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Abstract. The adequate system performance is usually a critical re-
quirement to be checked during the verification phase of a system. Thus,
accurately measuring the performance of current industrial systems,
which are often modelled as a Discrete Event Systems (DES), is a need.
Due to the state explosion problem, the performance evaluation of DES
becomes increasingly difficult as the size of the systems increases. Some
approaches, such as the computation of performance bounds, have been
developed to overcome this problem. In this paper we propose a new
method to produce performance bounds that are sharper than the ones
that can be achieved with current methods. The core of our method is
an iterative algorithm that initially considers the most constraining bot-
tleneck cycle of the system and adds other cycles to it in each iteration.
The proposed method is deeply explained and then applied to a broad
set of Marked Graphs.

1 Introduction

One of the problems when dealing with the production of a new system is the
verification of requirements. A requirement is a singular need of what the prod-
uct (i.e, system, or service) should be or should perform. The requirements of
a system can be divided in functional and non-functional requirements. The
functional requirements involve calculations, technical details, data (or item)
manipulation and processing or any functionality that defines what the system
is supposed to do, while non-functional requirements define how the system is
supposed to be. Some examples of non-functional requirements are constraints,
usability, maintainability and performance.

Thus, correctly measuring the performance of an industrial system is even-
tually a need. Many of these artificial systems (e.g., logistic, manufacturing,
traffic system, etc.) can be naturally modeled as Discrete Event Systems (DES).
In practice, the increasing size of systems makes the exact computation of their
performance a highly complex computational task. The main reason for this com-
plexity is the state explosion problem, according to which the number of states
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of a system is exponential in the size of the system description. As a result, a
task that requires an exhaustive state space exploration becomes unachievable
in reasonable time for large systems.

There exist many works in the literature related to the performance evalua-
tion of systems modeled as DES. Concerning works that compute exact analyti-
cal measures of performance of Timed Marked Graphs, which are the framework
of this paper, the work in [16] determined the average throughput of a timed
Marked Graph with deterministic firing delays in polynomial time. In [3], the
average cycle time of events in Marked Graphs with fixed delays was calculated
using linear programming. Other works [12,21,22] are focused on obtaining the
Markov chain (continuous time, CTMC [12], or discrete time, DTMC [21,22]) in
asynchronous circuits to calculate its stationary probability distribution. In [11],
queuing models are used to avoid the state explosion problem and the perfor-
mance of closed asynchronous ring structures is studied.

In addition, several approaches have been developed to overcome the state
explosion problem. These approaches provide performance bounds [5,8,14,23,?]
and avoid the necessity of calculating the whole state space. The main advantage
of these approaches is that they reduce the running time needed for computing
a performance bound. Unfortunately, a drawback is the difficulty to assess how
good, i.e., accurate, the computed bound is with respect to the real system perfor-
mance. In the particular case of Marked Graphs with deterministic firing delays,
the obtained bound is equal to real performance. However, this is not the case
if we are dealing with other probability distribution functions (e.g., exponential,
uniform or normal) for the firing delays.

Linear programming techniques have been used to compute throughput
bounds of Marked Graphs [5] and general Petri nets [8]. These bounds are calcu-
lated using the first order moment (i.e., the mean) of the distributions associated
to the firing delay. A sharper performance bound that makes use of second or-
der moments is proposed in [14]. The work in [23] bounds the average time
separations of events in Stochastic Timed Petri Nets by deriving closed-form
expressions for lower and upper bounds which are then evaluated using stan-
dard statistical methods (more precisely Monte-Carlo simulation). Perfomance
bounds for interval Time Petri nets are also provided in [?].

This paper proposes an iterative algorithm to obtain performance bounds on
Stochastic Marked Graphs that are sharper, i.e., closer to the real performance,
than the ones we can currently compute with some of the works previously
mentioned. In a few words, our method works as follows. First, the algorithm
calculates the most restrictive cycle of the Marked Graph by applying well-known
methodologies. Then, it adds to the bottleneck cycle those sets of places that are
more likely to constraint the throughput of the system. The process of adding
sets of places is repeated until the throughput of the resulting net does not vary
significantly. Such throughput cannot increase during the addition process since
more constraints are added to the net. The proposed algorithm produces the
following outputs:
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Fig. 1. Example MG. The number shown at the left of each transition represents its
mean firing delay.

– a performance bound for the steady state throughput of a stochastic Marked
Graph and

– a subnet representing the bottleneck of the stochastic Marked Graph.

As it will be explained, the method makes intensive use of linear program-
ming techniques for which polynomial complexity algorithms exist. Given that
the performance bound is refined in each iteration, the accuracy of the final
bound depends on the number of iterations to be performed. The obtained re-
sults show that the proposed method offers a good trade-off between accuracy
and computational complexity load.

Let us illustrate our approach through the Marked Graph (MG) shown in
Figure 1. The initial marking is: m(p1) = m(p2) = 1 and the rest of places
have marking equal to 0. We assume that the firing delay of each transition
follows an exponential distribution with means δ(t1) = δ(t3) = δ(t5) = 1, δ(t2) =
δ(t4) = 2. The net has three cycles: {p1, p3, p5}, {p1, p4, p6} and {p2, p4, p7}.

The token/delay ratio of each cycle is
1

5
,

1

4
and

1

3
, respectively. The critical or

bottleneck cycle is the one with minimum token to delay ratio, thus in our case,
the bottleneck cycle is the one composed of places {p1, p3, p5} whose throughput

is equal to
1

5
. Hence, the method takes

1

5
as the initial throughput bound and

Pbn = {p1, p3, p5} as the initial bottleneck.
The method now adds to the initial bottleneck Pbn those sets of places that

are likely to be less saturated than the ones contained in Pbn. In order to produce
a strongly connected component two choices are feasible: adding to Pbn either
cycle {p1, p4, p6} or cycle {p2, p4, p7}. Intuitively it makes more sense to add the
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cycle {p1, p4, p6} since it has lower token to delay ratio. The resulting net is a
strongly connected component, more precisely it is a subnet of the whole MG,
and hence its throughput is an upper bound for the throughput of the whole MG.
Indeed, the net composed by places {p1, p3, p4, p5, p6} has a throughput equal
to 0.1875, which is a 6.25% lower than the throughput of the initial bottleneck
Pbn.

In general, the number of cycles in a system is exponential in the size of the
net. Hence, looking for the cycle with minimum token/delay ratio is in general
a non trivial task. In order to face this problem, a special marking called tight
marking will be introduced. The tight marking will enable us to easily detect
those cycles that are more constraining a priori. The tight marking associates a
slack to each place, the lower the slack the higher the probability that place will
constraint the system throughput. The slack for the places of the net in Figure 1
are µ(p2) = 0.4, µ(p6) = 0.2 and 0 for the rest of places. Notice that all the
places in Pbn have null slack, and that the places with positive slack belong to
the potential cycles to be added to Pbn. The place with minimum slack is p6,
thus the most sensible choice is to add to Pbn the cycle {p1, p4, p6}. Finally, if we
keep regrowing the net, we can add the remaining cycle {p2, p4, p7} what yields
the whole net whose throughput is equal to 0.181208 (9.396% lower than the
throughput of the initial critical cycle).

As a running example throughout the paper we will consider the Marked
Graph (MG) shown in Figure 2. In this MG, we are able to get, in a few iterations,
a performance bound which is 12.9% lower than the initial one. Indeed, a better
performance bound, just 0.3% greater than the real performance, can obtained
if more iterations are considered.

The most restrictive cycle of the net, which is calculated by solving a linear
programming problem (LPP), is the one composed of places and transitions
{{p2, p4}, {t1, t3}}. The first iteration of the method adds the cycle composed of
{{p1, p3}, {t1, t2}} to the previous one. The decision of adding {{p1, p3}, {t1, t2}}
is based on the fact that p1 is the place with minimum slack connected to the
initial bottleneck. The throughput of the resulting net is 12.9% lower than the
throughput of the initial critical cycle. The proposed method is efficient due
to the use linear programming techniques and is accurate because the bound
converges in few iterations.

The balance of this paper is as follows. Section 2 introduces the notation
and concepts we use in the rest of the paper: definition of MG, upper bound
computation and tight marking. Section 3 details the graph regrowing strategy.
Section 4 presents the results obtained after applying the approach to some
circuits of the ISCAS benchmarks [2]. The main conclusions are addressed in
Section 5.

2 Marked Graphs and Tight Marking

In this section we introduce the basic concepts needed to follow the rest of the
paper, such as marked graph and a special marking, called tight marking, which
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Fig. 2. Running example MG used through the paper.

allows us to compute easily slacks of places with respect to the critical cycle. It
is assumed that the reader is familiar with Petri nets (see [18,15] for a gentle
introduction).

2.1 Stochastic Marked Graph

Let us start by defining Petri nets in the untimed framework.

Definition 1. A Petri net is a 4–tuple N = 〈P, T,Pre,Post〉, where:

– P and T are disjoint non-empty sets of places and transitions (|P | = n,
|T | = m) and

– Pre (Post) are the pre–(post–)incidence non-negative integer matrices of
size |P | × |T |.

Ordinary nets are Petri nets whose arcs have weight 1. The pre- and post-set
of a node v ∈ P ∪ T are defined respectively as •v = {u ∈ P ∪T |(u, v) ∈ F} and
v• = {u ∈ P ∪T |(v, u) ∈ F}, where F ⊆ (P ×T )∪ (T ×P ) is the set of directed
arcs. The incidence matrix of the Petri net is defined as C = Post− Pre.

A vector m ∈ {Z
+}|P | which assigns a non-negative integer to each place is

called marking.

Definition 2. A Petri net system, or marked Petri net S = 〈N ,m0〉, is a Petri
net N with an initial marking m0.

A transition t ∈ T is enabled at marking m if m ≥ Pre[P, t]. A transition
t enabled at m can fire yielding a new marking m′ = m + C[P, t] (reached

marking). It is denoted by m t
−→m′. A sequence of transitions τ = {ti}n

i=1
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is a firing sequence in S if there exists a sequence of markings such that
m0

t1−→m1
t2−→m2 . . . tn−→mn. In this case, marking mn is said to be reachable

from m0 by firing τ , and this is denoted by m0
τ

−→mn. The firing count vec-
tor σ of the firable sequence τ is a vector such that σ(t) represents the number
of occurrences of t ∈ T in τ . If m0

τ
−→m, then we can write in vector form

m = m0 + C · σ, which is referred to as the linear (or fundamental) state
equation of the net.

The set L(S) = {τ |τ firable from m0} is the language of firing sequences of S.
RS(S) is the set of all reachable markings from m0. RG(S) is the reachability
graph of S (a graph with RS(S) as set of vertices and whose set of edges are the
firing sequences of length 1 between vertices).

A p-semiflow is a non-negative vector Y : P → N such that is a left anuller
of the net’s flow matrix, Y T · C = 0. A t-semiflow is a non-negative vector
X : T → N such that is a right anuller of the net’s flow matrix, C · XT = 0.
A t-semiflow v is minimal when its support, ‖v‖ = {i|v[i] 6= 0}, is not a proper
superset of the support of any other t-semiflow, and the greatest common divisor
of its elements is one. A Petri Net is said to be strongly connected if there is a
directed path joining any node A to any node B of the graph.

Marked graphs are a subclass of ordinary Petri nets that generalizes PERT
charts and that is characterized by the fact that each place has exactly one input
and exactly one output arc.

Definition 3. [15] A marked graph (MG) is an ordinary Petri net such that
∀p ∈ P, |•p| = |p•| = 1.

Since, we are primarily interested in bounded and repetitive behaviours, the
MGs under consideration are assumed to be strongly connected. A Stochastic
Marked Graph is defined as a Marked Graph to which exponential distribution
functions are associated to the firing delays of transitions. More formally:

Definition 4. A Stochastic Marked Graph (SMG) is a pair 〈S, δ〉 where S =
〈P, T,Pre,Post,m0〉 is a marked graph and δ : T → R

+ is a positive real
function such that δ(t) is the mean of the exponential firing time distribution
associated to each transition t ∈ T .

Thus, when a transition t of an SMG becomes enabled, it fires u time units
later, where u is a random value that follows an exponential distribution with
mean δ(t). There exist different semantics for the firing of transitions, being
infinite and finite server semantics the most frequently used. Given that infinite
server semantics is more general (finite server semantics can be simulated by
adding self-loop places), we will assume that the transitions of the SMGs work
under infinite server semantics.

The average marking vector, m, in an ergodic Petri net system is defined as:

m(p) =
AS

lim
T→∞

1

T

∫ T

0

m(p)τdτ (1)
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where m(p)τ is the marking of place p at time τ and the notation =
AS

means

equal almost surely [10].
Similarly, the steady state throughput, χ, in an ergodic Petri net is defined

as:

χ(t) =
AS

lim
T→∞

σ(t)T

T
(2)

where σ(t)T is the firing count of transition t at time T .
Notice that the reachability graph of a strongly connected SMG is finite and

strongly connected. Therefore, its associated continuous time Markov chain is
ergodic, what implies the ergodicity of mτ and σT , and the existence of the
above limits.

2.2 Critical Cycle

The Little’s formula [13] involves the average number of customers L in a queue,
the input rate (throughput), λ, and the average time spent by a customer within
the queue, W .

L = λ · W (3)

In an SMG, each pair {p, t} where p• = {t}, p ∈ P, t ∈ T can be seen as a
simple queueing system for which Little’s formula can be directly applied1 [6]:

m(p) = χ(p•) · s(p) (4)

where s(p) is the average residence time at place p, i.e., the average time spent
by a token in p. The average residence time is the sum of the average waiting
time due to a possible synchronization and the average service time which in our
case is δ(p•). Therefore, the service time δ(p•) is a lower bound for the average
residence time. This leads to the inequality:

m(p) ≥ χ(p•) · δ(p•) (5)

Let us notice that strongly connected MGs have a single minimal t-semiflow
that is equal to 1. This implies that the steady state throughput is the same
for every transition. Therefore, a single scalar variable Θ suffices to express the
throughput bound to be computed for all transitions.

Proposition 1. The solution Θ of the following LPP provides an upper bound
for the steady state throughput of the transitions of an SMG [8]:

Maximize Θ :

m̂(p) ≥ δ(p•) · Θ ∀p ∈ P (6a)

m̂ = m0 + C · σ (6b)

σ ≥ 0 (6c)

1 In the sequel, for clarity we slightly abuse of notation and denote by p• the only
element of the set p• = {t}
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The first constraint (6a) is obtained from (5), the second and third con-
straints (6b), (6c) establish that m̂ must be a solution of the state equation.
The value of Θ is the exact throughput in the particular case of timed MG with
deterministic distributions associated to the firing delays [16,17].

The LPP in (6) can be transformed in its dual, which after some manipula-
tions becomes [4]:

γ = maximum y ·D

subject to y ·C = 0

y ·m0 = 1

y ≥ 0

(7)

where D(p) = δ(p•). It holds that Θ =
1

γ
where Θ is the solution of (6). The

LPP (7) can be interpreted as a search for the most constraining p-semiflow,
what in SMGs is equivalent to the most constraining cycle (or critical cycle),
i.e., the one with lowest token/delay ratio. The support of y represents such a
bottleneck cycle.

The LPP shown in Proposition 1 also allows us to calculate the critical cycle
of an SMG. In fact, the critical cycle is the cycle whose places fulfill the equality,
m̂(p) = δ(p•) ·Θ, in equation (6a). Notice that (6a) can be expressed as follows:

m(p) = δ(p•) · Θ + µ(p)

where µ(p) is the slack of place p. For every place p in the critical cycle, it
necessarily holds that µ(p) = 0. For example, the slacks of the places of the SMG
in Figure 1 are µ(p1) = µ(p3) = µ(p5) = 0, µ(p2) = 0.16, µ(p4) = 0.08, µ(p6) =
0.12 and µ(p7) = 0.16. In general, the same optimal value of the objective
function can be achieved for different slack vectors, in fact, the particular value
of vector µ will depend on the algorithm used by the LP solver.

2.3 Tight Marking

This section takes advantage of the degree of freedom of slacks in order to pro-
duce a marking, called tight marking and denoted m̃, such that each transition
has at least one input place with null slack. This marking will greatly ease the
task of adding to the initial bottleneck cycle those cycles that have low ratio
token/delay.

Definition 5. A marking vector m̃ ∈ R
|P | is called a tight marking vector of

an SMG if it satisfies:

m̃ = m0 + C · σ (8a)

∀ p : m̃(p) ≥ δ(p•) · Θ (8b)

∀ t ∃ p ∈ •t : m̃(p) = δ(p•) · Θ (8c)
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where m̃ ∈ R
|P |, σ ∈ R

|T |, and Θ is the solution of (6). A place p satisfying the
condition m̃(p) = δ(p•) · Θ is called tight.

Since the places of the critical cycle do not have slack, they fulfill (8c) and
hence are tight. On the other hand, non-critical places may have some positive
slack. The tight marking exploits this flexibility by adjusting the marking in
such a way that each transition has at least one input place that is tight.

It can be shown that a tight marking exists for each SMG [7]. Moreover it
can be computed efficiently by solving an LPP.

Proposition 2. A tight marking of an SMG can be computed by solving the
following LPP:

Maximize Σσ :

δ(p•) · Θ ≤ m̃(p) for every p ∈ P

m̃ = m0 + C · σ

σ(tp) = k

(9)

where tp is a transition that belongs to a critical cycle and k is any real constant
number.

The proof of the Proposition 2 can be found in [7]. Since we are dealing with
MGs, each row of the incidence matrix C contains a single positive (1) and a
single negative (−1) value, while all other values are zeros. Therefore, the first
two constraints of (9) can be transformed into a system of difference constraints
and hence the LPP (9) can be efficiently solved by using the Bellman-Ford
algorithm [9].

Recalling the SMG shown in Figure 1, if we calculate the tight marking we
obtain m̃(p1) = 0.2, m̃(p2) = 0.6, m̃(p3) = 0.4, m̃(p4) = 0.2, m̃(p5) = 0.4,
m̃(p6) = 0.6, m̃(p7) = 0.2.

To illustrate all the above mentioned concepts, we recall the example of
SMG shown in Figure 2. The initial marking of the SMG is m(p1) = m(p2) = 1,
m(p8) = 2, m(p13) = 3 and the rest of places have no initial tokens. Transitions
have infinite server semantic and the delays are δ(t1) = 1.2, δ(t2) = 1, δ(t3) =
1.5, δ(t4) = δ(t5) = 1, δ(t6) = 0.75, δ(t7) = 1, δ(t8) = 1.25 and δ(t9) = 0.5.

Applying the LPP in Proposition 1, we obtain the maximum throughput of
the SMG, which is, in this case, Θ = 0.3704. The solution of LPP (9) yields
the following tight marking vector: m̃(p1) = 0.6296, m̃(p2) = 0.4444, m̃(p3) =
0.3704, m̃(p4) = m̃(p5) = 0.5556, m̃(p6) = m̃(p7) = 0.3704, m̃(p8) = 0.2778,
m̃(p9) = 0.3704, m̃(p10) = 0.4259, m̃(p11) = 1.3519, m̃(p12) = 0.4630, m̃(p13) =
0.1852, m̃(p14) = 1.6111 and m̃(p15) = 2.3519.

Interestingly, if we consider just the tight places and their input and output
transitions, an SMG is obtained such that the only strongly connected com-
ponent is critical cycle. The rest of tight places, and their input and output
transitions, conform a kind of tree where the critical cycle is the root and all the
transitions are reached.
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Fig. 3. Example SMG with highlighted tight places and values of slacks.

3 Graph Regrowing Strategy

This section presents an iterative strategy to grow the critical cycle and to
compute an upper throughput bound. The idea of the strategy is to add in
each iteration the cycle that is potentially more restrictive than the others and
then calculate the throughput. Such a throughput cannot be higher than the
one in the previous iteration, since more constraints have been added to the net.
The iteration process will stop when no significant improvement of the bound is
achieved.

Algorithm 1 represents the overall regrowing strategy used to compute
throughput bounds. The algorithm needs as input data the SMG to be anal-
ysed, 〈N , δ〉, and the degree of precision (ε > 0) to be achieved. As output data,
the upper throughput bound, Θ, and the bottleneck cycle of the SMG, sccN ′,
are obtained.

Firstly, an upper throughput bound of 〈N , δ〉 is calculated according to (6),
which will be the initial upper bound. Then, the tight marking of the system is
computed by using the LPP shown in (9). The vector of slacks µ is computed
in step 3. The iteration process (steps 7–14) is repeated until no significant
improvement is achieved with respect to the last iteration.

In steps 8–11, a new set of places and transitions is added to the current
bottleneck. To achieve this, steps 8–9 look for the place q that is connected to
the current bottleneck sccN ′, i.e., q• ∈ sccN ′, and has minimum slack. Then
steps 10–11 build the new bottleneck by adding place q and the tight places that
connect the current bottleneck to q. For brevity, in the algorithm we use p ∈ N
(p• ∈ N ) to denote that a place p (transition p•) is contained in the set of places
(transitions) of N . When there exist several identical critical cycles, i.e, with the
same token to delay ratio, steps 5 and 11 choose any of them.
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Input: 〈N , δ〉, ε

Output: Θ, sccN ′

Θ = Upper throughput bound of N according to (6)1

m̃ = Tight marking according to (9)2

µ(p) = m̃(p) − δ(p•) · Θ, ∀p ∈ P3

N ′ = Graph resulting of removing from N every arc {p, p•} such that µ(p) > 04

sccN ′= Strongly connected component of N ′
5

Θ′ = 06

while

„

Θ − Θ′

Θ
≥ ε

«

do
7

Q = {q|q ∈ P, q 6∈ N ′, q• ∈ sccN ′}8

pm = {q|µ(q) = min
p∈Q

µ(p)}
9

N ′ = Graph resulting of adding arc {pm, p•

m} to N ′ where {pm, p•

m} ∈ N10

sccN ′= Strongly connected component of N ′
11

Θ′ = Θ12

Θ = Throughput of sccN ′
13

end14

Algorithm 1: The regrowing strategy algorithm.

In step 13, the throughput of the new bottleneck is taken as the new upper
bound. In the next iteration, this new upper bound will be compared with the
previous one in order to, depending on the degree of improvement achieved,
either continue or finish the iteration process.

In the given example shown in Figure 2, whose delays are δ(t1) = 1.2, δ(t2) =
1, δ(t3) = 1.5, δ(t4) = δ(t5) = 1, δ(t6) = 0.75, δ(t7) = 1, δ(t8) = 1.25 and
δ(t9) = 0.5, the critical cycle is composed by {Pcb, Tcb} = {{p2, p4}, {t1, t3}}.
The throughput bound of the critical cycle is Θcb = 0.370370 and the places
which are connected (through a transition t ∈ T ) to the critical cycle are p1

and p14, having slacks µ(p1) = 0.1852 and µ(p14) = 1.0556. Hence, the place
with minimum slack is p1. By regrowing the current bottleneck the new one is
obtained, composed by {Pcb′ , Tcb′} = {{p1, p2, p3, p4}, {t1, t2, t3}}, which has a
throughput of Θcb′ = 0.322581, which is 12.9% lower than the throughput of the
previously bottleneck {Pcb, Tcb}.

Let us assume that ε = 0.001. As the relative difference between Θcb and Θcb′

is 0.12903 (as commented previously), the iteration process carries on. At this
moment, the places connected to the current bottleneck are p10 and p14. The
addition of the place p10 which has minimum slack produces a new bottleneck
compounded of {{p1, p2, p3, p4, p6, p7, p8, p9, p10}, {t1, t2, t3, t4, t5, t6, t7}}, being
the new throughput Θ = 0.297914, which is an improvement of 7.647% with
respect to the previous bottleneck {Pcb′ , Tcb′} and 19.563% with respect to the
original bottleneck {Pcb, Tcb}.

Again, a new regrowing is possible because the relative difference is greater
than ε. In this case, the candidate places to be chosen are p5, p11 and p14, which
have slacks µ(p5) = 0.0556, µ(p11) = 0.9815 and µ(p14) = 1.0556. The addition
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of p5 produces a new bottleneck with Θ = 0.297914, which is an improvement
of 3.193% with respect to the previous bottleneck. For the next regrowing, the
candidate places are p11, p14 and p15. By adding the place p11 (µ(p11) = 0.9815)
we obtain a bottleneck whose relative throughput is lower than ε with respect
to the previous bottleneck, thus, the algorithm finishes. In summary, after four
iterations, the throughput bound obtained is 22.132% lower than the original Θ

calculated by LPP in (6).

4 Experiments and Results

In this Section we test our approach on a set of SMGs of the ISCAS benchmark-
ing [2]. After applying the regrowing strategy, the obtained results are discussed.

The structure of the SMGs to be analysed is obtained from the strongly
connected components of the ISCAS graphs. The initial marking of each place
is a natural number which is randomly selected in the interval [1 . . . 10]. The
value of the δ(t) of each transition t is a real number randomly selected from the
interval [0.1 . . . 1]. The overall strategy has been implemented on MATLAB [19],
while simulations of SMGs have been performed by the GreatSPN [20] simulation
tool using a confidence level of 99% and an accuracy of 1%. The simulations have
been run in a machine with a Pentium IV 3.6GHz processor and 2GB DDR2
533MHz RAM.

Graph
Size % Size Regrowing Initial

Θ
|P | |T | |P ′| (%) |T ′| (%) steps thr. bound

s1423 1107 792 79 (7.13%) 76 (9.59%) 3 0.236010 0.235213 (0.34%)

s1488 1567 1128 91 (5.8%) 86 (7.62%) 6 0.201300 0.173127 (13.99%)

s208 27 24 27 (100%) 24 (100%) 3 0.409390 0.377683 (7.75%)

s27 54 44 19 (35.18%) 18 (40.9%) 1 0.305960 0.304987 (0.31%)

s349 187 146 26 (13.9%) 24 (16.44%) 2 0.340320 0.327867 (3.66%)

s444 92 68 14 (15.21%) 12 (17.64%) 2 0.181670 0.181260 (0.22%)

s510 1038 734 45 (4.33%) 40 (5.45%) 5 0.133030 0.117819 (11.43%)

s526 113 92 18 (15.93%) 16 (17.39%) 2 0.313490 0.305860 (2.43%)

s713 271 208 11 (4.06%) 10 (4.8%) 1 0.428720 0.427840 (0.2%)

s820 1162 848 40 (3.44%) 38 (4.48%) 2 0.161060 0.147483 (8.43%)

s832 1293 948 84 (6.5%) 78 (12.04%) 5 0.239429 0.208798 (12.79%)

s953 415 312 88 (11.36%) 82 (26.28%) 6 0.369214 0.337811 (8.50%)

Table 1. Experiment results showing improvement of upper bound.

Table 1 shows the obtained results by our approach. The degree of accuracy
for Algorithm 1 has been set to ε = 0.005. The first column is the graph name,
followed by its size (number of places, |P |, and transitions, |T |). In the next col-
umn, it is shown the size of the net sccN ′ (|P ′|,|T ′|) produced by the algorithm.
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The column Regrowing steps shows the number of regrowing steps needed by
the algorithm. The last columns of Table 1 show the initial upper throughput
bound calculated by using the LPP (6), and the improved upper throughput
bound, Θ, computed by the algorithm. Such a bound is computed by solving the
Markov Chain associated to sccN ′ when it is handleable by the computer, and
by simulation otherwise (see [?] for an example of Markov Chain analysis). The
last column shows the percentage of improvement with respect to the original
upper throughput bound.

As it can be seen, our method is able to get a sharper upper bound than the
original bound in a few regrowing steps, and the improvement varies from 0.2%
(which indicates that the original upper bound is already very tight) up to 14%.
We conjecture that the improvement depends on the structure of the graph. It
is also worth mentioning that our approach uses a very low percentage of the
size of the original graph, in most of cases this percentage is lower than 10%.

Graph
Original graph thr. Θ Original graph

Θ
%

CPU time (s) CPU time (s) thr. thr.

s1423 59948.980 8.283 0.222720 0.235270 5.63%

s1488 36717.156 7.165 0.168760 0.172154 2.01%

s208 0.492 0.492 0.376892 0.376892 0%

s27 2166.002 0.954 0.305082 0.306166 0.35%

s349 141.210 0.441 0.328340 0.327398 −0.28%

s444 2278.231 0.205 0.181069 0.181260 0.11%

s510 13669.814 1.358 0.117500 0.118040 0.46%

s526 129.181 0.344 0.270010 0.305860 13.27%

s713 628.503 0.405 0.411630 0.427840 3.94%

s820 20775.811 0.788 0.144770 0.147699 2.02%

s832 16165.863 1.914 0.196920 0.208873 6.07%

s953 453.850 19.155 0.327910 0.338644 3.27%

Table 2. Graph throughput and CPU time comparative.

Table 2 summarises a comparative between the original throughput bound
and the improved upper throughput bound and between the CPU time needed
for both computations. The first column is the graph name, followed by the
CPU time consumed to calculate the original throughput and to calculate the
improved upper throughput bound Θ. The next columns are its original through-
put and the improved upper throughput bound, Θ. The last column shows the
relative error of Θ with respect to the original throughput. Due to the size of
original graphs, the task of calculating their throughput is an unfeasible task in
reasonable time. For this reason, the simulation parameters have been set to a
confidence level of 95% and an accuracy of 4%. Owing to this reason, the values
of Θ in Table 1 and in Table 2 can slightly vary. The negative relative errors
are caused by such confidence level and accuracy degree. As it can be observed
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in the results shown in Table 2, the improved throughput bound varies from a
value really close to the real throughput, to a value which is 13% over the real
throughput. The latter case, which deserves further analysis, might be due to
the existence of slow cycles far away from the critical cycle.
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Fig. 4. Throughput of graph s1488.

Finally, Figure 4 shows the real throughput of the graph s1488 (solid line),
the original upper throughput bound (dashed line, result of LPP (6)) and the
improved upper throughput bound (dot-dashed line) in each step of the strategy.
As it can be observed, the improved bound gets close to the real throughput after
few steps.

The main results that can be extracted from both tables can be summarised
as follows:

– a sharp upper bound is obtained after few regrowing steps;

– the size of the obtained bottleneck is very low compared to the size of the
original graph and

– the obtained bottleneck represents the actual constraint for the system
throughput, and therefore it can be considered as a potential target to carry
out performance optimization.
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5 Conclusions

Current system requirements often impose tight constraints on time properties
such as system performance. In order to check such requirements, it is necessary
to have methods that accurately evaluate the system performance. Moreover,
those methods must, not only be accurate, but also efficient in order to be
applicable to the increasingly complex systems existing in practice.

The proposed approach is based on an iterative algorithm that takes an
initial throughput bound and refines it in each iteration. The initial bound is
given by the most constraining (or bottleneck) cycle, i.e., the one with minimum
token to delay ratio. The refinements are achieved by adding to the bottleneck
cycle places and transitions with low token to delay ratio. The bound is refined
until no significant improvement is obtained. Given that most of the steps in the
procedure are based on linear programming, the proposed approach exhibits a
good trade-off between accuracy and efficiency.

The outputs of the method are an accurate estimate for the steady state
throughput, and as a by-product, a subnet representing the bottleneck of the
system. The method has been applied to a set of Stochastic Marked Graphs of
different sizes. The results show that few iterations suffice to obtain accurate
bounds and that, in general, such bounds are due to relatively small subnet
bottlenecks of the system. Such system bottlenecks represent the targets on
which potential methods for performance optimization might focus.
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