of a transitiontj at time τ is
the product of the firing rate,λj , and the enabling degree of
the transition atm(τ):

f(tj , τ) = λj · enab(tj ,m(τ)) = λj · min
pi∈•tj

{

m(pi, τ)

Pre(pi, tj)

}

(1)
For the sake of clarity,τ will be omitted in the rest of the

paper when there is no confusion:f(tj), m andm(pi) will
be used instead off(tj , τ), m(τ) andm(pi, τ).

B. Implicit Places and Continuous Marked Graphs

A place p is called implicit when it is never the unique
place restricting the firing of its output transitions. Hence, an
implicit place can be removed without affecting the behavior
of the rest of the system, i.e., the language of firing sequences
of the original discrete system is preserved [18].

Normally, implicit places are determined by the structure
but also depend on their initial markings. A placep that can
be made implicit (with a proper initial markingm0(p)) for
any initial marking of the rest of the system is calledstruc-
turally implicit place. A structurally implicit place whose
minimal initial marking can be linearly deduced from the
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Fig. 1. Marked Graph and Marking Structurally Implicit Places, with
initial markingm0(p1) = m0(p7) = m0(p9) = m0(p12) = m0(p14) =

m0(p15) = 1.

marking of other places is said to bemarking structurally
implicit. More formally:

Definition 2.3: [18] LetN = 〈P∪p, T,Pre,Post〉. The

placep is marking structurally implicit place, iff there exists

y ≥ 0, such thatC(p, T ) = y ·C(P, T ).
For strongly connected MGs, a marking structurally im-

plicit placep verifies:

C(p, ·) =
∑

pj∈π

C(pj , ·) for ∀π ∈ P(te, ts) (2)

where te = •p, ts = p•, andP(te, ts) is the set of simple
paths, i.e., the paths without repeated nodes, fromte to ts
[6].

Given a marking structurally implicit placep, the minimal
initial marking to makep implicit is [6]:

m0(p) = mmin
0 (p) = min







∑

pj∈π

m0(pj)|π ∈ P(te, ts)







(3)

Example2.4: Fig. 1 shows a MG. It is easy to

observe that from t12 to t4 there exist two sim-

ple paths, π1 = {t12p15t13p16t1p1t2p3t4} and π2 =

{t12p15t13p16t1p2t3p4t4}. Therefore,P(t12, t4) = {π1, π2}.

With respect toP(t12, t4), the added placep12 4 is mark-

ing structurally implicit with input transitiont12 and output

transition t4. Similarly, if considering the path fromt5 to

t11, π3 = {t5p6t6p7t7p8t8p10t9p11t10p12t11}, p5 11 is the

corresponding marking structurally implicit place. Thereis

a loop path fromt11, π4 = {t11, p13, t10, p12, t11}, therefore

p11 11 is constructed.

In order to compute the minimal initial marking to make

p12 4 implicit, the sum of markings in each path fromt12 to

t4 is considered. Because the sum of markings of places in

π1 is 2, while for π2 it is 1, according to (3), the minimal

is chosen, so one token should be put intop12 4. Similarly,

two tokens inp5 11, and one token inp11 11.
When the net system is considered as continuous, the

minimal initial marking of marking structurally implicit
places can also be calculated using (3).



III. PROBLEM STATEMENT

The classical centralized control theory has been proved
inefficient for large scale distributed systems, in which the
communication delay, time synchronization problems be-
come significant. Therefore distributed or decentralized con-
trol is extensively explored in recent decades. In a decentral-
ized controlled system, normally a complex dynamic system,
the controllers are not centralized in one location, but are
distributed in the subsystems, while typically, each controller
can only access local resources and limited information from
its neighbor subsystems.

Under the framework ofContMG, the large scale system is
decomposed into subsystems that are modeled withContMGs
and controlled by the local controllers. Each local controller
can obtain information from its neighbor subsystems through
the interface places and transitions. The problem we deal
with is: how to design the control action for each local
controller which works independently, and drive the system
from an initial markingm0 to a final markingmf .

IV. STRUCTURAL DECOMPOSITION OFMARKED GRAPHS

In this section we adapt the decomposition method de-
veloped in [6]. The idea is the following: given a strongly
connected MGN , it is first split into two subnetsN1 and
N2 according to a set of placesB, after that thecomple-
mented subnets(CN ) are derived through adding marking
structurally implicit places.

Definition 4.1: Let N = 〈P ∪ B, T,Pre,Post〉 be a

strongly connected MG,B is said to be acut iff there exists

subnetsNi = 〈Pi, Ti,Prei,Posti〉, i = 1, 2, such that:

(i) T1 ∪ T2 = T , T1 ∩ T2 = ∅

(i) P1 ∪ P2 = P , P1 ∩ P2 = ∅

(ii) P1 ∪B = •T1 ∪ T1
•, P2 ∪B = •T2 ∪ T2

•

where U = •B ∪ B• is said to be interface, which is
partitioned intoU1, U2, such thatU1∪U2 = U , Ui = Ti∩U .

Example4.2: The non-dotted part in Fig. 2 are the sub-

netsN1, N2 obtained from the MG in Fig. 1, which is cut

by B = {p5, p14}, with the interfaceU = {t4, t5, t11, t12}

while U1 = {t4, t12}, U2 = {t5, t11}.
After cutting, the two subsystemsN1 andN2 are indepen-

dent, because all the constraints from the rest of the system
are removed. Therefore different behaviors are introduced.
The complemented subnetis obtained after adding marking
structurally implicit places as approximations of other parts
of the system that are missing.

Definition 4.3: Let N = 〈P ∪ B, T,Pre,Post〉 be a

strongly connected MG,Ni = 〈Pi, Ti,Prei,Posti〉 be the

subnets associated with a cutB. The complemented subnet

CN i is obtained fromNi by copyingB andUj , adding the

marking structurally implicit places with respect to the paths

P(te, ts) in Nj , te, ts ∈ Uj , i, j = 1, 2, i 6= j. The set of

places being added toNi is denoted byIPi .
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Fig. 2. Cutting of marked graph

In Fig. 2, the complemented subnetCN 1 is obtained after
copying B = {p5, p14}, U2 = {t5, t11} and addingIP1 =
{p5 11, p11 11} to N1, while CN 2 is obtained after copying
B = {p5, p14}, U1 = {t4, t12} and addingIP2 = {p12 4}
to N2. Notice that cutB and interfaceU are shared in both
subnets.

In order to calculate the initial marking ofpe s that makes
it implicit, we have to find out the path fromte to ts such
that (3) is satisfied. There are some efficient algorithms which
can be used, e.g., the algorithm of Floyd-Warshall [1].

Sometimes for a complex system, only one cut is not suf-
ficient, because the complemented subsets are still difficult
to handle. Therefore, the above decomposition process can
be executed in multiple hierarchical levels. Fig. 3 presents
the complemented subnets obtained after cuttingCN 2 in Fig.
2(b) one more time, withB = {p6, p12, p13}. After this two
level cutting, the original system is decomposed into three:
CN 1, CN 21 and CN 22. It should be noticed that the order
of cutting is not important, if the net in Fig. 1 is first cut
by B1 = {p6, p12, p13}, then byB2 = {p5, p14}, the exactly
same subnets are obtained.

V. DECENTRALIZED CONTROL OFLARGE SCALE

SYSTEMS

The decentralized structure of a large scale system may be
obtained using the decomposition method presented in sec-
tion IV. In this section it shown that theON-OFF controller
developed in [19] can be applied to each subsystem, leading
to the overall final state in minimum-time.

A firing count vector~σ driving the system tomf is said
to be minimal if it can not be written as:~σ = ~ς + k · x,
wherek > 0, ~ς is a firing count vector driving the system
to mf , and x is a T-semiflow. An ON-OFF controller for
structurally persistentContPN is proposed in [19]: if~σ is
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Fig. 3. Complemented subnets: second cut fromCN 2

minimal, for anytj , simply let it ON before the cumulative
flow of tj reaches~σ(tj), and after that let itOFF. mf is
reached in minimum-time using this strategy.

Because MGs is a subclass of structurally persistent nets,
this ON-OFF strategy can be applied. In the following, it is
shown how to compute the control law (minimal firing count
vector) in a decentralized way.

In the sequel, we will use the following notations:

(1) mi
0: the initial marking ofCN i, directly projected from

m0. For everyp ∈ Pi ∪B, mi
0(p) = m0(p), while for

every added implicit placep ∈ IPi, mi
0(p) = mmin

0 (p).
(2) mi

f : the finial marking ofCN i, directly projected from
mf . For everyp ∈ Pi∪B, mi

f (p) = mf (p). Every place
p ∈ IPi belongs to different circuit inCN i, and since
CN i is a strongly connected MG, each circuit forms a
P-semiflow[16], mi

f (p) can be easily computed.
(3) ~σ: the minimal firing count vector driving〈N ,m0〉 to

mf .
(4) ~σi

prj : the firing count vector ofCN i directly projected
from ~σ. For everyt ∈ Ti, ~σi

prj(t) = ~σ(t).
(5) ~σi

min: the minimal firing count vector driving
〈CN i,m

i
0〉 to mi

f .

A. Decomposition with One Cut

The most interesting point of the decomposition approach
in section IV is: if proper initial markings are put into the
added marking structurally implicit places to make them
implicit, the projections of reachable markings and firing
sequences of the original system are preserved in the com-
plemented subnets [6], i.e.,~σi

prj can always be fired inCN i

with initial marking mi
0, leading tomi

f . In the framework
of continuous net system, this is also true, and the exactly
same proof can be constructed.

Definition 5.1: Let ~σi be firing count vectors driving

〈CN i,m
i
0〉 to mi

f , i = 1, 2. ~σ1 and ~σ2 are said to be

compatibleif ~σ1(t) = ~σ2(t), ∀t ∈ U .

Definition 5.2: Let ~σ1 and~σ2 be compatible firing count

vectors. Themergeof them is defined as:~σ12 = ~σ1 ⊕ ~σ2,

such that∀t ∈ Ti, ~σ12(t) = ~σi(t), i = 1, 2.

Example5.3: Let us consider the MG in Fig. 1 and its

complemented subnets obtained using cutB = {p5, p14},

and interfaceU = {t4, t5, t11, t12} in Fig. 2. Table I shows

their initial, final markings and the firing count vectors. The

initial markings of the added marking structurally implicit

places are computed from (3), while their finial markings

arem1
f (p5 11) = 2.1, m1

f (p11 11) = 1, andm2
f (p12 4) = 1.5.

Observe that~σ is the minimal firing count vector drivingN

from m0 to mf , i.e., mf = m0 + C · ~σ. Its projection

in CN 1, ~σ1
prj = [1.7 2.3 1.5 1.1 0.7 0.6 1.6 2.1]T is

fireable and drivesCN i from m1
0 to m1

f , but it is not

minimal. The minimal firing count vector in this case is

~σ1
min = [1.1 1.7 0.9 0.5 0.1 0 1 1.5]T . Fortunately, the

projection can be obtained from the minimal one by adding

0.6 times the T-semiflowof CN 1, i.e.,~σ1
prj = ~σ1

min +0.6 ·1.

TABLE I

MARKINGS AND FIRING COUNT VECTORS

P m0 m
1
0 m

2
0 T ~σ ~σ

1
prj

~σ
2
prj

(mf ) (m
1
f
) (m

2
f
) (~σ

1
min

) (~σ
2
min

)

p1 1(0.4) 1(0.4) t1 1.7 1.7(1.1)

p2 0(0.2) 0(0.2) t2 2.3 2.3(1.7)

p3 0(1.2) 0(1.2) t3 1.5 1.5(0.9)

p4 0(0.4) 0(0.4) t4 1.1 1.1(0.5) 1.1(1.1)

p5 0(0.4) 0(0.4) 0(0.4) t5 0.7 0.7(0.1) 0.7(0.7)

p6 0(0.2) 0(0.2) t6 0.5 0.5(0.5)

p7 1(0.5) 1(0.5) t7 1 1 (1 )

p8 0(0.4) 0(0.4) t8 0.6 0.6(0.6)

p9 1(0.6) 1(0.6) t9 0.5 0.5(0.5)

p10 0(0.1) 0(0.1) t10 0 0 (0 )

p11 0(0.5) 0(0.5) t11 0.6 0.6(0) 0.6(0.6)

p12 1(0.4) 1(0.4) t12 1.6 1.6(1) 1.6(1.6)

p13 0(0.6) 0(0.6) t13 2.1 2.1(1.5)

p14 1(0) 1(0) 1(0)

p15 1(0.5) 1(0.5)

p16 0(0.4) 0(0.4)

p5 11 2(2.1)

p11 11 1(1)

p12 4 1(1.5)

Until now, the time has been ignored and the previous
result holds for untimed system. If all transitions are control-
lable, a markingm is reachable in the untimed model, if it is
reachable in the timed one; while if a markingm is reachable
in the untimed model, then it is asymptotically reachable in
the timed one [13]. Therefore, similar results can be easily
extended toContMG. In particular, the projections of firing
count vectors and reachable markings of the original system
are preserved in the complemented subnets. In the sequel,
we assume the system is live.

If the minimal firing count vectors ofCN 1 andCN 2 are
compatible, the merged vector is firable inN . In the case
they are not compatible, like~σ1

min and ~σ2
min in Ex. 5.3

(because∃t ∈ U,~σ1
min(t) 6= ~σ2

min(t)), a T-semiflowcan be
added to one of them to make them compatible. Finally, the



merged vector obtained is actually equal to~σ.

Proposition5.4: Let 〈N ,m0〉 be a live MG, with cutB

and corresponding interfaceU . ~σ is the minimal firing count

vector driving〈N ,m0〉 to mf , while ~σi
min is the minimal

firing count vector driving〈CN i,m
i
0〉 to mi

f . There exists

k ≥ 0, such that~σ = (~σi
min+k·1)⊕~σ

j
min, i, j = 1, 2, i 6= j.

Proof: We will first prove that there exists ak ≥ 0 to
make(~σi

min +k ·1) and~σ
j
min compatible, then by merging

them,~σ is obtained.
Since the projection~σi

prj is a fireable vector in〈CN i,m
i
0〉

andmi
f is reached, while~σi

min is the minimal firing count
vector driving the system tomi

f , we have:

~σi
prj = ~σi

min + αi · 1, i = 1, 2, αi ≥ 0

Without loss of generality, assumeα1 ≤ α2. If only consid-
ering the common transitions inU :

~σi
prj(t) = ~σi

min(t) + αi,∀t ∈ U, i = 1, 2

Because~σ1
prj(t) = ~σ2

prj(t) = ~σ(t),∀t ∈ U , we have

~σ1
min(t) + α1 = ~σ2

min(t) + α2,∀t ∈ U

Therefore,

~σ1
min(t)− ~σ2

min(t) = α2 − α1 = k ≥ 0,∀t ∈ U

Hence(~σ2
min + k · 1) and~σ1

min are compatible, and all the
common transitions (t ∈ U ) have the same firing counts. On
the other side,B are the common places ofCN 1 andCN 2

and •B ∪B• = U , therefore,

m0 + C · (~σ1
min ⊕ (~σ2

min + k · 1)) = mf

Because the system is a live MG, there always exists a
sequenceς that can be fired, and its count vector~ς is equal
to ~σ1

min ⊕ (~σ2
min + k · 1).

Since~σ1
min, ~σ2

min are minimal,~ς is also minimal. Because
the minimal firing count vector is unique in a live MG [19],
~ς = ~σ1

min ⊕ (~σ2
min + k · 1) = ~σ.

Example5.5: In Ex. 5.3,~σ1
min and~σ2

min are not compat-

ible. Observe that∀t ∈ U,~σ2
min(t)−~σ1

min(t) = 0.6. Clearly,

after adding0.6 ·1 to ~σ1
min, they are compatible and can be

merged:~σ = (~σ1
min + 0.6 · 1)⊕ ~σ2

min.
Notice that,~σ1

min is different from the direct projection
from ~σ, while ~σ2

min is equal to~σ2
prj . In fact, if ~σ = (~σj

min+
k · 1) ⊕ ~σi

min, then ∀t ∈ Ti,~σ(t) = ~σi
min(t), therefore

the minimal firing count count vector and the projection are
equal, i.e.,~σi

min = ~σi
prj .

Definition 5.6: A complemented subnetCN i is said to be

critical, if ~σi
min = ~σi

prj , i.e., ∀t ∈ Ti,~σ(t) = ~σi
min(t).

B. Decomposition with Hierarchical Cut

Let us now assume thatN has been cut into twoCN 1 and
CN 2 with ~σ = (~σ1

min + k1 ·1)⊕~σ2
min, then~σ2

min = ~σ2
prj ,

CN 2 is critical. If CN 2 is cut one more time intoCN 21,
CN 22 and suppose~σ2

min = (~σ21
min + k2 · 1) ⊕ ~σ22

min, then
obviouslyCN 22 is critical. The same result can be obtained

whenCN 22 is cut again: there exists at least one subnetCN i

that iscritical.
Two complemented subnets are neighbors if they share

a cut. Because every time we split one net into two, each
subnets has at least one neighbor. We will prove it is possible
to make pairs of minimal firing vectors of neighbors to be
compatible and obtain~σ after merging all of them.

Proposition5.7: Let 〈N ,m0〉 be a live MG that is de-

composed inton subnets. AssumingCN q, 1 ≤ q ≤ n

is a critical complemented subnet, then there existαi, i =

1, 2, ..., n such that:

~σ =

n
⊕

i=1

(~σi
min + αi · 1) (4)

whereαi ≥ 0, αq = 0.
Proof: Since all complemented subnets are live MGs,

~σi
min + αi · 1 is also fireable inCN i. For any two neighbor

subnetsCN i and CN j , αi, αj ≥ 0 can be found such that
~σi

min + αi · 1 and ~σ
j
min + αj · 1 become compatible and

can be merged. According to Proposition 5.4, after merging
all the firing count vectors,~σ′ =

⊕n

i=1(~σ
i
min + αi · 1) is

obtained, which can be fired in〈N ,m0〉, reachingmf .
If all αi > 0, ~σ′ is not the minimal firing count vector,

then certain amount of T-semiflowcan be subtracted from~σ′

until ~σ = ~σ′.
Let us observe that it is possible to have more than one

critical subnet, but considering there is a unique minimal
firing count vector in a live MG, given any critical subnet,
the same~σ is constructed.

Example5.8: Let us examine the MG in Fig. 1 with the

initial and final markings as listed in Table. I. After cutting

with B1 = {p5, p14} andB2 = {p6, p12, p13}, we get three

complemented subnetsCN 1 (Fig. 2(a)),CN 21, CN 22 (Fig.

3). CN 1 andCN 21 are neighbors sharing cuttingB1, CN 21

and CN 22 are neighbors sharingB2. In Table II there are

presented the corresponding minimal firing count vectors. It

is obtained:

~σ = (~σ1
min + 0.6 · 1)⊕ ~σ2

min ⊕ ~σ3
min

HereCN 21, CN 22 both are critical subnets.
The rest of this section devotes to design an effective algo-

rithm to search a critical subnet, and compute corresponding
αi to generate~σ.

In order to make it more understandable, let us construct
a graphG = 〈V,W 〉 to depict the relations among comple-
mented subnets. Each node inV represents a subnet, there
are arcs between nodesvi andvj if the corresponding subnets
CN i andCN j are neighbors. The weight of the arc fromvi

to vj is given byw(vi, vj) = ~σi
min(t) − ~σ

j
min(t),∀t ∈ U ,

negative weight is also allowed here. So in the corresponding
graphG (Fig. 4), w(v2, v1) = 0.6, w(v1, v2) = −0.6, while
w(v2, v3) = w(v3, v2) = 0. Let us denote byW (vi, vj) the
sum of the weights on the simple path fromvi to vj .



TABLE II

M INIMAL FIRING COUNT VECTORS

T ~σ(N ) ~σ1

min
(CN 1) ~σ2

min
(CN 21) ~σ3

min
(CN 22)

t1 1.7 1.1

t2 2.3 1.7

t3 1.5 0.9

t4 1.1 0.5 1.1

t5 0.7 0.1 0.7 0.7

t6 0.5 0.5 0.5

t7 1 1

t8 0.6 0.6

t9 0.5 0.5

t10 0 0 0

t11 0.6 0 0.6 0.6

t12 1.6 1 1.6

t13 2.1 1.5

v3v2v1

- 0.6

0.6

0

0

Fig. 4. The graphG = 〈V, W 〉 constructed from the three complemented
subnets in Ex. 5.8

Since a cut splits a net into two subnets, in graphG there
only exists one directed simple path from a nodevi to vj

(also fromvj , vi), and W (vi, vj) = −W (vj , vi). If vi and
vj are neighbors, then obviouslyW (vi, vj) = w(vi, vj).

It can be observed that, the sum of weights in the path from
vi to vj reflects therelative differenceof ~σi

min to ~σ
j
min. In

Ex. 5.8, the relative difference ofv3 to v2 is w(v3, v2) =
0, while the one ofv3 to v1 is W (v3, v1) = w(v3, v2) +
w(v2, v1) = 0.6. Obviously we have~σ = (~σ1

min +0.6 ·1)⊕
(~σ2

min + 0 · 1)⊕ ~σ3
min. Actually, the non-negative valueαi

in (4) is equal toW (vq, vi).

Property5.9: Let vq ∈ V . If for any node vi ∈ V ,

W (vq, vi) ≥ 0, thenCN q is a critical subnet.
Proof: If W (vq, vi) ≥ 0, then let αi = W (vq, vi),

~σ = ⊕n
i=1(~σ

i
min+W (vq, vi)·1). Sinceαq = W (vq, vq) = 0,

~σ
q
min = ~σ

q
prj . ThereforeCN q is critical.

Algorithm 1 searches a critical subnet based on the graph
G. First, all nodes are labeled asnew. Then for each node
vi labeled asnew, the relative differences fromvi to all
others nodesvj , W (vi, vj) is computed. If one is found to
be negative thenvi is not critical and it is labeled asold. If
it is positive thenvj is not critical becauseW (vj , vi) must
be negative, andvj is labeled asold. When a node with all
relative differences non-negative is found, or there is only
one node labeled asnew is left, the program finishes. When
computing the sum of weights, of course the intermediate
values that have been computed before should be reused. In
the worst case, the complexity isO(n(n−1)

2 ), wheren is the
number of complemented subnets.

Algorithm 1 Search a critical subnet
Input: G = 〈V,W 〉

Output: A nodevq ∈ V

1: Label all the nodes inV asnew;

2: while more than one node inV is labeled asnewdo
3: Choose a nodevi from V which is labeled asnew;

4: for j = 1 to n do
5: if W (j, i) has not been computedthen
6: computeW (i, j);

7: if W (i, j) > 0 then
8: label vj asold;

9: else if W (i, j) < 0 then
10: label vi asold;

11: break;

12: end if
13: end if
14: end for
15: if j = n andvi is labeled asnew then
16: return vi;

17: end if
18: end while
19: return The last node inV that is labeled asnew

C. Control Structures

There are two kinds of controllers in the decentralized
control system: local controllers and a supervisory controller.

Local controllers know only the structures of the local
subsystem. The local control law (minimal firing count
vector) ~σi

min of subsystemCN i is first computed inde-
pendently in the corresponding controller. Since this control
law may be not globally applicable, its value is sent to the
supervisory controller. After the updating informationαi is
received from the supervisory controller, the controller of
CN i can be implemented independently with the control law
~σi

min + αi · 1.
The supervisory controller is mainly used to update the

locally computed control laws in order to make them globally
admissible. Based on the local control laws of subsystems,
graph G is first constructed, and Algorithm 1 is applied
to find a critical subnetsCN q. Then the relative difference
αi is computed and sent toCN i. Let us observe that the
only information required by the supervisory controller are
the local control laws, therefore all computations are done
locally, so the communication cost is very low.

Algorithm 2, 3 are used by supervisory controller, local
controller respectively.

VI. CASE STUDY

Let us consider theContMG system in Fig. 5 which
models a manufacturing system with three types of product
lines which are assembled for one final product. The system



Algorithm 2 Supervisory Controller

Input: ~σi
min

Output: α

1: Construct the graphG = 〈V,W 〉;

2: Find out a critical subnetCN q using Algorithm 1;

3: Computeαi: the relative difference ofCN q to CN i;

4: Sendαi to CN i, i = 1, 2, ..., n;

Algorithm 3 Local Controlleri

Input: CN i, mi
0, mi

f

Output: ~σi
min

1: Compute~σi
min driving the system tomi

f ;

2: Send~σi
min to the supervisory controller;

3: Receiveαi from the supervisory controller;

4: Update~σi
min ← ~σi

min + αi · 1;

5: Apply ON-OFF control;

is cut into four subsystems through buffers (B1 = {p1, p12},
B2 = {p13, p23}, B3 = {p24, p38}) of each product line, as
shown in Fig. 6, wherep8 31, p27 31, p1 7, p9 15 and p16 24

are the added marking structurally implicit places.
Assuming the initial and desired final marking are listed

in Table III. The corresponding minimal firing count vectors
are easily computed, and the result is shown in Table IV.

TABLE III

INITIAL AND FINAL MARKINGS

CN1 CN2 CN3 CN4
P m0 P m0 P m0 P m0

(mf ) (mf ) (mf ) (mf )

p1 3(0.6) p13 4(1.9) p24 3(0.3) p1 3(0.6)

p2 0(0.4) p14 0(0.3) p25 0(0.2) p12 0(0.4)

p3 0(0.8) p15 0(0.9) p26 0(0.7) p13 4(1.9)

p4 1(0.2) p16 1(0.1) p27 2(0.5) p23 0(0.3)

p5 2(0.5) p17 2(0.5) p28 0(0.8) p24 3(0.3)

p6 0(0.7) p18 0(0.6) p29 0(0.9) p38 0(0.2)

p7 0(0.8) p19 0(0.9) p30 1(0.1) p39 0(0.6)

p8 1(0.2) p20 2(0.5) p31 0(0.6) p40 1(0.8)

p9 0(0.7) p21 0(0.6) p32 2(0.5) p41 0(0.2)

p10 2(0.5) p22 0(0.3) p33 0(0.9) p42 0(0.2)

p11 0(0.4) p23 0(0.3) p34 0(0.6) p43 0(0.4)

p12 0(0.4) p35 1(0.1) p44 0(0.8)

p36 2(0.5) p45 1(0.2)

p37 0(0.2) p46 0(1.0)

p38 0(0.2) p47 2(1.0)

p48 5(0.4)

p49 3(1.5)

p50 0(1.5)

p8 31 6(4.2) p8 31 6(4.2) p27 31 5(2.6) p1 7 0(3.8)

p9 15 0(3.6)

p16 24 0(4.9)

Graph G (presented in Fig. 7) is constructed, in which
CN 4 is neighbor to all the other subnets with weight
w(v4, v1) = w(v4, v2) = 2.8, w(v4, v3) = 2.2. If Algorithm
1 is applied,CN 4 is found as the critical subnet.

The relative differences ofCN 4 to all the other subnets
can be computed, which in this case is very straightforward:
α1 = α2 = 2.8, α3 = 2.2. Therefore, the minimal firing
count vector is generated as:~σ = (~σ1

min+2.8 ·1)⊕(~σ2
min+

2.8 · 1)⊕ (~σ3
min + 2.2 · 1)⊕ ~σ4

min.
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p1 p2 p3

p4

p5
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p7
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p10

p11 p12

t1
t2

t3
t4 t5

t6 t7

t31 t8p8_31

(a) CN 1

4

p13 p14 p15

p16

p18 p19 p21

p22
p23

t9 t10 t11 t13 t14

t15
t12

t8t31
p8_31

6

(b) CN 2

5

3

p24 p25

p26 p28

p29

p30

p31

p33 p34

p35

p37 p38t16 t17 t18
t19

t20

t21

t22 t23 t24

t27t31 p27_31

(c) CN 3

5

p12

p23

p39 p40

p41

p42t8

t25 t26

p38

p43 p44

p45

p46

p47

p48

p49 p50

t27
t28 t29

t30 t31

t32

p1 t1

p13 t9

t7

t15

p24
t16 t24

p1_7

p9_15

p16_24

(d) CN 4

Fig. 6. Complemented subnets from the system model in Fig. 5, with cut
B1 = {p1, p12}, B2 = {p13, p23}, B3 = {p24, p38}

Finally, the local controllers can apply their control lows
using an ON-OFF strategy. The global final marking is
reached in 13.24 time units, that is the minimum time [19].

VII. C ONCLUSIONS

Decentralized control could be a solution of controlling
systems that are too complex to be handled with centralized
controllers. This work focuses on decentralized control of
large scale systems that are modeled with timed continuous
MGs, aiming to drive the system from an initial marking to
a desired final marking. The model is first decomposed into
subnets with sets of places, then control laws are computed
in a decentralized way. A supervisory control is introduced
to make the locally computed laws globally applicable. After
that, anON-OFF strategy can be applied in each subnet, and
final marking is reached in minimum time.

As a future work, we plan to investigate the possibility
of developing an automatic system cutting procedure and
applying this control method to more general nets structures.
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Fig. 5. A manufacturing system model

TABLE IV

M INIMAL FIRING COUNT VECTORS

CN1 CN2 CN3 CN4

T ~σ
1
min

T ~σ
2
min

T ~σ
3
min

T ~σ
4
min

t1 4.2 t8 0 t16 5.1 t1 7

t2 3.8 t9 3.9 t17 4.9 t7 3.2

t3 3 t10 3.6 t18 4.2 t8 2.8

t4 2.3 t11 2.7 t19 3.4 t9 6.7

t5 1.5 t12 2.1 t20 2.5 t15 3.1

t6 0.8 t13 1.2 t21 1.9 t16 7.3

t7 0.4 t14 0.6 t22 1 t24 2.4

t8 0 t15 0.3 t23 0.4 t25 2.2

t31 1.8 t31 1.8 t24 0.2 t26 2.4

t27 0 t27 2.2

t31 2.4 t28 1.8

t29 1

t30 0

t31 4.6

t32 1.5

v3

v2

v1

-2.2

2.2

v4

2.8

-2.8

-2.8
2.8

Fig. 7. The graph constructed from Table. IV
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