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Abstract—Traffic systems are often highly populated discrete only three real valued variables describing the local betav
event systems that exhibit several modes of behavior such &ige  (Iocal both in space and in time) of the traffic flow: its depsit
flow traffic, traffic jams, stop-and-go waves, efc. An approprte i ayerage speed, and the flow rate, which is the product of

closed loop control of the congested system is crucial in oed to the d it d th d E | f .
avoid undesirable behavior. This paper proposes a macrosp@ € density an € average speed. Examples of macroscopic

model based on continuous Petri nets as a tool for designing traffic models can be found in [4], [5], [6], [7], [8].

control laws that improve the behavior of traffic systems. The Petri nets represent a powerful modeling formalism that has
main reason to use a continuous model is to avoid the state peen successfully used in different application domaich sis
explosion problem inherent to large discrete event system§he manufacturing and logistics. This paper deals with cortira

obtained model captures the different operation modes of a . . ) T -
traffic system and is highly compositional. In order to handk Petri nets instead of 'classical’ discrete Petri nets. omoius

the variability of the traffic conditions, a model predictive control ~ Petri nets are the result of relaxing discrete nets by rengpvi
strategy is proposed and validated. the integrality constraint in the firing of transitions. lartrast
to discrete nets, the state of a continuous net is a vector of
nonnegative real numbers and the firing of the transitioes ar
. INTRODUCTION real valued flows of material/cars that pass from the input

The behavior of a traffic system greatly depends on tidaces to the output places. This paper has two main goals:
density of vehicles in the traffic network and on the rules « Obtain a macroscopic traffic model based on continuous
governing the flow of traffic, such as the switching control of  Petri nets.
traffic lights. Traffic models should cope with different nesd « Design a control strategy using such a model taking into
of operation depending on the state and traffic conditions of account the changing traffic conditions.
the system. The use of traffic models gives one the chance t&n interesting feature of the proposed model is that the
analyze, to simulate and to predict the future behavioradfiter trade-off between accuracy and simplicity of the model can b
systems. Thus these models enable the model based desigeesfly achieved by modifying the Petri net structure. Moszp
feedback control strategies, the application of which iowvps given that road sections are modeled as independent subnets
important traffic performance measures such as throughpedach subnet being a timed continuous Petri net, the regultin
delay and fuel consumption. model is highly compositional.

The state of a traffic system is usually given by the discreteMacroscopic traffic models describe the behavior of a
values counting the number of vehicles present in the differ traffic network by interconnecting many road sections, and
sections of the traffic network. Hence, in principle diseretoy describing the traffic variables density, average spaed,
event models (see [1], [2], [3] and references therein) pre dlow rate, in this particular road section at a given point in
propriate to accurately describe the behavior of traffitesys. time. This model should represent faithfully thendamental
Unfortunately, highly populated discrete systems suffemf traffic diagram[9] which relates the local flow rate and the car
the state explosion problem that makes the analysis of ttensity. To achieve this goal using continuous Petri netsies
system performance extremely difficult. Moreover the cointrtime extensions to the existing continuous Petri net pgradi
strategies require accurate predictions exactly in theses will be proposed. The model for the whole network is obtained
where traffic is congested, i.e., those cases where the statgoining together the nets for the individual sectionsaffic
space explosion is most acute. One way of overcoming thights are modelled by adding discrete places and discrete
problem is to relax the original model. Macroscopic modéls ¢ransitions to the system. Thus, the aggregate model is @chyb
traffic systems disregard the individual vehicles and abersi Petri net (see [10] for preliminary results).

The behavior of the traffic system can be modified and
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« allows to approximate the fundamental traffic diagram bihe sum of the amounts by which each transitions has fired)
means of the network structure (this way, no new firing given by the fundamental state equatian: = m + C - o.
semantics are necessary), The evolution of the marking over time can also be ex-

« and applies MPC to handle varying traffic conditions. pressed in terms of the state equation:

The paper is organized as follows: Section Il introduces the
continuous Petri net formalism. In Section Il some extensi m(7) =mg + C-o(7) v

are added to this model to represent more realistically ferer represents time. Differentiating with respect to time
dynamics of traffic systems. Section IV presents the t|mqg(7) = C - &(r) is obtained. Let us denote = &, since

continuous Petri net model for a traffic section. Such a modelrepresents thdlow through the transitions. In this paper
is the key structure to assemble larger models. In SectidreV the flow through transitions is variable (similar to [21])ore
control problem and the model_predictive controll stratey aspecifically, infinite server semantics [22] is used. It vii#
presented. Two control scenarios are reported in Section \éﬁown that infinite server semantics allows one to model in a
The main conclusions are drawn in Section VII. natural way the rising edge of tfiendamental traffic diagram
Some comment on the notation: Square brackets are Usethinite server semantics is obtained from a first order or
to access the value of a place or transition in a given vectgpterministic approximation of the discrete case. Thus, th

e.g.,m[p| denotes the marking qf € P, while, e.g.,C[P,t] " fiow through a transitiort at instantr is defined as:
denotes the column of sizg P) corresponding to transition

t. Parenthesis are used to get the value of a variable at a £[t](7) = Alt] - enab(t, m(7)) 3)
given time, e.g.m(r) is the vector of markings at ime, \yhere A[t| > 0 is a constant parameter representing the
andmp]() is the marking of place at time . internal speed of the transition. This way, the flow of a
transition is proportional to the marking of the input place
II. CONTINUOUS PETRI NETS determining the enabling degree. The overall behavior of a

The reader is assumed to be familiar with Petri nets (PN&y'e continuous PN is similar to that of a piecewise linear
(see [15], [16] for an introduction), a formalism with manysystem. In PNs a switch between linear dynamics is triggered
domains of application (see [17], [18] for recent referex)ce bY @ change in the marking of the input place determining the
The Petri net systems that will be considered herecargin- €nabling degree of a transition.
uous[19], [20]. Unlike discrete PN, the marking and the arc

weights of the net are non-negative real values, not nedlssa IIl. TIMED PETRI NETS FOR TRAFFIC SYSTEMS
integer-valued. This section first analyzes the capabilities of continuous
Definition 1: A continuous PN is a tupleA/ = Petri nets to model the fundamental traffic diagram repre-

(P, T,Pre, Post) whereP andT denote sets of places, respsenting the behavior of a traffic system. Then, it proposes

transitions, and®Post € R} *" andPre € R} " are the arc two modifications to the timed continuous Petri net fornralis

weight matrices. that are useful for obtaining more realistic, and yet corpac
A continuous PN system is a paif\',mg), where N models for traffic systems.

specifies the net structure, andy € IR(I)D+ is the initial

marking. The set of input (resp. output) places of a given s&t Ratio marking vs. flow

V of transitions is denoted a3 (resp.V'*). Correspondingly,  |xfinite server semantics is used in system models in which
the set _of input (resp. output) transitions of a givenideof 4 processing speed, i.e., the flow of transitions, is propo
places is denoted &4V (resp.W*). o tional to the number of customers in the upstream place, i.e.

Continuous PNs are obtained as a relaxationdistrete rqportional to the enabling degree. The following exaraple
ones. Unlike the “usual” discrete PN systems, the amoutiiq how the flow of transitions and the rate of change of the
in which a transition can be fired in a continuous PN is Fharking of places can be affected by the arc weights.

nonnegative real number. Graphically, a continuous place i cqopsider transitiort; (see Figure 1(a)) that has one input
represented as a double circle and a continuous transiﬁonpgacepl. Its flow is £[t;] = Alt]-m[p1]/z wherez > 0 is the

a white box. _ _ _ weight of the arc. As shown in Section II, under infinite serve
A transitiont in a continuous PN ignabledat m if for  gomantics the marking changes accordingit6r) = C - f.
everyp € *t, m[p] > 0. As in discrete PNs, thenabling So, in this casanlp,] = —z - £[t1] = —Alt1] - m[p1]. Thus,

degreeat m of a transition measures the maximal amount ifhe evolution of the marking gf, does not depend on i.e.
which the transition can be fired in a single occurrence: g, the weight of the arc.

enab(t, m) = min{ _mfp]

1 Wi ; P . . i
pest\ Prelp, {] (1) it is possible to obtain a system in which the evolu

tion of p; depends on the weight of its input (output)
The firing oft in a certain amount < enab(¢, m) leads to arc. Consider the system in Figure 1(b) with> 0, and

a new markingn’, and it is denoted as1-*“,m’. Generalizing ¢ —a > 0, since arc weights must be positive. Plagg

the equations for discrete Petri neis = m + C[P,t] - «. is said to be a self-loop. The flow of transitioty is

Thus, if m is the initial marking, the markingn’ reached f[ts] = Aft2] - m[ps]/q, and the marking ofp evolves ac-

after several transition firings (with firing count vecteri.e. cording tom[ps] = (¢ —a — q) - f[t2] = —a/q - A[ta] - m[p2],

} By slightly manipulating the system in Figure 1(a),
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Fig. 1. In a) the marking evolution does not depend on the aight. In A= | i

b) the marking evolution depends on the arc weights. 5 A )\/q : : /\/S \?\ ‘ m[p1]

h-q ‘ k
that is, it depends on the parameter valuesand a. If ktu—h-s k+u

a > 0 the markmg Ofp? decreases (the Condltllo’m > a Fig. 3. The flow of transitiort; (see Figure 2) is a piecewise linear function
guarantees that the maximum rate of decrease is boundethfiye marking ofp;.

mlps] = —Aft2] - m[ps]). If a =0 thenm|p,] is constant and
so is the flow oft,. If @ < 0 thenm[ps] increases (the rate
of increase is not bounded). m(p;] can get isk. Summing up, the flow of; is given by:
p4 fit:1] =
P
) - 2 i mlp) < h-g
d At] - h if h-g<mp]<k+u—h-s
k — .
p@ a-1 /\[tl]-%m[pl] if k+u—h-s<mlp]
s+1 ’
t D3 t flta]
O
Fig. 2. A continuous Petri net with several self-loops. - L/,/3 S .
W7
Following these ideas, the flow of a transition can be mod- 7
eled as a piecewise linear function of the marking of a given ). 4
place. Let us consider the system in Figure 2. Let the interna ip1]
speed oft; be \[t1], while the initial markings are given by ‘ mip1
mo[p1] = 0, mo[p2] = k, mo[ps] = k +u andmo[ps] = h g-q L :
where k, v and h are positive real values. From the net =4 h.z—g k+u

structure, the following marking invariants (or P-semif&w
can be deducedn|p;] + m[ps] = k, m[p1]+ m[ps] = k+wu, Fig. 4. The addition of a new self-loop can be used to slighitydify the
and m[ps] = h. The existence of P-semiflows greatly helpgiecewise relationship.

to synthesize the Petri net structure and to choose the ar

weights that realize a given piecewise linear relationshj ore self-loops. For instance, assume that a new plade

between the markingn[p,] and the flowf[t]. Later on, these 440440 the net in Figure 2 such that has the same arcs
piecewise linear relationships will be used to approxmage

. . . ! $p; but that arc weighyy is substituted byz, and z > ¢.
the fundamental diagram expressing the relationship lmtwqaet molps] — molpi] + ¢ be the initial marking ofps with

density of cars and flow of cars in a given section of the road. L2 B .

The thick line in Figure 3 plots the piecewise linear rela; > 0. Clearly, at any tlr_ne 'F holdsn|ps] = m[p.l.Hg' G'V?n
. . . . hat z > ¢, whenm/[p,] is high enough, the firing of; will
tionship betweerf]t,] andm(p,]. When the marking ops is o girained bys. The new relationship betweei;] and
smaller thanh - ¢ it constrains the firing of;, and the flow

. ! . . mlp;] is represented by the thick line in Figure 4.
of 1, is proportional tomlp,]. As soon asmip,] satisfies This way, an appropriate choice of self-loop places and arc
mp1]/q > h, the flow of t; is constrained byp,. Given 4 bprop bp

weights allows one to approximate (arbitrarily closely)yan

that them(p] is constant the flow Wi” alsq remain ConStambell-shaped function (recall that traffic diagrams are Ugua
Assume thatm[p,] keeps increasing. This fact involves aDeII-shaped)

decrease inm[ps] and mp3] sincemlp;| + m[ps] = k and
mp1] + mps] = k + u. Given thatps is also an input place _ )
of ¢y, it will constrain the flow oft; if m[ps]/s < h what B- Discrete time model

is equivalent tom[p1] > k + v — h - s. Since all markings  The standard continuous Petri net model with infinite server
are positive andn|[p;] + m[ps] = k, the maximum value that semantics has instantaneous flow of material (or vehicles in

?nterestingly, the plot in Figure 3 can be softened by adding



the traffic model) from one place, e.g., representing a @ectiof the discrete time model, is guaranteed to always remain
in a traffic network, to the next place. Let us consider th@onnegative. This upper bound depends only on the structure
system in Figure 5. It represents a machitg,working at of the net (hot on the marking), and can thus be calculated
constant speed|t;] = A[t1]-m[p;], that places its production independently of the initial marking. In order to compute
on a conveyor belt represented py. One can imagine that A,,...., each place will be considered separately. Without loss
machinet; places pieces of finished material at uniformlyf generality one can assume that no input flow is coming into
distributed locations on the conveyor belt; the conveyor the place (since input flow is always positive and can only
belt then moves those pieces to the second maahiméhich make the marking larger). For each place it will be calcdate
removes the pieces from the conveyor belt. Machinghen how fast it can become empty, given its maximal outflow rate.
processes this input material and stores it in the warehoyself p is the place of the net that can become empty in the
The initial marking of the system imo = (1 0 0), i.e., the shortest time, let us say afterunits of time, therA must be
conveyor belt and the warehouse are initially empty. less than or equal te to avoid negative markings.
Let us compute how fast the plagg of the system in
t1 . .

P Do p3 Figure 6(a) can become empty. Clearly, the markingppf

R N H decreases iff > s, hence only this case is considered. Let us
@J @ U @ first compute how long it takes to empgy if @ < %
(m[p,] defines the enabling degree @f i.e., p; is the con-
Fig. 5. A continuous Petri net modeling a conveyor. straining place fotl)_ In that casef[tl](k) = )\[tl] . M
and

According to the usual continuous time model the initial
flow of ¢, is f[t1)(r = 0) = Al1]. This implies that material 0104 4 1) = mipy] (k) + (5 — ) - Alta] - mlpi|(k)
is placed on the conveyor belt from the initial instant- = 0 r
(m[p2](T) > 0 for everyr > 0). This entailsf[tz](7) > 0 for
everyt > 0. This behavior cannot be a faithful representation It follows thatm|p;](k + 1) = 0 whend =
of the real system behavior since it implies that an infirmited
amount of the material spends zero units of time to reach
i.e., the conveyor is infinitely fast (or infinitely short).

One way of avoiding an infinitely fast movement of materi

to

__r

Alta] - (r—s)
Notice that in the case thaff@ > % (m[p2] defines
the enabling degree daf) the flow throught; would be less
6{pan in the previous case and therefore it would take longer

going from one transition to the next one is to use a discrdfe €MPY 1. Thus, for the system in Figure 6(a), plape

time model (alternatively [19] models this behavior by rrmaarﬁannOt get empty (whatever the markingp, |(k) is) in less
of discrete transitions an@i™ weighted arcs). According to time units than:
our approach, time is discretized in steps (intervals) otk

A > 0. At the beginning of each step, the flow of the transi-

tions is computed with the usual expression for infinite serv _ _
semantics: £[£](k) = A[t] - minyee¢ {m[p](k)/Prelp, ]} for Selecting a value oﬁ_smaller t_han the value given by (4)
the k" step. The marking at the next step is defined weventSpl from becoming negative.

m(k+1) =m(k)+ C-£f(k) - A. This way, the flow of a

transition duringA units of time depends only on the marking pn p2 P2 p1 p3
of its input places at the beginning of the interval. The @ @ R @
AF
ty t | ' u‘ )
(b)

r

ol = 3) )

interval A can be seen as the minimal travelling time (delay)

of the material between two transitions. In Figure A,

is the time the conveyor takes to move a piece from

to to. Notice that the flow ofty is zero during the first @
interval €[t2]( =0..A) = 0). This discrete time continuous

PN model makes it possible to represent delays; moreover fiige 6. The bound of\ that ensures non-negative markings does not depend
fact that the flow of the system is constant during each iaeny" e marking.

allows one to carry out fast simulations.

A similar approach can be taken to compute a boing, .
i ) . for a system having places with several output transitions

C. Maximum time period (see Figure 6(b)). As in the previous example, in order to

In the discrete time model) is a design parameter model-compute the shortest emptying time pf only the output
ing the minimal time required to travel from the beginningransitions that decrease the marking are consideredyi.e.
of a section to the end of the section. According to th@esp.t2) is considered iffr > s (resp.u > v). Similarly
semantics defined in the previous subsection, the markitigthe previous example, the shortest emptying time occurs
changes linearly during an interval. Thus, & is set too when p; is determining the flow of both output transitions,
high, it might lead to a negative marking. Fortunately, it ishat is,M < m[p2|(k) and% < m[ps)(k). So, if
possible to compute an upper boufg, ... such that for any we assume that these inequalities hold the marking in the nex
A < A,nqe the marking, calculated according to the semantissep is:



m[p](k+1) = @ H @ H

mpi](k) + ((s — ) - £[t2](k) + (v = w) - £[ta] (k) - 6 =

Fig. 7. Placep; is emptied in finite time iffA = 1/A[t1].
m(p,](k)+ i i
((S C )AL m[p;]( ) (0 —u)- Ata)] - m|p:] (k)

w -0 conveyor per unit of time. If from a given instant no new piece

(5) enter the conveyor, the flow of should remain constant until
Then, the time intervald required to emptyp:, i.e., the conveyor empties. It would not be realistic that the flow
m[p|(k+1) =0, is: of ¢, decreases exponentially as the conveyor empties.
1 By slightly modifying the described firing semantics it is
(6) possible to avoid falling in a geometric progression when
Alta] - (r = 5) + Alta] - (u —v) emptying a place: For a given transitiorand at a given step
" u k it will be checked whether its input place determining the
Equation (6) can be generalized in order to compNig..  enabling degree had input flow (new customers) during the
for more complex systems. It suffices to apply (6) for evenyrevious ste: — 1. If there was no input flow to that place the
place of the system, and to compute the minimum of all theggy of ¢ is kept the samef[t](k) = £[t](k— 1), otherwise the
values. ThisA,., for a general system can be expressed agsyal firing semantics is applief{f] (k) = A[t]-enab(t, m, k).
Keeping the same flow of a transition allows one to empty a

i 1 P .
Aoz = i {—t} (7) place in finite time. Anyway, one should be aware that this
pAte p* Pre[pt]>Postlp] | 9[p, 1] modification in the model leads toon pure discrete time
whereg[p, t] is given by: infinite server semantics and could cause negative markings

even if the bound forA is considered. In order to avoid
A[t] - (Pre[p, t] — Post|p, t]) negative markings, the flow of the transitions will be forced

glp.t] = Z Prelp, {] to be the minimum between the value just described and the

tc p*, Pre[p,t]>Post[p,i] ’ flow that would empty one of the input places at the end of

Notice that this expression depends only on the structuretBg time interval. This way, places become empty exactly at
the net and not on the marking. the end of time intervals.

Observe that many properties that make Petri nets so useful
D. Emptying places for modeling remain valid after th_e modifﬁcations i_ntroddce

' in this section. For example our discrete time continuous PN

Let us consider the discrete time evolution of the systeg| satisfy place invariants and transition invariantsanikings

in Figure 7. LetA be the length of the time interval of theare till states for the dynamic evolution, structural gsial is
discrete time model (according to the previous Subsectigfppjicable, etc.

: 1 1 ; i i
A < min{ )\[tl}, NN 1). After the first time step of sizeé\,

the marking ofp, is IV. A MODEL FOR TRAFFIC SYSTEMS

m[p;](1) = m[p1](0) + C - £[t1](0) - A = This section proposes a model for traffic systems based on

m[p1](0) — Alt1] - m[p1](0)- A = (1 — A[t] - A) -mp;](0) the concepts presented in the previous sections. The model
assumes that the road can be virtually divided into several

After the second time step road sections. In Subsection IV-A a continuous PN model for

m[p;](2) = (1 — Alt1] - A) -mpy](1) = one single road section is presented. Subsection IV-B uses

1= Nt1-A)2. 0 this model of a single road section as a building block for

( (2] - &) - m[p.)(0) assembling large traffic networks. Traffic lights are modele
and after thek” time step in Subsection IV-C as discrete places and discrete transiti

mip1] (k) = (1 — Afta] - A)F - mpa](0) connected to the continuous PN model.
This way, if A = ﬁ p1 becomes empty after the firsta A road section

step and remains empty indefinitely. HoweverAf < ﬁ The traffic model to be presented requires a spatial dis-

the evolution ofm[p;| follows a geometric progression andcretization of the road to be modelled, i.e., the road isd#idi

never gets completely empty. into several sections. In this subsection, a continuous PN
From a modeling point of view the emptying of a place anodel for one single road section is presented.

a geometric rate can be useful, for example, in order to modelThe state of a section of a road network is described by three

how a capacitor discharges exponentially. Nevertheless, facroscopic variables: the density) of cars at timer, their

other modeling purposes this feature is not desirable. @&sgpaverage speed(r) and the flow f(7). The markingm(7)

that the marking op; is the number of pieces in a conveyorof a place will represent the number of cars in the section,

Then, the flow of; expresses the number of pieces leaving ththese cars being uniformly distributed along the lengthhef t



section, and having average spegd). Note thatm(r) is where &’ represents the capacity of the section andp}]
proportional to the density(7) of cars along the section. Therepresents the number of free gaps in the section.
flow f(7) of cars leaving the section is thgiir) = d(7)-v(7). The model of a road section as proposed above describes

In a traffic system the cars in a section with low densitthe behavior of the system before the onset of congestion.
travel at a given free speed, this is callieele flow traffic In  Subsection IV-B shows that the behavior of a congestedsecti
this case the flow out of the section increases proportipnalé captured in a natural way as a result of the interactioh wit
to the density. When the density of the section is higher, tllewnstream sections.
average speed decreases and the flow out of the sédé&alty
remains constantlf the density is much higher, the traffic
becomes heavy and the flow out of the section decreages
due to congestion. This (bell shaped) relationship betweenin a PN model with several sections, two adjacent sections,
the flow and the density is known as thendamental traffic ¢, j, share a transitiort,;, whose flow represents the flow rate
diagram [9]. In the proposed model the fundamental traffiof cars passing the boundary between sectiand sectiory
diagram will be approximated by a piecewise linear functiofmeasured in cars per time unit). This transitigrhas three
following the ideas in Subsection IlI-A. First, a net thatdets input placesyp; representing the number of cars in sectipn
free flow traffic and constant flow traffic is presented. Later op} with constant marking bounding the flow of and pit*
it will be shown how the decrease in flow due to congestioepresenting the number of gaps in sectjoriherefore, the
is modeled when two sections are joined. flow of cars from section to sectioni + 1 also depends

Figure 8(a) is the first step to model a given road secti@m the number of gaps in the downstream section 1,

i. The number of cars in section is represented by the f[t;] = Alt;]-min{m[pi], m[p}], m[p5"']}. This model closely
marking of placep!, the flow of cars leaving the section isrepresents the physical reality of the upstream propagatio
the flow of transitiont;, and the flow of cars entering thea traffic jam. Indeed, if not enough free gaps are available
section is the flow of transition,_;. If p} is ignored, the use downstream, i.e. if the downstream section is congested, th
of infinite server semantics establish&$;] = A[t;] - m[pi], the outflow from the upstream section will decrease. The
i.e., the outflow is proportional to the density. Hence, theutflow from¢; is thus, proportional to the minimum of the
subnetp?, t; with an appropriate\[t;] models free flow traffic. number of cars desiring to leave the upstream sectionfhe.,
Notice that this relationship between the flow and the magkinnumber of tokens in the upstream plage and the number of
£[t;] = Alt:] - m[pi], cannot be represented with finite servegars allowed to enter the downstream section, i.e., the rumb
semantics where the flow of a transition is independent of thétokens in downstream plagg"™". This is analogous to the
marking of its positively marked input places [23]. sending and receiving functions described in [24].

For simplicity, it will be assumed that the system mode The outflow from a low density section (a section in
changes from free flow to constant flow traffic without interfree flow condition withd;(7) < h - ¢) is proportional to
mediate modes. Nonetheless, for a better approximationtbé number of carsf(t;] = A[t;] - min{m[p}]}) with propor-
the fundamental diagram, such intermediate modes can tlmality constantA[t;]. If the downstream section becomes
easily modeled by adding more self-loop places (as in Subsédl, the outflow is proportional to the number of gaps of
tion 11I-A). Constant flow traffic can be modeled by addisig the downstream sectiorf[(;] = A[t;] - min{m[pJ]}), with
The marking ofp} is always constant and imposes an uppex(t;] as the proportionality constant. This model implies that
bound on the flow oft;, f[t;] = A[t;] - min{m[p}], m[p}]}. the proportionality constank[t;] takes the same value under
Therefore, whenm[pi] > mpi] the flow of ¢; is constant, both situations. This is not in agreement with real traffitada
£[t;] = Alt;] - m[pi] = A[t;] - hE. One way to avoid this fact is to use arc loops as shown

in Figure 1. The use of such arc loops allows one to have
§ i different proportionality constants for the density of cand
Ps p3 the numgerpof gaps.yNotice that the constar?lt flow traffic
P is modeled thanks to a placgi, with a constant marking.
Hence, for anyAft;] its marking can be chosen to correctly
H @ upper bound the flow of; without introducing weights in its
input/output arcs.

Joining sections

tia ti tia pg ti Figure 9 shows a traffic model consisting of three sections
with arc loops controlling the proportionality constaritgith

@ ®) an appropriaté\, that system can be reduced to an equivalent
Fig. 8. Petri net model of a road section. one with only one arc loop for each transition (sinkg;] is

already the proportionality constant either for the dgnsit
Obviously, the number of cars that can be in a road sectifor the number of gaps).
is finite. This means that the model of a section must imposeNotice that the special features of the model described
an upper bound on the marking of the place representing threviously are useful for traffic modeling. By using a disere
number of cars. This can be easily achieved by adding a néme model it is possible to represent the minimal delay of
place to the section model, vig} in Figure 8(b). At all times the cars coming from the input transition of a given sectmn t
the model in Figure 8(b) ensures that[p!] + m[p] = k' the output transition of the same section. This time interva



Figure 11 sketches how the flow of cars coming fréih
and R2 is regulated by the traffic lights. The flow of cars
crossing the intersection fronR1 (R2) at a given time is
obtained by multiplying the flow of the continuous trangitio
(see Section 1) associated 81 (R2) by the valuev(R1)
(v(R2)) at the corresponding time, as plotted in Figure 11. For
instance, the flow of transition in Figure 12 during phasgg
is the same as if there were no traffic lights sin¢®1) = 1;

Fig. 9. Traffic system with three sections. during phaseyr the flow decreases linearly and becomes zero
after o time units; all along phasg the flow remains equal
a zero; finally, 3 time units before the end of phasg the

w increases linearly from zero to the value it would take if

here were no traffic lights.

A, can be seen as the minimal time required for a car
travel from the beginning of a section to the beginning
the next one. A continuous time model could be possib
but then it would require an infinite dimensional state SPaCE e
corresponding to infinitely many infinitesimally short Sens

(a partial differential equation is obtained by lettinggo to0).  v(R1) A
Besides, the extensions presented in this paper allowosecti
to become empty in finite time by keeping the outflow constant \
as long as no inflow exists. These extensions represent moreo ‘

99 !
faithfully the behavior of a real traffic system than the araj

99
A

ar
A

continuous PN formalism, and they will be used in the sequel
for simulations. L

C. Traffic lights ‘

Traffic lights are the most common way to control real a B a B
traffic systems. Traffic lights can be seen as discrete event
systems whose state can be either red, amber or green. fgﬂ'ﬁl
is why we propose to model traffic lights with simple discrete

Petri nets. See Figure 10 for traffic lights ruling an intetsm Phasesgr and rg allow one to model how the flow of

1. Scaling factorsy(R1) andv(R2), for the flows of the four traffic
phases.

of two one-way streetst1 and R2. cars evolves smoothly from maximal flow to zero flow and
vice versa, and so to obtain a more realistic model of the
R2 gr traffic system. The positive real valuesand 5 are modeling

parameters that have to fulfitt + 6 < A (where A is the

99 value used in the discrete time model proposed in subsection
rr IV-B). The safety time interval during which no cars cross th
intersection isA — o — .

RTL — rg
O V. CONTROL STRATEGY
@) (b) This section illustrates how the model of road traffic as

developed above can be used for designing a model predic-
tive feedback controller, approximately minimizing a give

olH'ective function. The first subsections introduce theotdje

The sygtem that models traffic I|ght_s has four ph"’?ses' eaf(l:mction and the control constraints that have to be consdle
phase being represented by a place in the net. A given phﬁe
y

: . ; : . . én, the model predictive control scheme is presented.
is active when its corresponding place is marked. Since on
one phase can be active at a time, the number of tokens in the

Fig. 10. A discrete Petri net modeling traffic lights in aneirsection.

net is1. The actions associated to each phase are: A. Objective function
e gg. Cars from R1 crossing. Traffic lights state: green Many different control goals can be pursued for traffic
lights for R1; red lights for R2. systems. In this paper we focus on the minimization of thal tot

« gr: Cars from R1 stop, cars fromR2 start crossing. delay (waiting time) of the cars in the system. In other words
Traffic lights state: first amber, and then red light fof; the control strategy used by the traffic lights must minimize

red, amber and finally green fdt2. the sum of the time delays spent by all cars during the control
« rr: Cars fromR2 crossing. Traffic lights state: red lightshorizon in which the control is applied.
for R1; green lights forR2. Let us consider that the marking of plage represents the

« 1g: Cars fromR2 stop, cars fronRR1 start crossing. Traffic number of cars in section. Then, in the continuous time
lights state: red, amber and finally green f81; first domain the delay of all the cars passing through section
amber, and then red light faRr2. during the time interval fromd to p is given by the integral



P T
> [ e (10)
tE€T,ue V0 V0
Hence only the flows of the output transitions of the system
are required. Assume for the sake of simplicity that the outp
transitions of the system are not regulated by traffic lights
Assume that the discrete time domain described in Subsec-

inflow to R2 )
p1

tr2
tion IlI-B is implemented by the simulator of the network.
Then the flow of any output transitian is piecewise constant,
Traffic lights all periods being of length\. At the end of the periodd,
whereH = £ :
inflow to R1 H
1 porT A2 .
P [ —— . — .f?
H ® /0 /0 Fli(€)dedr = 5 ;((2 (H —i)+1)-£) (11)
wheref![t] is the flow of transitiort at the beginning of period
tR1 1. Since A is constant it can be removed from the objective

function. The final expression for the objective function is
obtained by applying Equation (11) to every output traoaiti
of the system and summing the obtained values:

maxZ((?-(H—i)—i—l)- > fi[t]) (12)

tETout

Fig. 12. An intersection modeled by a continuous Petri net.

fo” m|[pi](7)dr. The total delay of all the cars passing through

the system is obtained by summing over all the plages B. Control constraints

representing all the sections of the network: In order to avoid excessively long waiting times for indi-
vidual cars, a maximum time interval/red for red lights

p .
Z/ m[p3](7)dr (8) will be established at each intersection. When the traffjotli
pi 70 has remained red for a given direction for an interval of time

Since infinite server semantics is used, the following equ&dual to Mred then a transition is forced to fire in the PN
tion: representing the traffic lights, causing the light to tureegr

pi] (&) = £[*pt](€) — f[p’i.](g) for the given d|rect|c_)n._S|m|I_ar_Iy, the_proposed controfen$
_ the chance of establishing minimum time intervalgreen for
holds for each place;, and therefore: green lights to avoid having excessively short green light c

; ; T T e cles. Notice that establishing maximum red (minimum green)
m[pi](7) = m[pi](0) +/ £[*p1](§)d€ — / flp1 1(€)d€  time intervals for a given road crossing an intersectionliesp
i ) _0 0 . establishing maximum green (minimum red) time intervalrs fo
Notice that in the traffic model the output transition of e other road crossing the same intersection.

given section is the input transition of the downstreamisact
Thus, many terms of Equation (8) cancel and so the total deléy
can be expressed as: '

> [ misiioyar +

Model predictive control

This subsection proposes a model predictive control (MPC)
p T policy [11], [12] for a traffic network modeled by connecting
Z / / f[t](¢)dedr — several components of a road network as suggested in Sec-
teTi, 70 /0 9 tion IV, approximately minimizing the cost function definied
P ©) Subsection V-A, and taking the constraints of Subsectidh V-
Z / / f[t](E)dedr An MPC approach allows one to minimize the given objective
t€Toue *0 70 function (12). Since an MPC controller acts as a closed-
whereT;,, (T,.:) Stands for the set of input(output) transitiondoop structure it generates a robust feedback controllatr th
to(from) the system. For example, for the system in Figure 12chieves good performance under a reasonably broad class of
Tin = {tr1,tr2} and Ty = {t3,t4}. Clearly the first term perturbations of the model, e.g., uncertainty about theunfl
of Equation (9) does not depend on the control policy. Let ug cars in the system.
assume that the incoming flow of cars to the system is modeledBasically, the MPC computes in each iteration the switching
by a stochastic function. Thus the second term of Equatipn @quence of the traffic lights that minimizes the total delhy
does not depend on the control policy either. This way, igur cars in the system. Then, during one step, etime units, it
out that minimizing the total delay is equivalent to maximg@ applies the control action specified by the optimum switghin
the outflow from the system, given by: sequence on the traffic lights and continues looping.



The input data of the MPC are: the structure of the modSince the capacity of the sections is 60, the initial values o
(roads, intersections, traffic lights,...), the initiahtgt of the the complementary places arag[p3] = 25, mg[pj] = 45.
system (number of cars in each section and state of the traffice flow rate cars/second enteri®j (resp.R2) is a random
lights), the time interval 4), the control horizon K), the variable uniformly distributed in the intervad.2,0.3] (resp.
maximum red {/red) and minimum greengreen) intervals [0.4, 0.6]).
allowed for each intersection, and the inflows of cars at the

entrance transitions. The following algorithm sketches th inflow to Rz‘
MPC structure for the traffic model:
Algorithm 1: lSZ
Input: System structurénitial_state, A, H, Mred, mgreen,
Inflow_of_cars _ s1 sS3
1) Current_state := Initial_state inflow to R1 —
2) loop S4
3) Compute the potential switching sequences of traf- I

fic lights over control horizonH’ satisfying the

"Mred’ and ‘mgreen’ constraints Fig. 13. Sketch of the traffic system in Figure 12.
4)  Take the switching sequence€ that minimizes the _ o . . . _
total delay of the system frofurrent_state over Time is discretized in periods of 8 seconds, iA.,= 8.
period h’ The parameters: and g for traffic light phases ¢ and gr,
5)  Apply the first control action specified by”on the ~ se€ Subsection IV-C, are = 3 seconds an@d = 2 seconds.
traffic lights The maximum interval of red lights is specified @sA = 48
6) Get the New_state’ of the system after\ time seconds.
units The goal of the MPC is to minimize the total delay of cars in
7)  Current_state := New_state the system. The control horizon is 6 periods, i.e., 48 segond
8) end loop which is sufficient for a car to cross the whole system prayide

The commands in steflsand4 compute the control action there are no tra_ffic jams. Figure 14 shows the evolution of the
for the next step according to the current state. The commafyimber of cars in each section under MPC, where m1(m2, m3,
in stepss, 6 and 7 apply the computed control action during™4) stahds fom p}|(m[p7], m[p}], fln[PiL]): i.e., the number
one time period and update the system state. Given that ffecars in S1(S2, S3, S4). Green lights 6, so red lights
number of switching sequences is exponential with respdef 2, are represented by stars at 1. Red lights fdr so
to the number of traffic lights, the computation time of stef'€en lights forR2, are represented by stars at 3. Stars at 2
4 might become too high if one must check every singl€pPresent swﬂchmg_from red to green_and vice versa. Since
sequence to find the optimal one. Fortunately, only the s&€ input flow toR2 is greater than the input flow 1, the
quences satisfying théZred’ and ‘mgreen’ constraints must "esult of t.he MPC is th.at green lights f(m_ last Ionge_r than
be checked. The optimal sequence is obtained by simulatié@f: £21. Given that the incoming flow tdi2 is stochastic, the
after the simulation of each feasible sequence, the ondiggel ate green/red of the traffic lights is not constant.
the minimum total delay is selected.

Flow to R1in [0.2, 0.3]. Flow to R2 in [0.4, 0.6]
35 ‘ ‘ ‘ : ‘ ‘

VI. CONTROL SCENARIOS

This section shows two traffic scenarios modeled by time
continuous Petri nets and controlled by the MPC feedba
controller proposed in Subsection V-C.

A. An intersection

This traffic scenario, modeled as in Figure 12 (see Figure
for a sketch), consists of two one-way stre&ts and R2 that
cross at an intersection. Each roRd and R2 is divided into
two sections:R1 consisting ofS1 and S3, and R2 consisting
of S2 and S4. Traffic lights regulate the flow of cars at the
intersection, i.e., at the end of sectiof$ and S2. For the
sake of simplicity all sections are assumed to have the sa
parameters. Each section has two lanes with a total capafcity
60 cars. The model parameters are the following= ¢» =
g3 = q4 = 100, r3 = ry = 80, A[t1] = Alta] = Alts] = Fig. 14. Evolution of the system in Figure 12 under MPC.
lto] = 4. Alts] = Alts] = 5 andm[p}] = m[p3] = m[p}] =
m[pi] = 0.4. The initial distribution of cars in the system is: Figure 15 presents the evolution under a “blind” (non MPC)
mo[pi] = 15, me[p?] = 20, me[p}] = 35, me[pj] = 15. control that disregards the state of the system and thatsimp




applies a constant switching interval to the traffic ligh3&

10

roadsR2, R3 and R4 with traffic moving only in the direction

seconds for red lights and 32 seconds for green lights (timelicated by the arrows. Each intersection is regulated by
value 32 seconds was chosen after some experimentatiortraffic lights: intersectionR1R2 by traffic lights 1(tl1), inter-
optimal for an open loop control of the traffic lights). Thesection R1R3 by traffic lights 2(tl2), and intersectionR1 R4
result is a more congested traffic than with MPC control. lby traffic lights3(tI3). RoadR1 is composed of sectionsi1,
particular, section 2 starts to saturate due to its highrmng 512, 513, S14, S15andS16; roadR2 is composed of sections

flow.

Flow to R1 in [0.2,0.3]. Flow to R2 in [0.4,0.6]
T T T T T

40

521 and S22; road R3 is composed of section$31 and S32;
and roadR4 is composed of section$41 and S42.

The sections ink1 have 3 lanes and capacity for 90 cars.
The X associated to the transitions Rl is equal to5 and the
marking of the place in the self-loop (like} in the previous
scenario) is equal t6.45. The sections in road®2, R3 and
R4 have two lanes and a capacity of 60 cars, the assockted
is equal to4 and the marking of the places in the self-loops
is equal t00.4. The initial car loads of section§11, S12,
S13, 514, S15, 516, S21, S22, S31, S32, S41 and S42 are
20, 40, 45, 50, 20, 35, 20, 25, 20, 35, 40 and 35 respectively.
The weights of the arcs ar¢ = 100 andr = 80 for all
sections. It is assumed that the incoming flow of cars varies
stochastically. FoR1 the incoming flow yields in the interval
[0.4,0.7] cars/second, foR2 in the interval[0.2,0.5], for R3
in [0.2,0.4], and for R4 in [0.3,0.5].

R2 R4
Fig. 15. Evolution of th tem in Figure 12 under “blind’newl.
19 volution O e system In Figure unaer ind’nt@ i 521 S32 i s41
Let us illustrate how the MPC “reacts” when the traffiR1 sS11 312§ sS13 514§ S15 316§
conditions change. Assume that at time= 200 the flow of ‘ ‘ 02 ‘ ‘
cars entering?2 changes from a random variable|in4, 0.6] S22 S31 S42
to a constant rate @f.3 cars per second. This reduction in flow .+ |} ||
can be due to traffic works, accidents, etc. Figure 16 shows R3

how the MPC automatically adjusts the green ratio after the

flow change.

Flow to R1 in [0.2,0.3]. Flow to R2 in [0.4,0.6] till time=200 and 0.3 after time=200
30 T T T T T T T

| —ml
! - - -m2
\ ——m3
I ! I\ m
250, 0 ! I — = —m4]]

Fig. 16. MPC control of the system in Figure 12 after a flow dean

B. Main road and several intersections

Fig. 17. A main road crossed by three roads.

Time has been discretized in periods/of= 8 seconds. The
valuesa andg for soft switching from red to green are= 3
and 5 = 2 seconds. The MPC algorithm 1 has been applied
to this traffic scenario. The goal of the control is minimgin
the total delay of cars. As detailed in Subsection V-A, this
is equivalent to maximizing a function (12) that depends
on the flow of the output transitions of the system. The
output transitions of the system in Figure 17 are the ones
corresponding to sectionS16, S22, S32 and S41. Notice,
however, that if only those output transitions are considéne
cars entering?1 are not in a fair situation: They have to cross
6 sections to leave the system while the rest of the cars only
have to cros® sections 2, R3 and R4 have been modeled
just by 2 sections). This way, a controller that considery on
S16, S22, S32 and S41 as output sections will give less
priority to R1 at intersectionsk1R2 and R1R3 (given that
it takes longer to flush out the cars il). An easy way to
make the situation fair is to consider the transitions atfter
intersections as output transitions, i.e., transitiomieenS12
and S13, and transition betwee§14 and S15 are taken as
output transitions.

Let us now consider the traffic scenario depicted in Fig- Figure 18 shows the result of applying the MPC scheme
ure 17. It consists of a main roddl that is crossed by three during 50 periods (400 seconds). The control horizon for the



11

classical Petri nets; b) it can approximate arbitrarily lvael
traffic diagram; c) it is highly compositional, i.e., the feéifent
parts of the system can be designed separately, and then
assembled together easily.

The described traffic model provides a basis to apply a con-
trol strategy on traffic systems. Given that the traffic ctiods
in a traffic road may vary rapidly, a model predictive control
approach is a good choice to handle such changes. It has been
shown how this control approach can be used to minimize the

(1]

(2]

(31

(4]

(5]

(6]
Fig. 18. Marking evolution of sections S21 and S22 (uppeBl 8nd S32
(middle), S41 and S42 (lower).

(7]

MPC was 6 periods, i.e., 48 seconds. Maximum intervals of 4
seconds for red lights and minimum intervals of 16 seconds
for green lights were established. Figure 18 upper (middleg
lower) shows the evolution of the number of cars in section®
521 andS22(S531 andS32, S41 andS42) as well as the state [10]
of the traffic lights regulating the intersectidRl R2(R1R3,
R1R4): 1 means green lights foR2(R3,R4), 3 means red [11]
lights for R2(R3,R4) and 2 means traffic lights switching.
Given that R1 is more loaded than the other roads and if82]
incoming flow is higher, the controller gives priority t81.

The rate green/red in each intersection adapts dynamitzally;; 3
the stochastic changes in the incoming flows. This control
scenario was run under Matlab 6.5 on a Pentium Centrino 1.5
GHz. The step computation time wasl seconds, implying [14]
that a real time application of this strategy may be feaditrle
traffic systems of reasonable size.

VII. CONCLUSIONS (15]
A dynamical model based on continuous Petri nets hHS$!
been introduced to model the macroscopic behavior of traffig,
systems. In such a model, the marking of a place represents
the number of cars in a given section, and the firing speed of
its output transitions stands for the flow of cars leaving thag
section. By properly selecting the weights of the arcs of the
Petri net one can adjust the flow of cars to approximate a given
traffic diagram. Some of the main advantages of a continu
Petri net model are: a) it enjoys all structural propertiés o

total delay of cars in the traffic network.
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