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Abstract—SimHPN is a software tool embedded in MAT-
LAB that has been developed for simulation, analysis and design
of systems modeled by hybrid Petri nets. This paper is an
extension of our previous work [1] where only continuous Petri
nets have been considered. In the current extension we consider
infinite server semanticsfor the continuous part and exponential
and/or deterministic firing delays for the discrete part. In
particular, the new facilities of SimHPN allow the use of
purely discrete or purely continuous models. As an application,
we investigate the simulation and analysis of manufacturing
systems.

I. I NTRODUCTION

Petri nets (PN) are a mathematical formalism for the
description of discrete-event systems, successfully usedfor
modeling, analysis and synthesis of such systems. One of
their main features is that their state spaces belong to
the cartesian product of sets of non-negative integers [2].
Another key feature of PN is their capacity to represent
graphically and visualize primitives such as parallelism,
synchronization, mutual exclusion, etc.

As any other formalism for discrete event systems, PN
suffer from thestate explosion problemespecially when the
system is heavily populated. Among the different procedures
to overcome this problem,fluidification is a promising one.
In the case of PN this leads tocontinuous Petri netsif the
system is completed relaxed orhybrid Petri nets(HPN )
if only a partial relaxation is considered [3]. InHPNs, the
firing of continuous transitions is performed in real amounts,
and the firing of discrete transitions in natural amounts. As
a consequence of this, the marking of a place can be either
a natural or a real number. Different time interpretations for
the firing of transitions can be considered, beinginfinite and
finite server semanticsthe most popular ones. A third firing
semantics, calledproduct semantics, can be used to study
nets obtained by decolorization [4] and population dynamics.

The SimHPN toolbox was designed to offer specific
instruments for simulation, analysis and synthesis of discrete
event systems modeled by hybrid Petri nets. In particular,
infinite server semantics is assumed for continuous transi-
tions while for discrete transitions both deterministic and
exponential firing delays can be considered. Its embedding in
the MATLAB environment presents the considerable advan-
tage (with respect to other PN software) of creating powerful
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algebraic, statistical and graphical instruments, which exploit
the high quality routines available in MATLAB. Moreover,
this MATLAB orientation of theSimHPN was intended to
permit further developments.

The paper is organized as follows: Section II introduces
the formal definition ofHPN that will be considered. Sec-
tion III creates an overview of the main tools developed for
handlingHPN in MATLAB. In section IV a manufacturing
example is considered in order to illustrate the futures of
SimHPN , and finally in section V some conclusions and
future works are given.

II. H YBRID PETRI NETS: NOTATIONS AND DEFINITIONS

Hybrid Petri nets [3], [5] represent a powerful modeling
formalism that allows the integration of both continuous and
discrete dynamics in a single net model. This section defines
the class of hybrid nets supported bySimHPN . In the
following, the reader is assumed to be familiar with Petri
nets (PNs) (see [2], [6] for a gentle introduction).

A. Untimed Hybrid Petri net systems

Definition 2.1: A Hybrid Petri Net (HPN) systemis a pair
〈N ,m0〉, where:N = 〈P, T,Pre,Post〉 is anet structure,
with set of placesP , set of transitionsT , pre and post
incidence matricesPre,Post ∈ R

|P |×|T |
≥0 , andm0 ∈ R

|P |
≥0

is the initial marking.
The token load of the placepi at markingm is denoted

by mi and thepresetand postsetof a nodex ∈ P ∪ T are
denoted by•x and x•, respectively. For a given incidence
matrix, e.g.,Pre, Pre(pi, tj) denotes the element ofPre

in row i and columnj.
In a HPN , the set of transitionsT is partitioned in two

setsT = T c ∪ T d, whereT c contains the set of continuous
transitions andT d the set of discrete transitions. In contrast to
other works, the set of placesP is not explicitly partitioned,
and thus, the input and output transitions of a place can be
both continuous and discrete. This way the marking of a
place is a natural or real number depending on the firings of
its intput and output transitions.

Two enabled transitionsti andtj are in conflict when they
cannot occur at the same time. For this, it is necessary that
•ti ∩ •tj 6= ∅, and in that case it is said thatti and tj are
in structural conflict relation. Right and left non negative
annullers of the token flow matrixC are called T- and P-
semiflows, respectively. A semiflowv is minimal when its
support,‖v‖ = {i | v(i) 6= 0}, is not a proper superset of
the support of any other semiflow, and the greatest common
divisor of its elements is one. If there existsy > 0 such that



y · C = 0, the net is said to beconservative, and if there
existsx > 0 satisfyingC · x = 0, the net is said to be
consistent. The basic tasks thatSimHPN can perform on
untimed hybrid Petri nets are related to the computation of
minimal T- and P-semiflows.

The enabling degree of a transitiontj ∈ T is:

enab(tj,m) =











min
pi∈•tj

⌊

mi

Pre(pi, tj)

⌋

if tj ∈ T d

min
pi∈•tj

mi

Pre(pi, tj)
if tj ∈ T c

(1)

Transition tj ∈ T (continuous or discrete) isenabledat
m iff enab(tj ,m) > 0. An enabled transitiontj ∈ T can
fire in any amount0 < α ≤ enab(tj ,m), whereα ∈ N if
tj ∈ T d andα ∈ R if tj ∈ T c. Such a firing leads to a new
markingm′ = m+ α ·C(·, tj), whereC = Post− Pre

is the token-flow matrix andC(·, tj) is its j column. If m
is reachable fromm0 through a finite sequenceσ, the state
(or fundamental) equation, m = m0 + C · σ is satisfied,
whereσ ∈ R

|T |
≥0 is the firing count vector. According to this

firing rule the class of nets defined in Def 2.1 is equivalent
to the class of nets defined in [3], [5].

B. Timed Hybrid Petri net systems

Different time interpretations can be associated to the
firing of transitions. Once an interpretation is chosen, the
state equation can be used to show the dependency of the
marking on time, i.e.,m(τ) = m0 + C · σ(τ). The term
σ(τ) is the firing count vector at timeτ . Depending on the
chosen time interpretation, the firing count vectorσj(τ) of a
transitiontj ∈ T c is differentiable with respect to time, and
its derivativefj(τ) = σ̇j(τ) represents thecontinuous flow
of tj . As for the timing of discrete transitions, several defini-
tions exist for the flow of continuous transitions.SimHPN
accounts for infinite server semantics in both continuous and
discrete transitions, and additionally, discrete transitions are
also allow to have deterministic delays.

Definition 2.2: A Timed Hybrid Petri Net (THPN) system
is a tuple 〈N ,m0, T ype,λ〉 where 〈N ,m0〉 is a HPN ,
Type : T → {c, d, q} establishes the time semantics of
transitions andλ : T → R≥0 associates a real parameter
to each transition related to its semantics.

The following two delay types are allowed for a discrete
transitionti ∈ T d:

• Stochastic(Type(ti) = d): The time to fire of an
enabled discrete transition with stochastic delay follows
an exponentially distributed random variable with pa-
rameterλi · enab(ti,m).

• Deterministic delay(Type(ti) = q): A transitionti with
deterministic delay is scheduled to fire1/λi time units
after it became enabled. Ifti is not in conflict with other
transitions it is fired as scheduled, if it is in conflict then
it is fired only if its schedule firing time is less than the
firing time of the conflicting transition. The transition
to fire, in the case of several conflicting deterministic
transitions with same scheduled firing instance, is ran-
domly chosen assigning the same probability to each

conflicting transition. Furthermore, an enabling memory
is assumed, i.e., after the firing of a deterministic
transition, the timers of all the transitions in the same
conflict are discarded.

For a continuous transitionti ∈ T c, infinite server seman-
tics (Type(ti) = c) is assumed. The flow of a transitionti
is given by:

fi = λi · enab(ti,m) = λi · min
pj∈•ti

{

mj

Pre(pj , ti)

}

(2)

Such an expression for the flow is obtained from a first order
approximation of the discrete net [4] and corresponds to the
variable speedof [7].

The described supported semantics cover the modeling of
a large variety of actions usually associated to transitions. For
instance, infinite server semantics, which are more general
than finite server semantics, are well suited for modeling
actions in manufacturing, transportation and logistic sys-
tems [3]; and deterministic delays allow one to represent pure
delays and clocks that appear, for instance, when modeling
traffic lights in automotive traffic systems [8].

III. SimHPN TOOLBOX FOR MATLAB

In the current version ofSimHPN , the only firing
semantics for the timed continuous transition isinfinite server
semanticswhile deterministic(constant) orexponentialfiring
delays can be associated with timed discrete transitions. In
the case of conflicting transitions with identical deterministic
delays, the same probability is assumed to each transition.
For the exponential transitions, a racing policy is adopted
when two or more transitions are in conflict, i.e., the one
with smaller time delay will fire first. At the end of the
simulation, the user can export the data to the MATLAB
workspace where can be used for further analysis.

A. Graphical interface

The SimHPN toolbox [1] (http://webdiis.
unizar.es/GISED/?q=tool/simhpn) provides a
Graphical User Interface (GUI) to perform the simulations
and analysis procedures. The data of the net system can be
introduced either manually or through Petri nets editors:
PMEditeur or TimeNet [9]. Moreover, the matrices can
be automatically loaded from a.mat file or loaded from
variables defined in the MATLAB workspace just writing
the name of the desired variable that want to be opened
in the corresponding edit boxes. This GUI consists of a
MATLAB figure window, exhibiting aMenu barand three
control panels: (i)Drawing Area, (ii) Options panel, and
(iii) Model Management panel. Fig. 1 presents a hard-copy
screenshot of the main window opened bySimHPN
toolbox, where all the component parts of the GUI are
visible.

The Menu bar (placed horizontally, on the top of the
window in Fig. 1) displays a set of four drop-down menus
at the top of the window, where the user can select different
facilities available in theSimHPN toolbox. These menus
are: Model, Options, Simulation, and Optimal. The Model



Fig. 1. Sketch of the main window ofSimHPN

menu(containing the pop-up menusImport from Pmeditor,
Import from TimeNet, Import from .mat file) offers facilities
for importing models from two Petri net graphical editors
or from a .mat file. The Options menu (containing only
the pop-up menuShow Figure Toolbar) allows to show the
characteristic toolbar of the MATAB figure object that per-
mits, for example, the use of zoom facility on the displayed
graphic inDrawing Area. The Simulation menu(containing
the pop-up menusMarkings to plot, Flows to plot, and
Save results to workspace) provides tools for selecting the
components of marking vector and flow vector that will
be represented after a simulation inDrawing area and a
tool that permits to export, after a simulation, the marking
and flow evolution to variables in the MATLAB workspace.
The Optimal menu (containing the pop-up menusOptimal
Observabilityand Optimal Control) permits calling the al-
gorithms for computing optimal steady state and optimal
sensor placement for continuous Petri nets with infinite
server semantics.

The Drawing area(located in the left and central side of
the window in Fig. 1), is a MATLAB axes object and permits
the visualization of the simulation results. The components
of markings and flows that will be represented are selected
from menu.

The Options panel(placed, as an horizontal bar, on the
right part of the window Fig. 1) presents a number of
options related with the model. From top to bottom: (i)
two radio buttons that permit selecting the firing semantics

for continuous and discrete exponential transitions. In the
actual implementation only infinite server semantics is allow;
(ii) three radio buttons allowing the desired evolutions that
are plotted in theDrawing Area; (iii) three edit boxes to
change the errors and sampling time used in simulations; (iv)
Simulatebutton that starts a new simulation; (v)Compute
Boundsthat computes performance bounds for continuous
nets under infinite server semantics; (vi)P T semiflows
computes the P and T semiflows; and (vii)Closebutton that
closed theSimHPN toolbox.

The Model Management Panelpanel is composed of
different edit boxes (placed in the bottom left corner of the
window in Fig. 1), where theSimHPN toolbox displays
the current values for the model that is loaded and permits
to select the simulation time and the number of simulations
when hybrid nets are downloaded.

B. Internal simulation

A continuous PN under infinite server semantics is deter-
ministic and is described by a set of differential equations.
In such case, theSimHPN uses a standard equation solver
(ODE function) of MATLAB.

A discrete PN under infinite server semantics is stochastic
and can be simulated by using an event-based approach, i.e.,
after each firing the simulator computes the marking reached
and the time of the next potential firing of the enabled
transitions (stored in variables calledclocks), next, the sim-
ulation time is updated as the minimum of such firing times.



TheSimHPN applies such approach for discrete PNs. For
models having discrete stochastic transitions the output of
theSimHPN is theaveragetrajectories (of the marking or
throughput) obtained after several simulations (the number
of this is specified by the user in the corresponding edit box
of Model Management Panel).

The simulation becomes more complex for hybrid PNs,
since neither an ODE solver nor an event-based simulation
can be efficiently used. In such case, a discrete-time simu-
lation is achieved. The sampling time can be variable, com-
puted during the simulation as∆τ = min(DSet), where
DSet = {clocksi − τ |ti ∈ T d} ∪ {0.1/fi|ti ∈ T c, fi > 0},
i.e., ∆τ is the minimum between the next scheduled firing
of a discrete transition and10% of the average delays (the
inverse of the flow) of the continuous transitions. As another
option, the sampling time can be fixed and settled by the user.
If a sampling is specified as zero or negative,SimHPN
computes a suitable sampling based on a trial simulation, in
which variable sampling is used, and then the minimum∆τ
computed is used for the rest of simulations.

For hybrid models,SimHPN performs four basic op-
erations at each sampling: 1) it fires the corresponding
discrete transitions (according to the clocks) and updatesall
the clocks; 2) updates the marking due to the flow of the
continuous transitions (using a finite difference equationfor
the continuous subnet); 3) updates the enabling degree of the
discrete transitions (a change in the continuous marking can
enable or disable discrete transitions); and 4) it computesthe
next sampling and updates the simulation time.

Conflicts involving stochastic (discrete) transitions are
solved by a race policy. For conflicts involving deterministic
transitions, the first rule is a race policy. If the conflict
remains (discrete transitions with the same scheduled firing
instances) then it is randomly solved by considering equal
firing probabilities. After the firing of a deterministic transi-
tion, the clocks of the other deterministic transitions in the
conflict are discarded.

IV. A M ANUFACTURING SYSTEM

The Petri net system in Fig. 2 represents an assembly
line with kanban strategy adapted from [10]. The system
has two stages that are connected by transitiont14. The
first stage is composed of three lines (starting fromp2,
p3 and p4 respectively) and three machines (p23, p24 and
p25). Placesp26, p27 and p28 are buffers at the end of
the lines. The second stage has two lines that require the
same machine/resourcep18. The number of kanban cards is
given by the marking of placesp2, p3 and p4 for the first
stage, and by the marking ofp32 for the second stage. The
system demand is given by the marking ofp1. We will make
use of this net system to illustrate some of the features of
SimHPN .

Let us first assume that all transitions are continuous and
work under infinite server semantics. Let the initial marking
be m0(p1) = m0(p32) = 10, m0(p18) = m0(p23) =
m0(p24) = m0(p25) = m0(p29) = 1, m0(p26) =
m0(p27) = m0(p28) = 30 and the marking of the rest of

places be equal to zero. Let us assume that the firing rates
of the transitions areλ(t2) = λ(t3) = λ(t4) = λ(t8) =
λ(t9) = λ(t10) = λ(t14) = λ(t15) = λ(t17) = λ(t19) =
λ(t20) = 10, λ(t1) = λ(t5) = λ(t6) = λ(t7) = λ(t11) =
λ(t12) = λ(t13) = λ(t16) = λ(t18) = λ(t21) = 1.

Computation of minimal P-T semiflows: SimHPN
implements the algorithm proposed in [11] to compute the
minimal P and T-semiflowsof a Petri net. Notice that P and
T-semiflowsjust depend on the structure of the net and not
on the continuous or discrete nature of the transitions. The
result of applying the algorithm on the net in Fig. 2 is the
set of 12 minimal P-semiflows that cover every place, i.e.,
it is conservative, and the set that contains the only minimal
T-semiflow which is a vector of ones, i.e., it is consistent.

Throughput bounds: When all transitions are continuous
and work under infinite server semantics, the following
programming problem can be used to compute an upper
bound for the throughput, i.e., flow, of a transition [12]:

max{φj | µss = m0 +C · σ,

φss
j = λj · min

pi∈•tj

{

µss
i

Pre(pi,tj)

}

, ∀tj ∈ T,

C · φss = 0,
µss,σ ≥ 0}.

(3)

This non-linear programming problem is difficult to solve
due to the minimum operator. When a transitiontj has a
single input place, the equation reduces to (4). And whentj
has more than an input place, it can be relaxed (linearized)
as (5).

φss
j = λj ·

µss
i

Pre(pi, tj)
, if pi =

•tj (4)

φss
j ≤ λj ·

µss
i

Pre(pi, tj)
, ∀pi ∈

•tj , otherwise (5)

This way we have a single linear programming problem,
that can be solved in polynomial time. Unfortunately, this
LPP provides in general a non-tight bound, i.e., the solution
may be non-reachable for any distribution of the tokens
verifying the P-semiflowload conditions,y · m0. One way
to improve this bound is to force the equality for at least one
place per synchronization (a transition with more than one
input place). The problem is that there is no way to know in
advance which of the input places should restrict the flow. In
order to overcome this problem, a branch & bound algorithm
can be used to compute a reachable steady state marking.
SimHPN implements such a branch & bound algorithm

to compute upper throughput bounds of continuous nets
under infinite server semantics. For the system in Fig. 2 with
the mentionedm0 andλ the obtained throughput bound for
t1 is 0.3030. Given that the only T-semiflow of the net is a
vector of ones, this value applies as an upper bound for the
rest of transitions of the net.

Optimal Sensor Placement:Assuming that each place
can be measured at a different cost, the optimal sensor place-
ment problem of continuous Petri Nets under infinite server
semantics is to decide the set of places to be measured such
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Fig. 2. An assembly line with kanban strategy.

that the net system is observable at minimum cost. Measuring
a place allows the observation of a set of others (”covered”
by that measure) but, the problem is not a simple covering
one [13]. The question is studied at the structural level in [14]
and the results obtained are used in the implementation of
an algorithm to reduce the computational burden. In the case
of the manufacturing system under consideration, all input
places in synchronization transitions should be measured.In
fact, the places with minimum cost coincide in this case with
the set of places ensuring observability of the system.
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Fig. 3. Continuous, discrete and hybrid simulations of marking of p1.

Optimal Steady-State:The only action that can be per-
formed on a continuousPN is to slow down the flow of
its transitions. If a transition can be controlled (its flow
reduced or even stopped), we will say that is acontrollable
transition. The forced flow of a controllable transitiontj
becomesfj−uj, wherefj is the flow of the unforced system,
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Fig. 4. Continuous, discrete and hybrid simulations of marking of p11.

i.e. without control, anduj is the control action0 ≤ uj ≤ fj.
In production control is frequent the case that the profit

function depends on production (benefits in selling), work-
ing process and amortization of investments. Under linear
hypothesis for fixed machines, i.e.,λ defined, the profit
function may have the following form:

w
T · f − zT ·m− qT ·m0 (6)

wheref is the throughput vector,m the average marking,
w a gain vector w.r.t. flows,zT is the cost vector due
to immobilization to maintain the production flow andqT

represents depreciations or amortization of the initial invest-
ments.

The algorithm used to compute the optimal steady state
flow (and marking) is very much alike the one used to
compute the performance bounds, with the difference that
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The hybrid mode provides a better approximation to the discrete one.

the linear programming problem that needs to be solved is:



























max{wT · f − zT ·m− qT ·m0 | C · f = 0,
m = m0 +C · σ,

fj = λj ·
(

mi

Pre(pi,tj)

)

− v(pi, tj),

∀pi ∈ •tj , v(pi, tj) ≥ 0
f ,m,σ ≥ 0

(7)

wherev(pi, tj) are slack variables. These slack variables
give the control action for each transition. For more details
on this topic, see [15].

Simulation: SimHPN enables us to simulate the net
model as continuous, discrete and hybrid. This allows us to
efficiently compare the timed behavior of the system under
different modeling approximations.

Fig. 3, 4 and 5 show the time evolution of the marking of
placesp1, p11 andp26. Each plot includes three trajectories:
the dashed trajectories correspond to the marking of the place
when all the transitions are taken as continuous (this trajec-
tory is clearly deterministic); the solid trajectory corresponds
to a model in which all transitions are discrete with stochastic
delays (in this case the average of1000 simulation is plot);
and the dash-dot trajectory is associated to a model in which
all transitions exceptt1, t14, t20 and t21 are discrete (again
the plots correspond to the average of1000 simulations). It
can be observed, that the continuous and hybrid trajectories
represent a good approximation to the discrete one.

V. CONCLUSIONS

The new features of theSimHPN toolbox permit the use
of hybrid Petri nets for the analysis and design of manufac-
turing systems with high level of complexity. The considered
case study illustrates the role played by PN techniques,
embedded in the powerful software environment offered by
MATLAB, in approaching the performance evaluation for
various structures of manufacturing systems. In the future,

we plan to extend the firing semantics supported by the tool
considering theproduct enabling semanticsextensively used
to model biochemical reactions.
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