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Abstract— This paper addresses the minimum-time control

problem of structurally persistent timed continuous Petri Net

systems (ContPN ). In particular, an ON-OFF controller is

proposed to drive the system from a given initial marking (state)

to the desired (final) marking in minimum-time. The controller

is developed first for the discrete-time system ensuring that all

transitions are fired as fast as possible in each sampling period

until the required total firing counts are reached. After that,

they are stopped suddenly. By taking the limit of the sampling

period, the controller for continuous-time systems is obtained.

Simplicity and the fact that it ensures minimum-time are the

main advantages of the controller.

I. INTRODUCTION

Petri Nets (PN ) is a well known paradigm used for model-

ing, analysis, and synthesis of discrete event systems (DES).

With strong facility to depict the sequence, concurrency,

conflict and other synchronous relationships, it is widely

applied in the industry, for the analysis of manufacturing [5],

traffic, and software systems, etc. Similar to other modeling

formalisms for DES, it also suffers from the state explosion

problem. To overcome it, a classical relaxation technique

called fluidification can be used.

Continuous Petri nets [4], [13] are fluid approximations

of classical discrete Petri nets obtained by removing the

integrality constrains, which means the firing counter vector

and consequently the marking is no longer restricted to

be in the naturals but relaxed into the non-negative real

numbers. An important advantage of this relaxation is that

more efficient algorithms are available for their analysis, e.g.,

reachability and controllability [10], [7] problems.

Different approaches have been proposed in the literature

for the control of different classes of ContPNs, e.g., First-

Order Hybrid Petri nets [3] or finite server semantics [1] etc.

In this work, the minimum-time control problem of timed
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continuous Petri nets under infinite server semantics is con-

sidered. For this class of systems several control approaches

have been considered. In [10], the steady state control and

optimal steady state control are studied. Model Predictive

Control (MPC) is used for optimal control problem in

[9] assuming a discrete-time model. In [16], a Lyapunov-

function-based dynamic control algorithm is studied while

in [2] an efficient heuristics for minimum-time control is

proposed.

Here, we design an ON-OFF controller for structurally

persistent ContPN systems. With this controller, we will

prove that the system is driven from an initial marking to a

final one in minimum-time. The basic idea of the proposed

control strategy is to fire every transition as fast as possible

until the required total firing count is achieved (ON), and then

it is stopped (OFF). This kind of controller has been studied

in the case of linear systems [12], [14] and it is proved to

be minimum-time in some cases. Unfortunately our system

is only piecewise linear and the classical results can not be

applied.

This paper is organized as follows: Section II briefly

recalls some basic concepts on ContPN . Section III states

the control problem, as it is here addressed. In Section

IV, the ON-OFF controller is proposed to reach the final

state in minimum-time. Section V gives an example of the

application of the ON-OFF controller to the ContPN model

of a manufacturing system. The conclusions are in Section

VI.

II. CONTINUOUS PETRI NETS

The reader is assumed to be familiar with basic Petri net

concepts (see [4], [13] for a gentle introduction).

Definition 2.1: A continuous Petri net system is a pair

〈N ,m0〉 where N = 〈P, T,Pre,Post〉 is a net structure

where:

• P and T are the sets of places and transitions respec-

tively.

• Pre,Post ∈ R
|P|×|T|
≥0 are the pre and post matrices.

• m0 ∈ R
|P|
≥0 is the initial marking (state).
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For v ∈ P ∪ T, the sets of its input and output nodes are

denoted as •v and v•, respectively. Let pi, i = 1, . . . , |P |

and tj , j = 1, . . . , |T| denote the places and transitions. Each

place can contain a non-negative real number of tokens, this

number represents the marking of the place. The distribution

of tokens in places is denoted by m. A transition tj ∈ T

is enabled at m iff ∀pi ∈• tj , m(pi) > 0 and its enabling

degree is given by

enab(tj ,m) = min
pi∈•tj

{

m(pi)

Pre(pi, tj)

}

which represents the maximum amount in which tj can

fire. Transition tj is called k-enabled under marking m, if

enab(t,m) = k. An enabled transition tj can fire in any

real amount α, with 0 < α ≤ enab(tj ,m) leading to a new

state m′ = m+α ·C(·, tj) where C = Post−Pre is the

token flow matrix and C(·, j) is its jth column.

If m is reachable from m0 through a finite sequence σ, the

state (or fundamental) equation is satisfied: m = m0+C ·~σ,

where ~σ ∈ R
|T|
≥0 is the firing count vector, i.e., ~σ(tj) is the

cumulative amount of firings of tj in the sequence σ.

If for all p ∈ P , |p•| = 1 then N is called structurally

persistent PN , in the sense that independently by the initial

marking, the net has no conflict.

Property 2.2: [8] Let 〈N ,m0〉 be a structurally persistent

PN system. If tj is k-enabled at m, it will remain k-enabled

until tj is fired.

In timed continuous Petri net(ContPN ) the state equation

has an explicit dependence on time: m(τ) = m0 +C ·~σ(τ)

which through time differentiation becomes ṁ(τ) = C ·

~̇σ(τ). The derivative of the firing sequence f(τ) = ~̇σ(τ) is

called the firing flow. Depending on how the flow is defined,

many firing semantics appear, being the most used ones

infinite and finite server semantics [13]. For a broad class

of Petri nets it is shown that infinite server semantics offers

better approximation than finite server semantics [11]. This

paper deals with infinite server semantics for which the flow

of a transition tj at time τ is the product of the firing rate,

λj , and the enabling degree of the transition at m(τ)

f(tj , τ) = λj · enab(tj ,m(τ)) = λj · min
pi∈•tj

{

m(pi, τ)

Pre(pi, tj)

}

(1)

For the sake of clarity, τ will be omitted in the rest of the

paper when there is no confusion: f(tj), m and m(pi) will

be used instead of f(tj , τ), m(τ) and m(pi, τ).

III. PROBLEM STATEMENT

We now consider net systems subject to external control

actions, and assume that the only admissible control law

t1 t2 t4

p2

p3

p1

t2

t3

p4

p5

Fig. 1. Structurally Persistent Petri Net System

consists in slowing down the firing speed of transitions [13].

Under this assumption, the controlled flow of a ContPN

system is denoted as: w(τ) = f(τ) − u(τ), with 0 ≤

u(τ) ≤ f(τ). The overall behavior of the system is ruled

by: ṁ = C · (f(τ) − u(τ)). In this paper, we assume that

every transition is controllable (tj is uncontrollable if the

only control that can be applied is u(tj) = 0).

The problem we deal with in this work is: how to design

a control action u that drives the system from the initial

marking m0 to the desired final marking mf in minimum-

time?

Example 3.1: Fig. 1 shows a structurally persistent

and unbounded ContPN . Assume m0 = [1 0 0 0 0]
T

,

λ = [1 1 1 1]
T

, and the desired final marking mf =

[0.3 0.4 0.3 0.4 0.4]
T

.

Considering the model as untimed, the following firing

sequence ensures the reachability of the final marking: σ =

t1(0.8)t2(0.5)t3(0.5)t4(0.1). Looking at the system as timed

and considering σ, the final marking can be reached in the

following way:

(i) fire first as fast as possible t1 and stop the other

transitions; since
∫ 1.61

0
f(t1)dτ = 0.8, this firing takes

1.61 time units;

(ii) open t2 until the integral of its flow is equal to 0.5 and

stop the other transitions; this firing takes 0.98 time unit

because
∫ 0.98

0
f(t2)dτ = 0.5;

(iii) stop all transitions and fire only t3 until its flow

integral is 0.5; this will take 0.98 time unit because
∫ 0.98

0
f(t3)dτ = 0.5;

(iv) finally, open only t4 for 0.22 time unit because
∫ 0.22

0
f(t4)dτ = 0.1.

The previous strategy on the time system corresponds to

the following control actions u(τ):

(i) u(τ) = [0 f(t2) f(t3) f(t4)]
T

for 0 ≤ τ ≤ 1.61;

(ii) u(τ) = [f(t1) 0 f(t3) f(t4)]
T

for 1.61 < τ ≤ 2.59;

(iii) u(τ) = [f(t1) f(t2) 0 f(t4)]
T

for 2.59 < τ ≤ 3.57;

(iv) u(τ) = [f(t1) f(t2) f(t3) 0]
T

for 3.57 < τ ≤ 3.79;

(v) if τ > 3.79, u(τ) = f(τ), i.e., all transitions are
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stopped.

With these control actions, the system can reach the final

marking in 3.79 time units, but as it will be shown, this is not

a minimum-time controller because actions are unnecessarily

sequentialized.

IV. MINIMUM-TIME CONTROLLER

In this section, an ON-OFF controller is proposed for

structurally persistent ContPN systems and it will be shown

that it is a minimum-time controller. We will first present

some assumptions, then the controller is designed for both

discrete-time and continuous-time ContPN .

A. Minimal Firing Count Vector

In general, a marking m can be reached from m0 by

using different firing sequences. For example, if the net is

consistent and m is reached with σ, it is also reached when

firing a T-semiflow α ≥ 0 times before (or interleaved with)

σ. Here we introduce the notion of minimal firing count

vector, and prove that it is unique under some assumptions

for persistent nets.

Definition 4.1: Let 〈N ,λ,m0〉 be a ContPN system

and mf be a reachable marking through a sequence σ, i.e.,

mf = m0 + C · ~σ. The firing count vector ~σ is said to

be minimal if for any T-semiflow x, ||x|| 6⊆ ||~σ||, where

|| · || stands for the support of a vector, i.e., the index of the

elements different than zero.

Example 4.2: Let us consider the net system in Fig. 2 that

is not structurally persistent because p•1 = {t1, t2}, and p•2 =

{t3, t6}. Assume m0 = [1 0 0 0]
T

and mf = [0 0 0 1]
T

.

Firing the sequence σ1 = t1(1)t3(1) (~σ1 = [1 0 1 0 0 0]
T

)

from m0 the obtained marking is mf . The same marking

is obtained by firing σ2 = t1(1)t6(1)t1(1)t3(1) (~σ2 =

~σ1 + [1 0 0 0 0 1]
T

) since [1 0 0 0 0 1]
T

is a T-semiflow.

Therefore, ~σ1 is a minimal firing count vector, while ~σ2 is

not. Normally, the minimal firing count vector is not unique.

For this net, ~σ3 = [0 1 0 1 0 0]
T

(σ3 = t2(1)t4(1)) is

another minimal firing count vector leading to mf .

Proposition 4.3: Let 〈N ,m0〉 be a structurally persistent

PN system and mf be a reachable marking. If one of

the following assumptions is satisfied, there exits a unique

minimal firing count vector ~σ.

(A1) The matrix C has full rank;

(A2) The ContPN is strongly connected and consistent.

Proof: Suppose there exist two minimal firing count

vectors ~σ1 and ~σ2, then (1) mf = m0 + C · ~σ1, (2) mf =

m0 + C · ~σ2. Subtracting (2) from (1), we obtain:

C · (~σ1 − ~σ2) = C · ~σ12 = 0

t1

t2

t3

t4

t5

p1

p2

p3

p4

t6

Fig. 2. A non Structurally Persistent Petri Net System

If (A1) is satisfied, we must have ~σ12 = 0, so ~σ1 = ~σ2( 6=

0, if mf 6= m0).

If (A2) is satisfied, there is only one minimal T-semiflow

[15], denoted by x > 0. ~σ12 may have negative elements, but

we can always find an α ≥ 0, such that ~σ12+α·x ≥ 0. Since

C · (~σ12 +α ·x) = 0 and ~σ12 +α ·x ≥ 0, it is a T-semiflow.

Therefore, there exists β > 0 such that ~σ12 + α · x = β · x,

implying ~σ12 = (β − α) · x. If β − α = 0 then ~σ1 = ~σ2

which is impossible by assumption. If β −α > 0 then ~σ1 =

~σ2+(β − α)·x > (β − α)·x. Therefore, ~σ1 is not a minimal

firing count vector. Similarly, if β − α < 0 then ~σ2 is not a

minimal firing count vector.

Hence, for a structurally persistent system under assump-

tion (A1) or (A2), any controller driving the system to mf

must follow the minimal firing count vector plus eventually

a T-semiflow. If we are interested in the minimum-time

controller then it should follow only the minimal firing count

vector since a T-semiflow can be fired independently, before

the minimal firing sequence and this firing takes time. In the

following we will show that among all possible controllers

having the integral of firing flow equal to the minimal firing

count vector, the one corresponding to the ON-OFF strategy

provides the minimum-time controller.

B. Minimum-time controller: Discrete-time Case

Sampling the continuous-time ContPN system with a

sampling period Θ, we obtain the discrete-time ContPN

[9] given by:

m(k + 1) = m(k) + C · w(k) · Θ

0 ≤ w(k) ≤ f(k) (2)

Here m(k) and w(k) are the marking and controlled flow

at sampling instant k, i.e., at τ = k ·Θ. Let u(tj , k), f(tj , k)

and w(tj , k) denote the control action, flow and controlled

flow of transition tj . The firing count of tj in kth sampling

period is denoted by sk(tj) = w(tj , k) · Θ.
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Property 2.2 shows that for structurally persistent systems

if two transitions t1 and t2 are enabled at the same time, the

order of firing is not important (i.e., both sequences t1t2 and

t2t1 are fireable).

Example 4.4: Let us consider again the net system in

Fig. 1 but now as discrete-time with Θ = 0.2. Assume

m0 = m(0) = [0 1 1 1 1]
T

, λ = [1 1 1 1]
T

and mf =

[0.2 1.1 0.9 0.9 0.9]
T

. The minimal firing count vector in

this case is ~σ = [0 0.1 0.1 0.2]
T

. The following controlled

flow ensures the reaching of mf in two sampling periods:

• At k = 0: w(t1, 0) = w(t4, 0) = 0 and w(t2, 0) =

w(t3, 0) = 0.5. Then t2, t3 are fired in an amount 0.5 ·

Θ = 0.1 and t1 and t4 are stopped. The system reaches

m(1) = [0 0.9 0.9 1.1 1.1]
T

.

• At k = 1: w(t1, 1) = w(t2, 1) = w(t3, 1) = 0 and

w(t4, 1) = 1. Then t1, t2 and t3 are stopped while t4

is fired in an amount 1 · Θ = 0.2. After this sampling

period, mf is reached.

Under this control law, t2 and t3 are fired before t4. Since

t4 is 1-enabled at m0 it can be fired first and mf is still

reached. Therefore, another control law corresponding to the

same minimal firing count vector is:

• At k = 0: w(t1, 0) = w(t2, 0) = w(t3, 0) = 0 and

w(t4, 0) = 1. Hence, t1, t2 and t3 are stopped, and

t4 is fired in an amount 1 · Θ = 0.2. Now, m(1) =

[0.2 1.2 1 0.8 0.8]
T

.

• At k = 1: w(t1, 1) = w(t4, 1) = 0 and w(t2, 1) =

w(t3, 1) = 0.5. Hence, t2 and t3 are fired in an amount

0.1 while t1 and t4 are stopped.

Definition 4.5: Let 〈N ,λ,Θ,m0〉 be a discrete-time

ContPN system and mf be a reachable final marking with

a firing count vector ~σ. Then, transition tj is said to be

sufficiently fired in the kth sampling period if one of the

following conditions holds:

• sk(tj)
def

= w(tj , k) · Θ = f(tj , k) · Θ, i.e., u(tj , k) = 0,

• 0 < sk(tj) ≤ f(tj , k) · Θ and sk(tj) +
k−1
∑

i=0

si(tj) =

~σ(tj).

In the first case tj is fired in the maximal amount, while in

the second case it is the last firing of tj in the corresponding

sequence.

For instance, let us examine the first control law in Ex.

4.4 for k = 0. Transition t4 is not sufficiently fired, because

~σ(t4) = 0.2 (should fire in an amount of 0.2) but s0(t4) =

w(t4, 0) · Θ = 0 (it is not fired). On the other hand t2 and

t3 are sufficiently fired at k = 0 because s0(t2) = s0(t3) =

0.1 = ~σ(t2) = ~σ(t3).

In control theory, an ON-OFF controller is a controller that

switches abruptly between two states. It is frequently used

in minimum-time problems and actually optimal control in

many cases [12], [6]. Here we design an ON-OFF controller

for structurally persistent Petri nets and prove that it is the

minimum-time controller for such systems.

Definition 4.6: Let 〈N ,λ,Θ,m0〉 be a structurally per-

sistent discrete-time ContPN system and mf be a reachable

final marking with the corresponding minimal firing count

vector ~σ. An ON-OFF controller is defined as: u(tj , k) =



































































0 if
k−1
∑

i=0

si(tj) + f(tj , k) · Θ ≤ ~σ(tj) (a)

f(tj , k) if
k−1
∑

i=0

si(tj) = ~σ(tj) (b)

f(tj , k) −
~σ(tj)−

k−1
P

i=0

si(tj)

Θ

if
k−1
∑

i=0

si(tj) < ~σ(tj) and (c)

k−1
∑

i=0

si(tj) + f(tj , k) · Θ > ~σ(tj)

(3)

Assuming at k = 0,
k−1
∑

i=0

si(tj) = 0.

(a) says that before reaching the required total firing count

~σ(tj), we simply let transition tj to fire free, i.e. u(tj , k) = 0;

(b) means once ~σ(tj) is reached, the transition is completely

stopped, i.e. u(tj , k) = f(tj , k); (c) represents the last firing

of tj but can not fire at maximum speed to not overpass

~σ(tj). After all the transitions are stopped, the system will

stay in the final marking.

The basic idea of the ON-OFF controller is that in each

sampling period k, every transition is sufficiently fired.

Proposition 4.7: Let 〈N ,λ,Θ,m0〉 be a structurally per-

sistent discrete-time ContPN system and mf be a reachable

final marking with the corresponding minimal firing count

vector ~σ. The ON-OFF controller is a minimum-time con-

troller driving the system to mf .

Proof: We will prove that whenever there exists a

controller G driving the system to mf , it consumes at least

the time of the ON-OFF controller. This will imply that the

ON-OFF controller is the minimum-time controller.

Assume a non ON-OFF controller G. Hence, there exists

a transition tj that is not sufficiently fired in a sampling

period k. In other words, tj has to be fired later in a sampling

period l, l > k. Let us assume, without loss of generality,

that tj is not fired between the kth and the lth sampling

period. It is always possible to “move” some amount of firing

from the lth sampling period to the kth one until tj becomes
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sufficiently fired in k. According to Property 2.2 this move

does not affect the fireability of the other transitions. Iterating

the procedure, all transitions can be made sufficiently fired

in all sampling periods and the obtained controller is an ON-

OFF one.

Obviously, the number of discrete-time periods necessary

to reach the final marking after moving firings from a

sampling period l to another one k with k ≤ l is at least

the same. Hence the number of sampling steps is not higher

with the ON-OFF controller.

C. Minimum-time controller: Continuous-time Case

Definition 4.8: Let 〈N ,λ,m0〉 be a structurally persis-

tent continuous-time ContPN system, and mf be a reach-

able final marking with the corresponding minimal firing

count vector ~σ. An ON-OFF controller is defined as:

u(tj) =

{

0 if
∫ τ−

0
w(tj)dτ < ~σ(tj) (a)

f(tj) if
∫ τ−

0
w(tj)dτ = ~σ(tj) (b)

(4)

(a) means that if ~σ(tj) is not reached then tj is completely

ON, i.e., u(tj) = 0; else (b), tj is completely OFF, i.e.,

u(tj) = f(tj).

Corollary 4.9: Let 〈N ,λ,m0〉 be a structurally persistent

continuous-time ContPN system, and mf be a reachable

final marking with the corresponding minimal firing count

vector ~σ. The ON-OFF controller given by (4) is a minimum-

time one driving the system to mf .

Proof: If we take sampling period Θ → 0 in Def. 4.6,

the ON-OFF controller in Def. 4.8 is obtained. According to

Proposition 4.7, this is the minimum-time controller.

Let us notice that once a place of a continuous-time

ContPN is marked, it will take infinite time to be emptied

(like the discharging of a capacitor in an electrical RC-

circuit). The ON-OFF controller of a structurally persistent

net is a minimum-time controller if no place is emptied

during the trajectory from m0 to mf . Otherwise, the final

marking is reached at the limit, in infinite time. For example,

to reach mf = [0 0 1]T in the net system in Fig. 3, p1

has to be emptied while p2 should be marked first and then

emptied. Hence, mf is reached at the limit. Nevertheless, if

mf = [0.5 0.5 0]T (that is not strictly positive), it is reached

in finite time since there exists a trajectory no emptying any

place, i.e., firing t1 in an amount 0.5.

t1 t2 t3p2 p3p1

Fig. 3. ContPN with m0 = [1 0 0]. Assume mf = [0 0 1].

Example 4.10: Let’s consider the same problem in Ex.

3.1 (Fig. 1) but with an ON-OFF controller. The marking mf

is reached in 1.65 time units comparing with 3.79 time units

in Ex. 3.1 where a different (pure sequentialized) controller

with the same minimal firing count vector is applied. The

marking trajectory is in Fig. 4.
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m(p2)
m(p3)

m(p4)
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Fig. 4. Marking trajectories when applying ON-OFF in Ex. 3.1

V. CASE STUDY

Let’s consider the net system in Fig. 5, which models a

table factory system (taken from [15]).

0.5

t1p1

p2

p3

p4

0.5
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p5
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p7
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t3

t4

t5

t6
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t8

t9

t10

t11

t12

Other factory

Board maker

Old Leg-

maker

New leg-

maker

Assembler

Painting line

2

4

2

Fig. 5. Persistent PN model of a table factory system. Assume the firing

rate of every transition to be equal to 1.

The system consists of several parts, including board

maker, leg maker, assembler, painting line and is modeled by

a weighted structurally persistent ContPN . Suppose in the

initial marking m0(p1) = m0(p2) = m0(p3) = m0(p4) = 1,

m0(p6) = m0(p8) = m0(p10) = m0(p12) = m0(p16) =
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m0(p19) = 0.5, and the other places are empty. Assume mf

be mf (p3) = mf (p17) = 0.1, mf (p4) = mf (p5) = 0.2,

mf (p13) = 0.15, and all the other places with markings

equal to 0.25. The corresponding minimal firing count vector

~σ = [0.85 0.85 1.0 0.9 0.6 0.6 0.75 0.65 0.45 0.2 0.35 0.10].

Applying ON-OFF on the system under continuous time,

Fig. 6 shows the stopping time instants of transitions. After

t9 is stopped at 4.28 time units, all the places are at the final

state values.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
0

0.5

1

1.5

2

2.5

3

3.5

4
4.28

T
im

e

Fig. 6. Stopping time instants

Fig. 7 shows the marking trajectory of place p3, p13, p14

and p17. Taking p17 as a example, it reaches the final state

at 4.19 time units. That makes sense, because the marking

of p17 is dependent on transitions t5, t10 and t11, which are

stopped at 2.9, 3.24 and 4.19 time units, respectively. When

t11 is stopped, p17 has reached the final state.
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Fig. 7. Marking trajectories

VI. CONCLUSIONS

In this paper, an ON-OFF controller is designed for

structurally persistent ContPN systems which can drive the

system from an initial marking to a final one in minimum-

time. The idea behind is extremely simple and efficient:

the system reaches its final marking in minimum-time if it

follows the minimal firing count vector. In the framework

of discrete-time systems, we design the ON-OFF controller,

such that all transitions are fired as fast as possible, and

suddenly stopped when the total firing counts are reached.

Special attention should be paid to the last sampling period

before stopping in order to prevent the total firing count from

being exceeded. It is proved that with this controller the final

marking is reached in minimum-time. By considering the

limit (going to zero) of the sampling period, the results are

extended to continuous time systems.

As a future work we plan to compare this procedure with

the ones already developed [2], [9], [16].
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