
1

A continuous Petri net approach for model
predictive control of traffic systems

Jorge Júlvez and René Boel

Abstract—Traffic systems are often highly populated discrete
event systems that exhibit several modes of behavior such asfree
flow traffic, traffic jams, stop-and-go waves, etc. An appropriate
closed loop control of the congested system is crucial in order to
avoid undesirable behavior. This paper proposes a macroscopic
model based on continuous Petri nets as a tool for designing
control laws that improve the behavior of traffic systems. The
main reason to use a continuous model is to avoid the state
explosion problem inherent to large discrete event systems. The
obtained model captures the different operation modes of a
traffic system and is highly compositional. In order to handle
the variability of the traffic conditions, a model predictive control
strategy is proposed and validated.

I. I NTRODUCTION

The behavior of a traffic system greatly depends on the
density of vehicles in the traffic network and on the rules
governing the flow of traffic, such as the switching control of
traffic lights. Traffic models should cope with different modes
of operation depending on the state and traffic conditions of
the system. The use of traffic models gives one the chance to
analyze, to simulate and to predict the future behavior of traffic
systems. Thus these models enable the model based design of
feedback control strategies, the application of which improves
important traffic performance measures such as throughput,
delay and fuel consumption.

The state of a traffic system is usually given by the discrete
values counting the number of vehicles present in the different
sections of the traffic network. Hence, in principle discrete
event models (see [1], [2], [3] and references therein) are ap-
propriate to accurately describe the behavior of traffic systems.
Unfortunately, highly populated discrete systems suffer from
the state explosion problem that makes the analysis of the
system performance extremely difficult. Moreover the control
strategies require accurate predictions exactly in those cases
where traffic is congested, i.e., those cases where the state
space explosion is most acute. One way of overcoming this
problem is to relax the original model. Macroscopic models of
traffic systems disregard the individual vehicles and consider
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only three real valued variables describing the local behavior
(local both in space and in time) of the traffic flow: its density,
its average speed, and the flow rate, which is the product of
the density and the average speed. Examples of macroscopic
traffic models can be found in [4], [5], [6], [7], [8].

Petri nets represent a powerful modeling formalism that has
been successfully used in different application domains such as
manufacturing and logistics. This paper deals with continuous
Petri nets instead of ’classical’ discrete Petri nets. Continuous
Petri nets are the result of relaxing discrete nets by removing
the integrality constraint in the firing of transitions. In contrast
to discrete nets, the state of a continuous net is a vector of
nonnegative real numbers and the firing of the transitions are
real valued flows of material/cars that pass from the input
places to the output places. This paper has two main goals:

• Obtain a macroscopic traffic model based on continuous
Petri nets.

• Design a control strategy using such a model taking into
account the changing traffic conditions.

An interesting feature of the proposed model is that the
trade-off between accuracy and simplicity of the model can be
easily achieved by modifying the Petri net structure. Moreover,
given that road sections are modeled as independent subnets,
each subnet being a timed continuous Petri net, the resulting
model is highly compositional.

Macroscopic traffic models describe the behavior of a
traffic network by interconnecting many road sections, and
by describing the traffic variables density, average speed,and
flow rate, in this particular road section at a given point in
time. This model should represent faithfully thefundamental
traffic diagram[9] which relates the local flow rate and the car
density. To achieve this goal using continuous Petri nets, some
time extensions to the existing continuous Petri net paradigm
will be proposed. The model for the whole network is obtained
by joining together the nets for the individual sections. Traffic
lights are modelled by adding discrete places and discrete
transitions to the system. Thus, the aggregate model is a hybrid
Petri net (see [10] for preliminary results).

The behavior of the traffic system can be modified and
controlled through the switching of traffic lights. The control
goal that will be considered is to minimize the total delay of
vehicles in the system. It is desirable to use a control strategy
that is able to minimize the given objective function while
taking into account the stochastic fluctuations in the inflowof
cars into the system. A reasonable approach for this purpose
is to adopt a model predictive control (MPC) policy [11], [12].
In comparison to previous work [7], [13], [14] that uses hybrid
Petri nets, the results in the present paper:
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• allows to approximate the fundamental traffic diagram by
means of the network structure (this way, no new firing
semantics are necessary),

• and applies MPC to handle varying traffic conditions.

The paper is organized as follows: Section II introduces the
continuous Petri net formalism. In Section III some extensions
are added to this model to represent more realistically the
dynamics of traffic systems. Section IV presents the timed
continuous Petri net model for a traffic section. Such a model
is the key structure to assemble larger models. In Section V the
control problem and the model predictive control strategy are
presented. Two control scenarios are reported in Section VI.
The main conclusions are drawn in Section VII.

Some comment on the notation: Square brackets are used
to access the value of a place or transition in a given vector,
e.g.,m[p] denotes the marking ofp ∈ P, while, e.g.,C[P, t]
denotes the column of size♯(P ) corresponding to transition
t. Parenthesis are used to get the value of a variable at a
given time, e.g.,m(τ) is the vector of markings at timeτ ,
andm[p](τ) is the marking of placep at timeτ .

II. CONTINUOUS PETRI NETS

The reader is assumed to be familiar with Petri nets (PNs)
(see [15], [16] for an introduction), a formalism with many
domains of application (see [17], [18] for recent references).
The Petri net systems that will be considered here arecontin-
uous[19], [20]. Unlike discrete PN, the marking and the arc
weights of the net are non-negative real values, not necessarily
integer-valued.

Definition 1: A continuous PN is a tupleN =
〈P, T,Pre,Post〉 whereP andT denote sets of places, resp.
transitions, andPost ∈ IRP×T

0+ andPre ∈ IRP×T
0+ are the arc

weight matrices.
A continuous PN system is a pair〈N ,m0〉, where N

specifies the net structure, andm0 ∈ IRP
0+ is the initial

marking. The set of input (resp. output) places of a given set
V of transitions is denoted as•V (resp.V •). Correspondingly,
the set of input (resp. output) transitions of a given setW of
places is denoted as•W (resp.W •).

Continuous PNs are obtained as a relaxation ofdiscrete
ones. Unlike the “usual” discrete PN systems, the amount
in which a transition can be fired in a continuous PN is a
nonnegative real number. Graphically, a continuous place is
represented as a double circle and a continuous transition as
a white box.

A transition t in a continuous PN isenabledat m if for
every p ∈ •t, m[p] > 0. As in discrete PNs, theenabling
degreeat m of a transition measures the maximal amount in
which the transition can be fired in a single occurrence:

enab(t,m) = min
p∈•t

{

m[p]

Pre[p, t]

}

(1)

The firing of t in a certain amountα ≤ enab(t,m) leads to
a new markingm′, and it is denoted asm αt

−→m
′. Generalizing

the equations for discrete Petri netsm
′ = m + C[P, t] · α.

Thus, if m is the initial marking, the markingm′ reached
after several transition firings (with firing count vectorσ, i.e.

the sum of the amounts by which each transitions has fired)
is given by the fundamental state equation:m

′ = m + C ·σ.
The evolution of the marking over time can also be ex-

pressed in terms of the state equation:

m(τ) = m0 + C · σ(τ) (2)

whereτ represents time. Differentiating with respect to time
ṁ(τ) = C · σ̇(τ) is obtained. Let us denotef = σ̇, since
it represents theflow through the transitions. In this paper
the flow through transitions is variable (similar to [21]), more
specifically, infinite server semantics [22] is used. It willbe
shown that infinite server semantics allows one to model in a
natural way the rising edge of thefundamental traffic diagram.

Infinite server semantics is obtained from a first order or
deterministic approximation of the discrete case. Thus, the
flow through a transitiont at instantτ is defined as:

f [t](τ) = λ[t] · enab(t,m(τ)) (3)

where λ[t] > 0 is a constant parameter representing the
internal speed of the transition. This way, the flow of a
transition is proportional to the marking of the input place
determining the enabling degree. The overall behavior of a
time continuous PN is similar to that of a piecewise linear
system. In PNs a switch between linear dynamics is triggered
by a change in the marking of the input place determining the
enabling degree of a transition.

III. T IMED PETRI NETS FOR TRAFFIC SYSTEMS

This section first analyzes the capabilities of continuous
Petri nets to model the fundamental traffic diagram repre-
senting the behavior of a traffic system. Then, it proposes
two modifications to the timed continuous Petri net formalism
that are useful for obtaining more realistic, and yet compact,
models for traffic systems.

A. Ratio marking vs. flow

Infinite server semantics is used in system models in which
the processing speed, i.e., the flow of transitions, is propor-
tional to the number of customers in the upstream place, i.e.,
proportional to the enabling degree. The following examples
show how the flow of transitions and the rate of change of the
marking of places can be affected by the arc weights.

Consider transitiont1 (see Figure 1(a)) that has one input
placep1. Its flow is f [t1] = λ[t1] ·m[p1]/z wherez > 0 is the
weight of the arc. As shown in Section II, under infinite server
semantics the marking changes according toṁ(τ) = C · f .
So, in this caseṁ[p1] = −z · f [t1] = −λ[t1] · m[p1]. Thus,
the evolution of the marking ofp1 does not depend onz, i.e.,
on the weight of the arc.

By slightly manipulating the system in Figure 1(a),
it is possible to obtain a system in which the evolu-
tion of p1 depends on the weight of its input (output)
arc. Consider the system in Figure 1(b) withq > 0, and
q − a > 0, since arc weights must be positive. Placep2

is said to be a self-loop. The flow of transitiont2 is
f [t2] = λ[t2] ·m[p2]/q, and the marking ofp2 evolves ac-
cording toṁ[p2] = (q − a − q) · f [t2] = −a/q · λ[t2] ·m[p2],
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Fig. 1. In a) the marking evolution does not depend on the arc weight. In
b) the marking evolution depends on the arc weights.

that is, it depends on the parameter valuesq and a. If
a > 0 the marking ofp2 decreases (the conditionq > a
guarantees that the maximum rate of decrease is bounded by
ṁ[p2] = −λ[t2] ·m[p2]). If a = 0 thenm[p2] is constant and
so is the flow oft2. If a < 0 thenm[p2] increases (the rate
of increase is not bounded).

s

q

q−1

s+1

t0 t1

p1

p2

p3

p4

k

h

k+u

Fig. 2. A continuous Petri net with several self-loops.

Following these ideas, the flow of a transition can be mod-
eled as a piecewise linear function of the marking of a given
place. Let us consider the system in Figure 2. Let the internal
speed oft1 be λ[t1], while the initial markings are given by
m0[p1] = 0, m0[p2] = k, m0[p3] = k + u andm0[p4] = h
where k, u and h are positive real values. From the net
structure, the following marking invariants (or P-semiflows)
can be deduced:m[p1]+m[p2] = k, m[p1]+m[p3] = k +u,
and m[p4] = h. The existence of P-semiflows greatly helps
to synthesize the Petri net structure and to choose the arc
weights that realize a given piecewise linear relationship
between the markingm[p1] and the flowf [t1]. Later on, these
piecewise linear relationships will be used to approximate
the fundamental diagram expressing the relationship between
density of cars and flow of cars in a given section of the road.

The thick line in Figure 3 plots the piecewise linear rela-
tionship betweenf [t1] andm[p1]. When the marking ofp1 is
smaller thanh · q it constrains the firing oft1, and the flow
of t1 is proportional tom[p1]. As soon asm[p1] satisfies
m[p1]/q > h, the flow of t1 is constrained byp4. Given
that them[p4] is constant the flow will also remain constant.
Assume thatm[p1] keeps increasing. This fact involves a
decrease inm[p2] and m[p3] sincem[p1] + m[p2] = k and
m[p1] + m[p3] = k + u. Given thatp3 is also an input place
of t1, it will constrain the flow oft1 if m[p3]/s < h what
is equivalent tom[p1] > k + u − h · s. Since all markings
are positive andm[p1] +m[p2] = k, the maximum value that

f [t1]

λ · h

λ ·
u

s λ/q λ/s m[p1]

h · q
k + u − h · s

k
k + u

Fig. 3. The flow of transitiont1 (see Figure 2) is a piecewise linear function
of the marking ofp1.

m[p1] can get isk. Summing up, the flow oft1 is given by:

f [t1] =


















λ[t1] ·
m[p1]

q
if m[p1] < h · q

λ[t1] · h if h · q ≤ m[p1] ≤ k + u − h · s

λ[t1] ·
k + u − m[p1]

s
if k + u − h · s < m[p1]

f [t1]

m[p1]

λ · g

g · q

z − q h · z − g
k

k + u

Fig. 4. The addition of a new self-loop can be used to slightlymodify the
piecewise relationship.

Interestingly, the plot in Figure 3 can be softened by adding
more self-loops. For instance, assume that a new placep5 is
added to the net in Figure 2 such thatp5 has the same arcs
as p1 but that arc weightq is substituted byz, and z > q.
Let m0[p5] = m0[p1] + g be the initial marking ofp5 with
g > 0. Clearly, at any time it holdsm[p5] = m[p1]+g. Given
that z > q, whenm[p1] is high enough, the firing oft1 will
be constrained byp5. The new relationship betweenf [t1] and
m[p1] is represented by the thick line in Figure 4.

This way, an appropriate choice of self-loop places and arc
weights allows one to approximate (arbitrarily closely) any
bell-shaped function (recall that traffic diagrams are usually
bell-shaped).

B. Discrete time model

The standard continuous Petri net model with infinite server
semantics has instantaneous flow of material (or vehicles in
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the traffic model) from one place, e.g., representing a section
in a traffic network, to the next place. Let us consider the
system in Figure 5. It represents a machine,t1, working at
constant speed,f [t1] = λ[t1] ·m[p1], that places its production
on a conveyor belt represented byp2. One can imagine that
machinet1 places pieces of finished material at uniformly
distributed locations on the conveyor beltp2; the conveyor
belt then moves those pieces to the second machinet2 which
removes the pieces from the conveyor belt. Machinet2 then
processes this input material and stores it in the warehousep3.
The initial marking of the system ism0 = (1 0 0), i.e., the
conveyor belt and the warehouse are initially empty.

t1 t2
p1 p2 p3

Fig. 5. A continuous Petri net modeling a conveyor.

According to the usual continuous time model the initial
flow of t1 is f [t1](τ = 0) = λ[t1]. This implies that material
is placed on the conveyor beltp2 from the initial instantτ = 0
(m[p2](τ) > 0 for everyτ > 0). This entailsf [t2](τ) > 0 for
everyτ > 0. This behavior cannot be a faithful representation
of the real system behavior since it implies that an infinitesimal
amount of the material spends zero units of time to reacht2,
i.e., the conveyor is infinitely fast (or infinitely short).

One way of avoiding an infinitely fast movement of material
going from one transition to the next one is to use a discrete
time model (alternatively [19] models this behavior by means
of discrete transitions and0+ weighted arcs). According to
our approach, time is discretized in steps (intervals) of length
∆ > 0 . At the beginning of each step, the flow of the transi-
tions is computed with the usual expression for infinite server
semantics: f [t](k) = λ[t] · minp∈•t{m[p](k)/Pre[p, t]} for
the kth step. The marking at the next step is defined by
m(k + 1) = m(k) + C · f(k) · ∆. This way, the flow of a
transition during∆ units of time depends only on the marking
of its input places at the beginning of the interval. The
interval ∆ can be seen as the minimal travelling time (delay)
of the material between two transitions. In Figure 5,∆
is the time the conveyor takes to move a piece fromt1
to t2. Notice that the flow oft2 is zero during the first
interval (f [t2](τ = 0..∆) = 0). This discrete time continuous
PN model makes it possible to represent delays; moreover the
fact that the flow of the system is constant during each interval
allows one to carry out fast simulations.

C. Maximum time period

In the discrete time model,∆ is a design parameter model-
ing the minimal time required to travel from the beginning
of a section to the end of the section. According to the
semantics defined in the previous subsection, the marking
changes linearly during an interval. Thus, if∆ is set too
high, it might lead to a negative marking. Fortunately, it is
possible to compute an upper bound∆max such that for any
∆ ≤ ∆max the marking, calculated according to the semantics

of the discrete time model, is guaranteed to always remain
nonnegative. This upper bound depends only on the structure
of the net (not on the marking), and can thus be calculated
independently of the initial marking. In order to compute
∆max, each place will be considered separately. Without loss
of generality one can assume that no input flow is coming into
the place (since input flow is always positive and can only
make the marking larger). For each place it will be calculated
how fast it can become empty, given its maximal outflow rate.
If p is the place of the net that can become empty in the
shortest time, let us say afterγ units of time, then∆ must be
less than or equal toγ to avoid negative markings.

Let us compute how fast the placep1 of the system in
Figure 6(a) can become empty. Clearly, the marking ofp1

decreases iffr > s, hence only this case is considered. Let us
first compute how long it takes to emptyp1 if m[p1]

r
≤ m[p2]

q

(m[p1] defines the enabling degree oft1, i.e., p1 is the con-
straining place fort1). In that casef [t1](k) = λ[t1] ·

m[p1](k)
r

and

m[p1](k + 1) = m[p1](k) + (s − r) · λ[t1] ·
m[p1](k)

r
· δ

It follows that m[p1](k + 1) = 0 whenδ =
r

λ[t1] · (r − s)
.

Notice that in the case thatm[p1]
r

> m[p2]
q

(m[p2] defines
the enabling degree oft1) the flow throught1 would be less
than in the previous case and therefore it would take longer
to empty p1. Thus, for the system in Figure 6(a), placep1

cannot get empty (whatever the markingm[p1](k) is) in less
time units than:

r

λ[t1] · (r − s)
(4)

Selecting a value of∆ smaller than the value given by (4)
preventsp1 from becoming negative.

rs q

t1

p1 p2

(a)

s v
r u

t1 t2

p1p2 p3

(b)

Fig. 6. The bound of∆ that ensures non-negative markings does not depend
on the marking.

A similar approach can be taken to compute a bound∆max

for a system having places with several output transitions
(see Figure 6(b)). As in the previous example, in order to
compute the shortest emptying time ofp1 only the output
transitions that decrease the marking are considered, i.e., t1
(resp. t2) is considered iffr > s (resp. u > v). Similarly
to the previous example, the shortest emptying time occurs
when p1 is determining the flow of both output transitions,
that is, m[p1](k)

r
≤ m[p2](k) and m[p1](k)

u
≤ m[p3](k). So, if

we assume that these inequalities hold the marking in the next
step is:
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m[p1](k + 1) =

m[p1](k) + ((s − r) · f [t1](k) + (v − u) · f [t2](k)) · δ =

m[p1](k)+
(

(s − r) · λ[t1] ·
m[p1](k)

r
+ (v − u) · λ[t2] ·

m[p1](k)

u

)

· δ

(5)
Then, the time intervalδ required to emptyp1, i.e.,

m[p1](k + 1) = 0, is:

1

λ[t1] · (r − s)

r
+

λ[t2] · (u − v)

u

(6)

Equation (6) can be generalized in order to compute∆max

for more complex systems. It suffices to apply (6) for every
place of the system, and to compute the minimum of all these
values. This∆max for a general system can be expressed as:

∆max =
min

p,∃t∈ p•,Pre[p,t]>Post[p,t]

{

1

g[p, t]

}

(7)

whereg[p, t] is given by:

g[p, t] =
∑

t∈ p•, Pre[p,t]>Post[p,t]

λ[t] · (Pre[p, t] − Post[p, t])

Pre[p, t]

Notice that this expression depends only on the structure of
the net and not on the marking.

D. Emptying places

Let us consider the discrete time evolution of the system
in Figure 7. Let∆ be the length of the time interval of the
discrete time model (according to the previous Subsection,
∆ ≤ min{ 1

λ[t1]
, 1

λ[t2]
}). After the first time step of size∆,

the marking ofp1 is

m[p1](1) = m[p1](0) + C · f [t1](0) · ∆ =

m[p1](0) − λ[t1] ·m[p1](0) · ∆ = (1 − λ[t1] · ∆) ·m[p1](0)

After the second time step

m[p1](2) = (1 − λ[t1] · ∆) ·m[p1](1) =

(1 − λ[t1] · ∆)2 ·m[p1](0)

and after thekth time step

m[p1](k) = (1 − λ[t1] · ∆)k · m[p1](0)

This way, if ∆ = 1

λ[t1]
, p1 becomes empty after the first

step and remains empty indefinitely. However, if∆ < 1

λ[t1]

the evolution ofm[p1] follows a geometric progression and
never gets completely empty.

From a modeling point of view the emptying of a place at
a geometric rate can be useful, for example, in order to model
how a capacitor discharges exponentially. Nevertheless, for
other modeling purposes this feature is not desirable. Suppose
that the marking ofp1 is the number of pieces in a conveyor.
Then, the flow oft1 expresses the number of pieces leaving the

t1 t2
p1 p2

Fig. 7. Placep1 is emptied in finite time iff∆ = 1/λ[t1].

conveyor per unit of time. If from a given instant no new pieces
enter the conveyor, the flow oft1 should remain constant until
the conveyor empties. It would not be realistic that the flow
of t1 decreases exponentially as the conveyor empties.

By slightly modifying the described firing semantics it is
possible to avoid falling in a geometric progression when
emptying a place: For a given transitiont and at a given step
k it will be checked whether its input place determining the
enabling degree had input flow (new customers) during the
previous stepk−1. If there was no input flow to that place the
flow of t is kept the same,f [t](k) = f [t](k−1), otherwise the
usual firing semantics is applied,f [t](k) = λ[t]·enab(t,m, k).
Keeping the same flow of a transition allows one to empty a
place in finite time. Anyway, one should be aware that this
modification in the model leads tonon pure discrete time
infinite server semantics and could cause negative markings
even if the bound for∆ is considered. In order to avoid
negative markings, the flow of the transitions will be forced
to be the minimum between the value just described and the
flow that would empty one of the input places at the end of
the time interval. This way, places become empty exactly at
the end of time intervals.

Observe that many properties that make Petri nets so useful
for modeling remain valid after the modifications introduced
in this section. For example our discrete time continuous PNs
will satisfy place invariants and transition invariants, markings
are still states for the dynamic evolution, structural analysis is
applicable, etc.

IV. A MODEL FOR TRAFFIC SYSTEMS

This section proposes a model for traffic systems based on
the concepts presented in the previous sections. The model
assumes that the road can be virtually divided into several
road sections. In Subsection IV-A a continuous PN model for
one single road section is presented. Subsection IV-B uses
this model of a single road section as a building block for
assembling large traffic networks. Traffic lights are modeled
in Subsection IV-C as discrete places and discrete transitions
connected to the continuous PN model.

A. A road section

The traffic model to be presented requires a spatial dis-
cretization of the road to be modelled, i.e., the road is divided
into several sections. In this subsection, a continuous PN
model for one single road section is presented.

The state of a section of a road network is described by three
macroscopic variables: the densityd(τ) of cars at timeτ, their
average speedv(τ) and the flowf(τ). The markingm(τ)
of a place will represent the number of cars in the section,
these cars being uniformly distributed along the length of the
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section, and having average speedv(τ). Note thatm(τ) is
proportional to the densityd(τ) of cars along the section. The
flow f(τ) of cars leaving the section is thenf(τ) = d(τ)·v(τ).

In a traffic system the cars in a section with low density
travel at a given free speed, this is calledfree flow traffic. In
this case the flow out of the section increases proportionally
to the density. When the density of the section is higher, the
average speed decreases and the flow out of the sectionideally
remains constant. If the density is much higher, the traffic
becomes heavy and the flow out of the section decreases
due to congestion. This (bell shaped) relationship between
the flow and the density is known as thefundamental traffic
diagram [9]. In the proposed model the fundamental traffic
diagram will be approximated by a piecewise linear function
following the ideas in Subsection III-A. First, a net that models
free flow traffic and constant flow traffic is presented. Later on,
it will be shown how the decrease in flow due to congestion
is modeled when two sections are joined.

Figure 8(a) is the first step to model a given road section
i. The number of cars in sectioni is represented by the
marking of placepi

1, the flow of cars leaving the section is
the flow of transitionti, and the flow of cars entering the
section is the flow of transitionti−1. If pi

3 is ignored, the use
of infinite server semantics establishesf [ti] = λ[ti] · m[pi

1],
i.e., the outflow is proportional to the density. Hence, the
subnetpi

1, ti with an appropriateλ[ti] models free flow traffic.
Notice that this relationship between the flow and the marking,
f [ti] = λ[ti] · m[pi

1], cannot be represented with finite server
semantics where the flow of a transition is independent of the
marking of its positively marked input places [23].

For simplicity, it will be assumed that the system mode
changes from free flow to constant flow traffic without inter-
mediate modes. Nonetheless, for a better approximation of
the fundamental diagram, such intermediate modes can be
easily modeled by adding more self-loop places (as in Subsec-
tion III-A). Constant flow traffic can be modeled by addingpi

3.
The marking ofpi

3 is always constant and imposes an upper
bound on the flow ofti, f [ti] = λ[ti] · min{m[pi

1],m[pi
3]}.

Therefore, whenm[pi
1] > m[pi

3] the flow of ti is constant,
f [ti] = λ[ti] ·m[pi

3] = λ[ti] · hi.

titi−1

pi
1

pi
3 hi

(a)

titi−1

pi
1

pi
2

pi
3

ki

hi

(b)

Fig. 8. Petri net model of a road section.

Obviously, the number of cars that can be in a road section
is finite. This means that the model of a section must impose
an upper bound on the marking of the place representing the
number of cars. This can be easily achieved by adding a new
place to the section model, viz.pi

2 in Figure 8(b). At all times
the model in Figure 8(b) ensures thatm[pi

1] + m[pi
2] = ki

where ki represents the capacity of the section andm[pi
2]

represents the number of free gaps in the section.
The model of a road section as proposed above describes

the behavior of the system before the onset of congestion.
Subsection IV-B shows that the behavior of a congested section
is captured in a natural way as a result of the interaction with
downstream sections.

B. Joining sections

In a PN model with several sections, two adjacent sections,
i, j, share a transition,ti, whose flow represents the flow rate
of cars passing the boundary between sectioni and sectionj
(measured in cars per time unit). This transitionti has three
input places:pi

1 representing the number of cars in sectioni,
pi
3 with constant marking bounding the flow ofti and pi+1

2

representing the number of gaps in sectionj. Therefore, the
flow of cars from sectioni to section i + 1 also depends
on the number of gaps in the downstream sectioni + 1,
f [ti] = λ[ti]·min{m[pi

1],m[pi
3],m[pi+1

2 ]}. This model closely
represents the physical reality of the upstream propagation of
a traffic jam. Indeed, if not enough free gaps are available
downstream, i.e. if the downstream section is congested, then
the outflow from the upstream section will decrease. The
outflow from ti is thus, proportional to the minimum of the
number of cars desiring to leave the upstream section, i.e.,the
number of tokens in the upstream placep1

i , and the number of
cars allowed to enter the downstream section, i.e., the number
of tokens in downstream placepi+1

2 . This is analogous to the
sending and receiving functions described in [24].

The outflow from a low density sectioni (a section in
free flow condition withdi(τ) ≤ h · q) is proportional to
the number of cars (f [ti] = λ[ti] · min{m[pi

1]}) with propor-
tionality constantλ[ti]. If the downstream section becomes
full, the outflow is proportional to the number of gaps of
the downstream section (f [ti] = λ[ti] · min{m[pj

2]}), with
λ[ti] as the proportionality constant. This model implies that
the proportionality constantλ[ti] takes the same value under
both situations. This is not in agreement with real traffic data.
One way to avoid this fact is to use arc loops as shown
in Figure 1. The use of such arc loops allows one to have
different proportionality constants for the density of cars and
the number of gaps. Notice that the constant flow traffic
is modeled thanks to a place,pi

3, with a constant marking.
Hence, for anyλ[ti] its marking can be chosen to correctly
upper bound the flow ofti without introducing weights in its
input/output arcs.

Figure 9 shows a traffic model consisting of three sections
with arc loops controlling the proportionality constants.With
an appropriateλ, that system can be reduced to an equivalent
one with only one arc loop for each transition (sinceλ[ti] is
already the proportionality constant either for the density or
for the number of gaps).

Notice that the special features of the model described
previously are useful for traffic modeling. By using a discrete
time model it is possible to represent the minimal delay of
the cars coming from the input transition of a given section to
the output transition of the same section. This time interval,
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Fig. 9. Traffic system with three sections.

∆, can be seen as the minimal time required for a car to
travel from the beginning of a section to the beginning of
the next one. A continuous time model could be possible,
but then it would require an infinite dimensional state space,
corresponding to infinitely many infinitesimally short sections
(a partial differential equation is obtained by letting∆ go to0).
Besides, the extensions presented in this paper allow sections
to become empty in finite time by keeping the outflow constant
as long as no inflow exists. These extensions represent more
faithfully the behavior of a real traffic system than the original
continuous PN formalism, and they will be used in the sequel
for simulations.

C. Traffic lights

Traffic lights are the most common way to control real
traffic systems. Traffic lights can be seen as discrete event
systems whose state can be either red, amber or green. This
is why we propose to model traffic lights with simple discrete
Petri nets. See Figure 10 for traffic lights ruling an intersection
of two one-way streetsR1 andR2.

R2

R1

(a)

gr

rrgg

rg

(b)

Fig. 10. A discrete Petri net modeling traffic lights in an intersection.

The system that models traffic lights has four phases, each
phase being represented by a place in the net. A given phase
is active when its corresponding place is marked. Since only
one phase can be active at a time, the number of tokens in the
net is1. The actions associated to each phase are:

• gg: Cars from R1 crossing. Traffic lights state: green
lights for R1; red lights forR2.

• gr: Cars from R1 stop, cars fromR2 start crossing.
Traffic lights state: first amber, and then red light forR1;
red, amber and finally green forR2.

• rr : Cars fromR2 crossing. Traffic lights state: red lights
for R1; green lights forR2.

• rg: Cars fromR2 stop, cars fromR1 start crossing. Traffic
lights state: red, amber and finally green forR1; first
amber, and then red light forR2.

Figure 11 sketches how the flow of cars coming fromR1
and R2 is regulated by the traffic lights. The flow of cars
crossing the intersection fromR1 (R2) at a given time is
obtained by multiplying the flow of the continuous transition
(see Section III) associated toR1 (R2) by the valuev(R1)
(v(R2)) at the corresponding time, as plotted in Figure 11. For
instance, the flow of transitiont1 in Figure 12 during phasegg
is the same as if there were no traffic lights sincev(R1) = 1;
during phasegr the flow decreases linearly and becomes zero
after α time units; all along phaserr the flow remains equal
to zero; finally,β time units before the end of phaserg the
flow increases linearly from zero to the value it would take if
there were no traffic lights.

1

0

1

0

∆ ∆ ∆ ∆ ∆ ∆v(R1)

v(R2)

α αβ β

phase rg gggg gg gr rr rr

Fig. 11. Scaling factors,v(R1) andv(R2), for the flows of the four traffic
lights phases.

Phasesgr and rg allow one to model how the flow of
cars evolves smoothly from maximal flow to zero flow and
vice versa, and so to obtain a more realistic model of the
traffic system. The positive real valuesα andβ are modeling
parameters that have to fulfillα + β < ∆ (where∆ is the
value used in the discrete time model proposed in subsection
IV-B). The safety time interval during which no cars cross the
intersection is∆ − α − β.

V. CONTROL STRATEGY

This section illustrates how the model of road traffic as
developed above can be used for designing a model predic-
tive feedback controller, approximately minimizing a given
objective function. The first subsections introduce the objective
function and the control constraints that have to be considered.
Then, the model predictive control scheme is presented.

A. Objective function

Many different control goals can be pursued for traffic
systems. In this paper we focus on the minimization of the total
delay (waiting time) of the cars in the system. In other words
the control strategy used by the traffic lights must minimize
the sum of the time delays spent by all cars during the control
horizon in which the control is applied.

Let us consider that the marking of placepi
1 represents the

number of cars in sectioni. Then, in the continuous time
domain the delay of all the cars passing through sectioni
during the time interval from0 to ρ is given by the integral



8

Traffic lights

q1 q3

r3

q1−1 q3−1

q2 q4

r4

q2−1

r4−1

q4−1

r3−1

inflow to R1

inflow to R2

tR1

tR2

t1

t2

t3

t4

p1

1

p1

3 h1

p2

1

p2

3 h2

p3

1

p3

2

p3

3 h3

p4

1

p4

2

p4

3
h4

k3

k4

Fig. 12. An intersection modeled by a continuous Petri net.

∫ ρ

0
m[pi

1](τ)dτ . The total delay of all the cars passing through
the system is obtained by summing over all the placespi

1

representing all the sections of the network:

∑

pi

1

∫ ρ

0

m[pi
1](τ)dτ (8)

Since infinite server semantics is used, the following equa-
tion:

ṁ[pi
1](ξ) = f [•pi

1](ξ) − f [pi
1

•
](ξ)

holds for each placepi
1, and therefore:

m[pi
1](τ) = m[pi

1](0) +

∫ τ

0

f [•pi
1](ξ)dξ −

∫ τ

0

f [pi
1

•
](ξ)dξ

Notice that in the traffic model the output transition of a
given section is the input transition of the downstream section.
Thus, many terms of Equation (8) cancel and so the total delay
can be expressed as:

∑

pi

1

∫ ρ

0

m[pi
1](0)dτ +

∑

t∈Tin

∫ ρ

0

∫ τ

0

f [t](ξ)dξdτ −

∑

t∈Tout

∫ ρ

0

∫ τ

0

f [t](ξ)dξdτ

(9)

whereTin(Tout) stands for the set of input(output) transitions
to(from) the system. For example, for the system in Figure 12,
Tin = {tR1, tR2} and Tout = {t3, t4}. Clearly the first term
of Equation (9) does not depend on the control policy. Let us
assume that the incoming flow of cars to the system is modeled
by a stochastic function. Thus the second term of Equation (9)
does not depend on the control policy either. This way, it turns
out that minimizing the total delay is equivalent to maximizing
the outflow from the system, given by:

∑

t∈Tout

∫ ρ

0

∫ τ

0

f [t](ξ)dξdτ (10)

Hence only the flows of the output transitions of the system
are required. Assume for the sake of simplicity that the output
transitions of the system are not regulated by traffic lights.
Assume that the discrete time domain described in Subsec-
tion III-B is implemented by the simulator of the network.
Then the flow of any output transitionti is piecewise constant,
all periods being of length∆. At the end of the periodH ,
whereH = ρ

∆ :

∫ ρ

0

∫ τ

0

f [t](ξ)dξdτ =
∆2

2

H
∑

i=1

(

(

2 · (H − i)+1
)

· f i[t]
)

(11)

wheref i[t] is the flow of transitiont at the beginning of period
i. Since∆ is constant it can be removed from the objective
function. The final expression for the objective function is
obtained by applying Equation (11) to every output transition
of the system and summing the obtained values:

max

H
∑

i=1

(

(

2 · (H − i) + 1
)

·
∑

t∈Tout

f
i[t]

)

(12)

B. Control constraints

In order to avoid excessively long waiting times for indi-
vidual cars, a maximum time intervalMred for red lights
will be established at each intersection. When the traffic light
has remained red for a given direction for an interval of time
equal toMred then a transition is forced to fire in the PN
representing the traffic lights, causing the light to turn green
for the given direction. Similarly, the proposed control offers
the chance of establishing minimum time intervalsmgreen for
green lights to avoid having excessively short green light cy-
cles. Notice that establishing maximum red (minimum green)
time intervals for a given road crossing an intersection implies
establishing maximum green (minimum red) time intervals for
the other road crossing the same intersection.

C. Model predictive control

This subsection proposes a model predictive control (MPC)
policy [11], [12] for a traffic network modeled by connecting
several components of a road network as suggested in Sec-
tion IV, approximately minimizing the cost function definedin
Subsection V-A, and taking the constraints of Subsection V-B.
An MPC approach allows one to minimize the given objective
function (12). Since an MPC controller acts as a closed-
loop structure it generates a robust feedback controller that
achieves good performance under a reasonably broad class of
perturbations of the model, e.g., uncertainty about the inflow
of cars in the system.

Basically, the MPC computes in each iteration the switching
sequence of the traffic lights that minimizes the total delayof
cars in the system. Then, during one step, i.e.,∆ time units, it
applies the control action specified by the optimum switching
sequence on the traffic lights and continues looping.
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The input data of the MPC are: the structure of the model
(roads, intersections, traffic lights,...), the initial state of the
system (number of cars in each section and state of the traffic
lights), the time interval (∆), the control horizon (H), the
maximum red (Mred) and minimum green (mgreen) intervals
allowed for each intersection, and the inflows of cars at the
entrance transitions. The following algorithm sketches the
MPC structure for the traffic model:

Algorithm 1:
Input: System structure,Initial state, ∆, H , Mred, mgreen,
Inflow of cars

1) Current state := Initial state
2) loop
3) Compute the potential switching sequences of traf-

fic lights over control horizon ’H ’ satisfying the
’Mred’ and ’mgreen’ constraints

4) Take the switching sequence ’s’ that minimizes the
total delay of the system fromCurrent state over
period ’h’

5) Apply the first control action specified by ’s’ on the
traffic lights

6) Get the ’New state’ of the system after∆ time
units

7) Current state := New state
8) end loop
The commands in steps3 and4 compute the control action

for the next step according to the current state. The commands
in steps5, 6 and7 apply the computed control action during
one time period and update the system state. Given that the
number of switching sequences is exponential with respect
to the number of traffic lights, the computation time of step
4 might become too high if one must check every single
sequence to find the optimal one. Fortunately, only the se-
quences satisfying the ’Mred’ and ’mgreen’ constraints must
be checked. The optimal sequence is obtained by simulation:
after the simulation of each feasible sequence, the one yielding
the minimum total delay is selected.

VI. CONTROL SCENARIOS

This section shows two traffic scenarios modeled by timed
continuous Petri nets and controlled by the MPC feedback
controller proposed in Subsection V-C.

A. An intersection

This traffic scenario, modeled as in Figure 12 (see Figure 13
for a sketch), consists of two one-way streetsR1 andR2 that
cross at an intersection. Each roadR1 andR2 is divided into
two sections:R1 consisting ofS1 andS3, andR2 consisting
of S2 and S4. Traffic lights regulate the flow of cars at the
intersection, i.e., at the end of sectionsS1 and S2. For the
sake of simplicity all sections are assumed to have the same
parameters. Each section has two lanes with a total capacityof
60 cars. The model parameters are the following:q1 = q2 =
q3 = q4 = 100, r3 = r4 = 80, λ[t1] = λ[t2] = λ[t5] =
λ[t6] = 4, λ[t3] = λ[t4] = 5 andm[p1

3] = m[p2
3] = m[p3

3] =
m[p4

3] = 0.4. The initial distribution of cars in the system is:
m0[p1

1] = 15, m0[p2
1] = 20, m0[p3

1] = 35, m0[p4
1] = 15.

Since the capacity of the sections is 60, the initial values of
the complementary places arem0[p3

2] = 25, m0[p4
2] = 45.

The flow rate cars/second enteringR1 (resp.R2) is a random
variable uniformly distributed in the interval[0.2, 0.3] (resp.
[0.4, 0.6]).

S1 S3

S4

S2

inflow to R1

inflow to R2

Fig. 13. Sketch of the traffic system in Figure 12.

Time is discretized in periods of 8 seconds, i.e.,∆ = 8.
The parametersα and β for traffic light phasesrg and gr,
see Subsection IV-C, areα = 3 seconds andβ = 2 seconds.
The maximum interval of red lights is specified as6 ·∆ = 48
seconds.

The goal of the MPC is to minimize the total delay of cars in
the system. The control horizon is 6 periods, i.e., 48 seconds,
which is sufficient for a car to cross the whole system provided
there are no traffic jams. Figure 14 shows the evolution of the
number of cars in each section under MPC, where m1(m2, m3,
m4) stands form[p1

1](m[p2
1], m[p3

1], m[p4
1]), i.e., the number

of cars in S1(S2, S3, S4). Green lights forR1, so red lights
for R2, are represented by stars at 1. Red lights forR1, so
green lights forR2, are represented by stars at 3. Stars at 2
represent switching from red to green and vice versa. Since
the input flow toR2 is greater than the input flow toR1, the
result of the MPC is that green lights forR2 last longer than
for R1. Given that the incoming flow toR2 is stochastic, the
rate green/red of the traffic lights is not constant.
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Fig. 14. Evolution of the system in Figure 12 under MPC.

Figure 15 presents the evolution under a “blind” (non MPC)
control that disregards the state of the system and that simply
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applies a constant switching interval to the traffic lights:32
seconds for red lights and 32 seconds for green lights (the
value 32 seconds was chosen after some experimentation as
optimal for an open loop control of the traffic lights). The
result is a more congested traffic than with MPC control. In
particular, section 2 starts to saturate due to its high incoming
flow.

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40
Flow to R1 in [0.2,0.3]. Flow to R2 in [0.4,0.6]

 

 
m1
m2
m3
m4

Fig. 15. Evolution of the system in Figure 12 under “blind” control.

Let us illustrate how the MPC “reacts” when the traffic
conditions change. Assume that at timeτ = 200 the flow of
cars enteringR2 changes from a random variable in[0.4, 0.6]
to a constant rate of0.3 cars per second. This reduction in flow
can be due to traffic works, accidents, etc. Figure 16 shows
how the MPC automatically adjusts the green ratio after the
flow change.
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Fig. 16. MPC control of the system in Figure 12 after a flow change.

B. Main road and several intersections

Let us now consider the traffic scenario depicted in Fig-
ure 17. It consists of a main roadR1 that is crossed by three

roadsR2, R3 andR4 with traffic moving only in the direction
indicated by the arrows. Each intersection is regulated by
traffic lights: intersectionR1R2 by traffic lights1(tl1), inter-
sectionR1R3 by traffic lights 2(tl2), and intersectionR1R4
by traffic lights3(tl3). RoadR1 is composed of sectionsS11,
S12, S13, S14, S15 andS16; roadR2 is composed of sections
S21 andS22; roadR3 is composed of sectionsS31 andS32;
and roadR4 is composed of sectionsS41 andS42.

The sections inR1 have 3 lanes and capacity for 90 cars.
Theλ associated to the transitions inR1 is equal to5 and the
marking of the place in the self-loop (likemi

3 in the previous
scenario) is equal to0.45. The sections in roadsR2, R3 and
R4 have two lanes and a capacity of 60 cars, the associatedλ

is equal to4 and the marking of the places in the self-loops
is equal to0.4. The initial car loads of sectionsS11, S12,
S13, S14, S15, S16, S21, S22, S31, S32, S41 andS42 are
20, 40, 45, 50, 20, 35, 20, 25, 20, 35, 40 and35 respectively.
The weights of the arcs areq = 100 and r = 80 for all
sections. It is assumed that the incoming flow of cars varies
stochastically. ForR1 the incoming flow yields in the interval
[0.4, 0.7] cars/second, forR2 in the interval[0.2, 0.5], for R3
in [0.2, 0.4], and forR4 in [0.3, 0.5].

S16R1

R2

R3

R4

tl1

tl2

tl3

S11 S12

S21

S22

S13

S32

S31

S14 S15

S41

S42

Fig. 17. A main road crossed by three roads.

Time has been discretized in periods of∆ = 8 seconds. The
valuesα andβ for soft switching from red to green areα = 3
and β = 2 seconds. The MPC algorithm 1 has been applied
to this traffic scenario. The goal of the control is minimizing
the total delay of cars. As detailed in Subsection V-A, this
is equivalent to maximizing a function (12) that depends
on the flow of the output transitions of the system. The
output transitions of the system in Figure 17 are the ones
corresponding to sectionsS16, S22, S32 and S41. Notice,
however, that if only those output transitions are considered the
cars enteringR1 are not in a fair situation: They have to cross
6 sections to leave the system while the rest of the cars only
have to cross2 sections (R2, R3 andR4 have been modeled
just by 2 sections). This way, a controller that considers only
S16, S22, S32 and S41 as output sections will give less
priority to R1 at intersectionsR1R2 and R1R3 (given that
it takes longer to flush out the cars inR1). An easy way to
make the situation fair is to consider the transitions afterthe
intersections as output transitions, i.e., transition betweenS12
and S13, and transition betweenS14 and S15 are taken as
output transitions.

Figure 18 shows the result of applying the MPC scheme
during 50 periods (400 seconds). The control horizon for the
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Fig. 18. Marking evolution of sections S21 and S22 (upper), S31 and S32
(middle), S41 and S42 (lower).

MPC was 6 periods, i.e., 48 seconds. Maximum intervals of 40
seconds for red lights and minimum intervals of 16 seconds
for green lights were established. Figure 18 upper (middle,
lower) shows the evolution of the number of cars in sections
S21 andS22(S31 andS32, S41 andS42) as well as the state
of the traffic lights regulating the intersectionR1R2(R1R3,
R1R4): 1 means green lights forR2(R3,R4), 3 means red
lights for R2(R3,R4) and 2 means traffic lights switching.
Given thatR1 is more loaded than the other roads and its
incoming flow is higher, the controller gives priority toR1.
The rate green/red in each intersection adapts dynamicallyto
the stochastic changes in the incoming flows. This control
scenario was run under Matlab 6.5 on a Pentium Centrino 1.5
GHz. The step computation time was1.1 seconds, implying
that a real time application of this strategy may be feasiblefor
traffic systems of reasonable size.

VII. C ONCLUSIONS

A dynamical model based on continuous Petri nets has
been introduced to model the macroscopic behavior of traffic
systems. In such a model, the marking of a place represents
the number of cars in a given section, and the firing speed of
its output transitions stands for the flow of cars leaving that
section. By properly selecting the weights of the arcs of the
Petri net one can adjust the flow of cars to approximate a given
traffic diagram. Some of the main advantages of a continuous
Petri net model are: a) it enjoys all structural properties of

classical Petri nets; b) it can approximate arbitrarily well a
traffic diagram; c) it is highly compositional, i.e., the different
parts of the system can be designed separately, and then
assembled together easily.

The described traffic model provides a basis to apply a con-
trol strategy on traffic systems. Given that the traffic conditions
in a traffic road may vary rapidly, a model predictive control
approach is a good choice to handle such changes. It has been
shown how this control approach can be used to minimize the
total delay of cars in the traffic network.
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