
SimHPN: a MATLAB toolbox for

continuous Petri nets
⋆

Jorge Júlvez and Cristian Mahulea

Aragón Institute of Engineering Research (I3A),
University of Zaragoza, Spain (e-mails: julvez, cmahulea@unizar.es)

Abstract: This paper presents a MATLAB embedded package for continuous Petri nets
called SimHPN . It offers a collection of tools devoted to simulation, analysis and synthesis
of dynamical systems modeled by continuous Petri nets. Its embedding in the MATLAB
environment provides the considerable advantage of creating powerful algebraic, statistical and
graphical instruments exploiting the high quality routines available in MATLAB.

1. INTRODUCTION

Petri nets (PN) are a mathematical formalism for the
description of discrete-event systems, successfully used for
modeling, analysis and synthesis of such systems. One of
its main features is that their state space belongs to the
set of non-negative integers (Murata (1989)). Another key
feature of PN is their capacity to represent graphically and
visualize primitives such as parallelism, synchronization,
mutual exclusion, etc.

As any other formalism for discrete event systems, PN
suffer from the state explosion problem especially when
the system is heavily populated. Among the different
procedures to overcome this problem, fluidification is a
promising one. In the case of PN this leads to continuous
Petri nets (ContPN) (David and Alla (2010)). In ContPN
the marking of places can be any non negative real value.
As a consequence of this, a transition can fire in any real
amount between zero and its enabling degree. Different
time interpretations can be considered, being infinite and
finite server semantics the most popular. A third firing
semantics, called product semantics, can be used to study
nets obtained by decolorization and population dynamics.

In this paper we present a new MATLAB embedded soft-
ware capable to simulate and analyze ContPN systems
with different firing semantics. Up to our knowledge this
is the first package dealing with ContPN that includes
facilities for the three most used firing semantics in lit-
erature. In MATLAB there exists a toolbox dealing with
discrete Petri nets (Matcovschi et al. (2003)) and one for
the so-called first order hybrid Petri nets (Sessego et al.
(2008)), but until now no one deals with ContPNs.

The main features of the new created toolbox are:

• simulation of continuous Petri nets under the fol-
lowing firing semantics: infinite server, finite server,
product semantics.

• import models from different graphical Petri net
editors

• different visualization options
• computation of throughput bounds
• computation of P-T semiflows
• optimal sensor placement

⋆ This work was partially supported by CICYT - FEDER projects
DPI2006-15390 and TIN2007-66523. The research leading to these re-
sults has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement no
224498.

• optimal steady-state

The paper is organized as follows: Section 2 introduces the
formal definition of ContPN . Section 3 defines the three
different firing semantics for the timed interpretation. Sec-
tion 4 briefly presents some of the algorithms implemented
in the package In Section 5 the user interface of the
simulator as well as several examples are depicted. Finally,
Section 6 sketches the main features of the package.

2. UNTIMED CONTINUOUS PETRI NETS

Definition 1. A contPN system is a pair 〈N , m0〉, where:
N = 〈P, T, Pre, Post〉 is a net structure (with set of
places P , set of transitions T , pre and post incidence

matrices Pre, Post ∈ R
|P |×|T |
≥0) and m0 ∈ R

|P |
≥0 is the

initial marking.

The token load of the place pi at marking m is denoted
by mi and the preset and postset of a node X ∈ P ∪T are
denoted by •X and X•, respectively. For a given incidence
matrix, e.g., Pre, Pre(pi, tj) denotes the element of Pre
in row i and column j.

A transition tj ∈ T is enabled at m iff ∀pi ∈ •tj , mi > 0.
The enabling degree of tj is:

enab(tj, m) = min
pi∈•tj

{

mi

Pre(pi, tj)

}

An enabled transition tj can fire in any real amount
0 ≤ α ≤ enab(tj, m) leading to a new marking m′ = m +
α · C(·, tj), where C = Post − Pre is the token-flow
matrix and C(·, tj) is its j column. If m is reachable from
m0 through a finite sequence σ, the state (or fundamental)

equation, m = m0 + C · σ is satisfied, where σ ∈ R
|T |
≥0 is

the firing count vector.

Right and left non negative annullers of the token flow
matrix C are called T- and P-semiflows, respectively. If
there exists y > 0 such that y ·C = 0, the net is said to be
conservative, and if there exists x > 0 satisfying C ·x = 0,
the net is said to be consistent.

3. TIMED CONTINUOUS PETRI NETS

Under any timed interpretation of the net model, the
fundamental equation depends on time: m(τ) = m0 +C ·
σ(τ). Through time differentiation, the following equation
is obtained: ṁ(τ) = C · σ̇(τ). The derivative of the firing

count vector will be called the (firing) flow of the timed
model: f (τ) = σ̇(τ). Different definitions for the flow of
continuous timed transitions have been proposed in the
literature, being the three most important finite server
(or constant speed), infinite server (or variable speed)
and product semantics (Alla and David (1998); Silva and
Recalde (2002)).

3.1 Infinite Server Semantics

In discrete Markovian Petri net systems, infinite server
semantics means that the delay between the enabling and
the firing of a transition is the minimum of n (n =
enab(tj)) independent exponentially distributed variables,
all of them with the same parameter, λ. This is an
exponential distribution too, with parameter n ·λ (by flow
additivity for exponential distribution or, more generally,
by order statistics (Feller (1950))). If we make a first-order
approximation, i.e., we just take into account the mean
values, the firing of the transition takes 1/(n·λ) time units.
This can be interpreted from a continuous point of view as
fj = λ · enab(tj), which corresponds to the variable speed
of (Alla and David (1998)).

Under infinite server (variable speed) the flow of a transi-
tion tj is:

fj = λj · enab(tj , m) = λj · min
pi∈•tj

{

mi

Pre(pi, tj)

}

(1)

where λj is a real positive number associated to tj .

The enabling degree of the transition tj represents the
number of active servers for that transition at m. The
flow will be the number of active servers times the work
each one does per time unit (λj). Notice that the number
of active servers in a transition (station) depends only on
the marking of its input places.

3.2 Finite Server Semantics

In discrete systems, finite server semantics can be imple-
mented by means of infinite server semantics by adding a
self-loop place marked with as many tokens as the number
of servers. However, this does not represent finite server
semantics if these tokens are interpreted as a fluid. To
have a correct approximation, the “server tokens” should
be considered different from the tokens in the rest of the
marking, because they cannot be split. From a discrete
point of view, if the marking is multiplied by a natural
number (greater than one), the tokens representing the
servers should not be multiplied, i.e., we may have more
customers, but keep the number of resources.

Let us consider single-server semantics first. In discrete
Markovian Petri net systems, when a transition is enabled,
it fires with a rate exponentially distributed with param-
eter λ. Let xi be the delay of the i-th firing. Then, the

average delay after k firings,
1

k
·
∑k

i=1 xi, is a k-Erlang

distribution with mean 1/λ (thus variance 1/(λ2k)). That
is, if we integrate the flow along a large period of time,
we obtain approximately the same as if the flow had been
constant, because the variance tends to vanish when k is
large. So, if the transition is always firing, i.e., it is always
enabled, the firing can be approximated by a constant flow
with speed λ. If it is not, instead of having idle periods,
we may approximate the server by a slower one that is
always busy, i.e., one that works at the same speed as the
incoming flow of tokens. In any case, if we let the system
evolve for a large enough period, the error will be small.

This corresponds to the constant speed of (Alla and David
(1998)), with Vj = λj , that is:

fj =

λj , if ∀pi ∈
•tj , mi > 0

min

min
pi∈•tj |mi=0

∑

tq∈•pi

fq · Post(tq, pi)

Pre(pi, tj)

, λj

,

otherwise
(2)

If for all pi ∈ •tj , mi > 0 then tj is said to be
strongly enabled, it is weakly enabled otherwise. Let us
now consider the k-server semantics. In this case, the firing
rate of the transition is exponentially distributed with
parameter λj ·min {k, enab(tj)}. If the number of servers,
k, is small with respect to the (fluid) marking of the
system, it is reasonable to consider that this minimum will
(often) be k. Then, the same reasoning as in the previous
case can be applied, obtaining a maximal flow of k · λj .

Observe that (2) is not defining completely the flow of
a ContPN under finite server semantics. In the case of
conflict, a resolution policy should be specified, otherwise
many solutions of the flows are possible (Balduzzi et al.
(2000)). Therefore, this semantics is non-deterministic as
defined in (2).

3.3 Product semantics

Continuous Petri nets can be used to model the evolution
of a system of populations, for example the Lotka-Volterra
predator/prey model (Cellier (1991)). Such systems are
naturally modeled by coloured nets, and when they are
decoloured the flow of a transition becomes the product
of the enabling degrees of every input place (Silva and
Recalde (2000)):

fj = λj ·
∏

pi ∈ •tj

{

mi

Pre(pi, tj)

}

4. METHODS FOR THE ANALYSIS OF CONTPN

4.1 Performance bounds

After a transient state, a continuous Petri net system
under infinite and finite server semantics reaches a steady
state when its marking, and so the flow (or throughput)
through transitions, remains constant. Observe that if a
steady state is reached, ṁ = 0, and so C · f = 0. That is,
the flow vector in the steady state is a T-semiflow.

Infinite Server Semantics. The following programming
problem can be used to compute an upper bound for the
throughput of a transition (Júlvez et al. (2005)):

max{φj | µss = m0 + C · σ,

φss
j = λj · min

pi∈•tj

{

µss
i

Pre(pi, tj)

}

, ∀tj ∈ T,

C · φss = 0,
µss, σ ≥ 0}.

(3)

Nevertheless, this non-linear programming problem is dif-
ficult to solve due to the minimum operator. When a
transition tj has a single input place, the equation reduces
to (4). And when tj has more than an input place, it can
be relaxed (linearized) as (5).

φss
j = λj ·

µss
i

Pre(pi, tj)
, if pi = •tj (4)

φss
j ≤ λj ·

µss
i

Pre(pi, tj)
, ∀pi ∈

•tj , otherwise (5)

This way we have a single linear programming problem,
that can be solved in polynomial time. Unfortunately,
this LPP provides in general a non-tight bound, i.e., the
solution may be non-reachable for any distribution of the
tokens verifying the P-semiflow load conditions, y · m0.
One way to improve this bound is to force the equality for
at least one place per synchronization (a transition with
more than one input place). The problem is that there
is no way to know in advance which of the input places
should restrict the flow. In order to overcome this problem,
a branch & bound algorithm can be used to compute a
reachable steady state marking.

Finite Server Semantics. With finite server semantics,
the flow of a transition tj must be always less than or
equal to λj . Moreover, for consistent nets with only one
T-semiflow x, in steady state the flow vector is necessarily
proportional to such T-semiflow. Hence, we just need to
observe the transitions and find the bottleneck, that is,
a certain tj whose utilization is equal to 1. Therefore, an
upper performance bound, χj can be computed as:

χj ≤ max

{

k | k · x(j) ≤ λ

}

where x(j) is the T-semiflow normalized, i.e., x(j)(tj) = 1,
for transition tj .

4.2 Computation of minimal P-T semiflows

Following the steps proposed in (Silva (1985)) an algorithm
to compute the minimal P and T-semiflows is proposed.
The input parameter of the procedure is the incidence
matrix C, and the output is a matrix containing the
vectors that represent the minimal semiflows.

4.3 Optimal Sensor Placement

Assuming that each place can be measured at a different
cost, the optimal sensor placement problem of continuous
Petri Nets under infinite server semantics is to decide the
set of places to be measured such that the net system is
observable at minimum cost. Measuring a place allows the
observation of a set of others (”covered” by that measure)
but, the problem is not a simple covering one (Garey and
Johnson (1979)). The question is studied at the structural
level in (Mahulea et al. (2005)) and the results obtained
are used in the implementation of an algorithm to reduce
the computational burden.

4.4 Optimal Steady-State

The only action that can be performed on a ContPN is
to slow down the flow of its transitions. If a transition can
be controlled (its flow reduced or even stopped), we will
say that is a controllable transition. The forced flow of a
controllable transition tj becomes fj − uj, where fj is the
flow of the unforced system, i.e. without control, and uj is
the control action 0 ≤ uj ≤ fj .

In production control is frequent the case that the profit
function depends on production (benefits in selling), work-
ing process and amortization of investments. Under linear

hypothesis for fixed machines, i.e., λ defined, the profit
function may have the following form:

wT · f − zT · m − qT · m0 (6)

where f is the throughput vector, m the average marking,
w a gain vector w.r.t. flows, zT is the cost vector due
to immobilization to maintain the production flow and
qT represents depreciations or amortization of the initial
investments.

The algorithm used to compute the optimal steady state
flow (and marking) is very much alike the one used to
compute the performance bounds, with the difference that
the linear programming problem that needs to be solved
is:

max{wT · f − zT · m − qT · m0 | C · f = 0,
m = m0 + C · σ,

fj = λj ·

(

mi

Pre(pi, tj)

)

− v(pi, tj),

∀pi ∈
•tj , v(pi, tj) ≥ 0

f , m, σ ≥ 0

(7)

where v(pi, tj) are slack variables. These slack variables
give the control action for each transition. For more details
on this topic, see (Mahulea et al. (2008)).

5. THE SIMHPN PACKAGE

The SimHPN (http://webdiis.unizar.es/GISED/?q=
tool/simhpn) provides a Graphical User Interface (see
Fig. 1) to achieve the simulations and computations de-
scribed in the previous sections. The data of the net system
can be introduced either manually or through Petri nets
editors: PMEditeur or TimeNet (Zimmermann and Knoke
(1995)). The data needed for a system in order to be
simulated is: Pre and Post matrices, initial marking m0
and the internal speeds of transitions λ.

5.1 Graphical interface

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Marking Evolution

m1
m2
m3
m4
m5
m6

Fig. 1. Sketch of the main window of SimHPN

It is also possible to adjust the maximum absolute and
relative errors of the simulation as well as the simulation
length. As plot options, the simulator allows one to plot the
evolution of the marking of the places, the evolution of the

p1

t1

t3

t2

p3

p6

.

p4 .

t5

t4

p5 . p2

Fig. 2. ContPN system used in Section 5.2.

flow of the transitions and the evolution of the marking of
one place vs. the marking of other place. When more than
one plot, i.e., marking and throughput evolution, is desired
by the user, new windows are opened by the simulator to
show them.

By means of two different buttons, the P(T)-semiflows of
the net as well as the throughput bounds of the system,
both for infinite and finite servers semantics, can be
computed. The results are displayed on the MATLAB
command window and can be used for future analysis
tasks.

5.2 Case study 1

Let us consider the ContPN system in Fig. 2 modeling a
resource (place p6) shared between two processes, and let
us simulate its evolution with two continuous approxima-
tions: finite and infinite server semantics. The following to-
ken conservation laws hold: m1+m3+m4 = 1, m2+m5 = 1
and m4 + m5 + m6 = 1. Thus the markings of p2, p3, p6
are sufficient to represent the evolution of all states (mark-
ings). Let λ = [1, 2, 1, 1, 0.5]T and m0 = [1, 1, 0, 0, 0, 1]T .
Observe that in this case the behavior of the discrete PN is
the same for finite and infinite server semantics because the
(single) servers are implicit in the model, in other words
the upper bounds of the marking of all places is 1. On the
contrary, continuous finite and infinite server semantics do
not lead to the same values.

Infinite server semantics. First, observe that p2 is implicit,
i.e., it is never the only place constraining the firing
of t4 (DiCesare et al. (1993)), and its marking verifies:
m2 = m4 + m6. Hence, f4 = min{m2, m6} = m6, and
so only two linear systems can govern the evolution. At
τ = 0, m3 < m6, therefore the evolution is governed by
the following linear system:

Σ1 =

ṁ2 = λ5 · m5 − λ4 · m6 =
1

2
m5 − m6

ṁ3 = λ1 · m1 − λ2 · m3 = m1 − 2m3
ṁ6 = λ3 · m4 + λ5 · m5 − λ2 · m3 − λ4 · m6

= m4 +
1

2
m5 − 2m3 − m6

The evolution of the ContPN system is sketched in Fig. 3.
It evolves according to Σ1 until τ ≃ 1.14 t.u. when
m3(τ) = m6(τ). At that point, a switch occurs and the
new linear system is:

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m[p2]
m[p3]
m[p6]

Σ1 Σ2

commutation

Fig. 3. Evolution of ContPN in Fig. 2 with λ =
[1, 2, 1, 1, 0.5]T under infinite server semantics.

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

m[p1]
m[p3]
m[p6]

Σ5Σ4Σ3

commutation

Fig. 4. Evolution of ContPN in Fig. 2 with λ =
[1, 2, 1, 1, 0.5]T under finite server semantics.

Σ2 =

ṁ2 = λ5 · m5 − λ4 · m6 =
1

2
m5 − m6

ṁ3 = λ1 · m1 − λ2 · m6 = m1 − 2m6
ṁ6 = λ3 · m4 + λ5 · m5 − λ2 · m6 − λ4 · m6

= m4 +
1

2
m5 − 3m6

The system evolves according to Σ2 and reaches the
steady state marking [0.4, 0.6, 0.2, 0.4, 0.4, 0.2]T with the
corresponding flow: [0.4, 0.4, 0.4, 0.2, 0.2]T .

Finite server semantics. The evolution of the system under
finite server semantics is presented in Fig. 4. At m0, the
input places of t1 and t4 are marked, therefore t1 and
t4 are strongly enabled and f1 = f4 = 1. The other
transitions are weakly enabled and their flows depend
on the input flows to the empty input places. For t2,
the input flow to p3 (the only empty input place) is 1,
hence f2 = min{λ2, 1} = 1. Transition t3 will work at the
maximum speed because the input flow in p4 is f2 = 1.
For t5, the input flow to p5 is 1, then its flow is limited by
its maximal firing speed λ5 = 0.5.

Σ3 =

ṁ1 = f3 − f1 = 1 − 1 = 0
ṁ3 = f1 − f2 = 1 − 1 = 0
ṁ6 = f3 + f5 − f2 − f4

= 1 + 0.5 − 1 − 1 = −0.5

According with these flow equations, the evolution of the
system will be governed by the linear system, Σ3, until
τ = 2, when m6 and m2 become empty. At this time
instant, the marking is [1, 0, 0, 0, 1, 0]T . Now, t1 and t5
are strongly enabled, therefore f1 = 1 and f5 = 0.5.
The weakly enabled transitions t2 and t4 are in conflict
and a resolution policy must be specified. Assume, for
example, that both transitions have the same priority,
i.e., the incoming flow to p6 is equally split to t2 and t4.
Moreover, the output flow of p4 is upper bounded by the
flow of t2. Then, the resulting flow is f2 = f3 = f4 = 0.5.
So, the system of equations that defines the evolution after
τ = 2 is the new linear system Σ4.

Σ4 =

ṁ1 = f3 − f1 = 0.5 − 1 = −0.5
ṁ3 = f1 − f2 = 1 − 0.5 = 0.5
ṁ6 = f3 + f5 − f2 − f4

= 0.5 + 0.5 − 0.5 − 0.5 = 0

At τ = 4 the marking is [0, 0, 1, 0, 1, 0]T . Thus p4 is empty
and a new flow computation has to be done. The only
strongly enabled transition is t5, hence f5 = 1. After
solving the associated equations, f1 = f2 = f3 = f4 = 0.5
is obtained. These values correspond to a steady state
marking (ṁ(τ) = 0).

Clearly, the evolution of a ContPN system is quite differ-
ent under both semantics: different transitory regimes and
steady-state markings are obtained.

5.3 Case study 2

The net in Figure 5 has been loaded from the PMEditeur
and model a table factory system ((adapted from Teruel
et al. (1997))). The system is composed of the following
items: two different machines (t1 and t2) to make table-
legs, a new fast one (t1) which produces two legs at a
time, and the old one (t2), which makes legs one by one;
a machine (t3) to produce table boards; a machine (t5)
to assemble a four legs and a board; and a big painting
line (t6) which paints two tables at once. The painting
line has more capacity than the other machines, so more
unpainted tables are brought (t4) from a different factory.
The different products are stored in buffers: Table-legs are
stored in p5, boards are stored in p6, and p7 is devoted
to the storage of unpainted tables. The rest of the places
contains work orders: whenever the painting line finishes a
couple of tables, it delivers work orders to the leg-makers,
the board-maker, and the other factory. Due to some
commercial considerations, it is desired 50% of the tables
to be assembled in the factory and 50% to be brought
from the other factory (this order is represented by equal
weights of the arcs going from t6 to p3 and p4). It is also
required that 75% of the legs are produced by the new
machine and 25% by the old one (this is modelled by the
arc weights going from t6 to p1 and p2).

The SimHPN package computes the P-semiflows : y1 =
[1, 1, 0, 4, 1, 0, 4]T and y2 = [0, 0, 1, 1, 0, 1, 1]T , and the
unique T-semiflow as: x1 = [3, 2, 2, 2, 2, 2]T . Let us as-
sume that λ = 1. The simulator computes the follow-
ing steady state throughput bounds for the six tran-
sitions of the system: upper and lower bounds un-
der infinite server semantics: [0.6, 0.4, 0.4, 0.4, 0.4, 0.4]T

3
2

4

2

2

p
1

p
2

p
3

p
4

p
5

p
6

p
7

t1

t2

t3

t4

t5

t6

Fig. 5. A system that models a manufacturing application

90

2

2

40

t1

t2

t3

p1 p2

Fig. 6. Predator/prey model

while under finite server semantics the upper bound is:
[1, 0.667, 0.667, 0.667, 0.667, 0.667]T .

Since this net system is monotonic w.r.t. the initial mark-
ing and the firing rate vector λ, the optimal steady-
state corresponds to u = 0 for the gain vector w =
1, i.e., fss = [0.6, 0.4, 0.4, 0.4, 0.4, 0.4]T. This is con-
firmed by the corresponding procedure implemented in
SimHPN . The steady state marking is obtained as:
[1.2, 0.4, 0.4, 0.4, 2.6, 0.4, 0.8]T. For the same net, assuming
a measuring cost of each place equal to 1, the optimal sen-
sor placement obtained from the SimHPN is {p2, p5, p6},
i.e., the set of measuring place. Obviously, the optimal
measuring cost is 3.

5.4 Case study 3

In Figure 6, a Petri net model of a predator/prey system
is depicted. The number of preys is represented by the
marking of p1 and the number of predators by the marking
of p2. In this ecological model, the enabling of t2 represents
encounters between predators and preys and therefore
must be proportional to the product of both markings.
Let the vector λ be λ = [0.25, 0.01, 1]T and the initial
markings be m0 = [90, 40]T .

The product semantics produces an oscillatory behavior
of the markings and the throughputs. Figure 7 shows
the evolution of the populations of predators and preys
while figure 8 shows how the throughput of the three
transitions evolve through time. If the marking of one place
(population of predators) is plotted vs. the marking of the
other (population of preys), the result is the closed orbit
loop shown in Figure 9.

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140
Marking Evolution

m1
m2

Fig. 7. Marking evolution of the predator/prey model

0 5 10 15 20 25 30 35 40 45
10

15

20

25

30

35

40

45
Flow Evolution

f1
f2
f3

Fig. 8. Throughput evolution of the predator/prey model

70 80 90 100 110 120 130 140
10

15

20

25

30

35

40

45
Marking vs. Marking

m(1)

m
(2

)

Fig. 9. Predator population vs. prey population

6. CONCLUSIONS

This paper has presented a new MATLAB package, called
SimHPN , that allows us to perform several analysis and
synthesis tasks on continuous Petri nets working under
different server semantics. In particular, SimHPN pro-
vides procedures to compute minimal P and T - semiflows,
throughput bounds, optimal steady state and optimal sen-
sor placement.

Additionally, SimHPN is able of simulating continuous
Petri nets evolving under any of the following semantics:
infinite server, finite server and product semantics. The
package is equipped with a Graphical User Interface that
offers a friendly interaction with the user.

REFERENCES

Alla, H. and David, R. (1998). Continuous and hybrid
Petri nets. Journal of Circuits, Systems, and Comput-
ers, 8(1), 159–188.

Balduzzi, F., Menga, G., and Giua, A. (2000). First-order
hybrid Petri nets: a model for optimization and control.
IEEE Trans. on Robotics and Automation, 16(4), 382–
399.

Cellier, F.E. (1991). Continuous System Modeling.
Springer.

David, R. and Alla, H. (2010). Discrete, Continuous and
Hybrid Petri Nets. Springer-Verlag. 2nd edition.

DiCesare, F., Harhalakis, G., Proth, J.M., Silva, M., and
Vernadat, F.B. (1993). Practice of Petri Nets in Manu-
facturing. Chapman & Hall.

Feller, W. (1950). An introduction to probability. Theory
and its Applications. Probability and Mathematical
Statistics. John Willey and Sons.

Garey, M. and Johnson, D. (1979). Computers and Inter-
actability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company.

Júlvez, J., Recalde, L., and Silva, M. (2005). Steady-state
performance evaluation of continuous mono-T-semiflow
Petri nets. Automatica, 41(4), 605–616.

Mahulea, C., Ramı́rez, A., Recalde, L., and Silva, M.
(2008). Steady state control reference and token con-
servation laws in continuous Petri net systems. IEEE
Trans. on Autom. Science and Engineering, 5(2), 307–
320.

Mahulea, C., Recalde, L., and Silva, M. (2005). Optimal
observability for continuous Petri nets. In 16th IFAC
World Congress. Prague, Czech Republic.

Matcovschi, M., Mahulea, C., and Pastravanu, O. (2003).
Petri Net Toolbox for MATLAB. In 11th IEEE
Mediterranean Conference on Control and Automation
MED’03. Rhodes, Greece.

Murata, T. (1989). Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, 77(4), 541–580.

Sessego, F., Giua, A., and Seatzu, C. (2008). HYPENS:
a Matlab tool for timed discrete, continuous and hybrid
Petri nets. In Application and Theory of Petri Nets
2008, volume 5062 of Lecture Notes in Computer Sci-
ence, 419–428. Springer-Verlag.

Silva, M. (1985). Las Redes de Petri: en la Automática y
la Informática. AC.

Silva, M. and Recalde, L. (2000). Réseaux de Petri
et relaxations de l’integralité: Une vision des réseaux
continus. In Conférence Internationale Francophone
d’Automatique (CIFA 2000), 37–48.

Silva, M. and Recalde, L. (2002). Petri nets and integrality
relaxations: A view of continuous Petri nets. IEEE
Trans. on Systems, Man, and Cybernetics, 32(4), 314–
327.

Teruel, E., Colom, J.M., and Silva, M. (1997). Choice-
free Petri nets: A model for deterministic concurrent
systems with bulk services and arrivals. IEEE Trans.
on Systems, Man, and Cybernetics, 27(1), 73–83.

Zimmermann, A. and Knoke, M. (1995). Timenetsim - a
parallel simulator for stochastic petri nets. In Proc. 28th
Annual Simulation Symposium, 250–258. Phoenix, AZ,
USA.

