
An Iterative Control Method for Distributed Continuous Petri nets

Hanife Apaydin-Özkan, Cristian Mahulea, Jorge Júlvez, Manuel Silva

Abstract— In this paper we study a reachability control

problem for distributed systems modeled by timed continuous

Petri nets. In particular, we generalize our previous works

in this framework where we solved this problem only for

distributed systems composed by two subsystems. We will show

how the existing algorithm can be adapted in order to be able

to deal with distributed systems composed by a finite number

of subsystems.

I. INTRODUCTION

The complexity of nowadays systems entails the consider-

ation of more and more autonomous modes of operation for

complex distributed plants. Each distributed plant is equipped

with local controllers and local observers resulting in a

networked embedded system that consists of computer nodes

(or subsystems) and of a communication network connecting

the various subsystems.

In this paper we approach the problem of building local

controllers for large scale distributed discrete event systems.

The problem has been studied before using automata [1],

[2], [3] and discrete Petri nets in [4], [5], [6], [7]. Recently,

a new formalism has been introduced in order to tackle

the state-explosion problem frequently appearing in discrete

event systems with high populations. It is called continuous

Petri nets and represents approximations of the discrete

Petri nets. In this relaxed framework many problems have

a reduced computational complexity since many integer

linear programming problems become linear programming

problems. Even if the control problem on the continuous

approximation may look easier than the one on the original

discrete net, in many cases the system is distributed and the

controller cannot have access to all subsystems. In this case,

a distributed controller should be considered.

In this work we consider distributed timed continuous Petri

nets with infinite server semantics (DcontPN) [8]. Such a

system is composed by several continuous Petri net subsys-

tems that model different parts of a plant, interconnected

by buffers modelled by places. These buffers contain the

This work has been partially supported by the European Community’s
Seventh Framework Programme under project DISC (Grant Agreement n.
INFSO-ICT-224498) and by CICYT - FEDER projects DPI2006-15390,
DPI2010-20413 and TIN2007-66523.

The authors are with the the Aragón Institute of Engineering Research
(I3A), University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain
{hapaydin, cmahulea, julvez, silva@unizar.es}.

products produced by a given subsystem and needed by

another subsystem. As a simple example let us consider a

car manufacturing factory composed by two plants A and

D in two different cities. The Petri net model is given in

Fig. 1. The plant A produces the car body (place p1) and

then sends it to the plant D (place p2). The plant A can

produce concurrently a limited number of car bodies (the

initial marking of p3). In plant D, the engine is constructed

(p4) and then it is put in an intermediate buffer p5. The same

plant paints the body received from plant A in p6 and puts

it in p7 to be assembled together with the engine. The firing

of t8 means the production of a new car. We assume that

D can produce concurrently a limited number of engines

(initial marking of p8) and can paint a limited car bodies

in parallel (initial marking of p9). Place pb is the buffer

containing the car bodies produced by plant A while pa is

the buffer containing the finished products. Since we do not

want to produce more than we sell, the plant A starts to

produce a new body (firing of t1) only when a car is sold.

We will first consider the problem of reaching a target

marking in a DcontPN. The underlying idea of the strategy

is to design a local controller for each subsystem. The

controllers should be computed offline, and it is assumed

that the structure and state of a given subsystem is unknown

to the controllers located at other subsystems. In order not

to overload the communication network, it is desirable to

interchange as few information as possible between con-

trollers. Each controller computes a control law to reach the

target state of its subsystem, and asks the other controllers

to produce enough resources in the buffers to execute its

control actions. This paper mainly focuses on reaching the

target markings of all subsystems in parallel after a finite

amount of time. Once the control law for each subsystem is

obtained, several control strategies can be used to implement

it, see for instance [9].

II. DISTRIBUTED CONTINUOUS PETRI NETS

The reader is assumed to be familiar with basic Petri net

concepts (see [10] for a gentle introduction).

Definition 2.1: A continuous Petri net system is a pair

〈N ,m0〉 where N = 〈P, T,Pre,Post〉 is a net structure

where: (i) P and T are the sets of places and transitions

respectively; (ii) Pre,Post ∈ R
|P|×|T|
≥0 are the pre and post

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 6753

a

3

p
2

t
2

p
3

p
1

t
1

b
b

p
9

t
7

t
4

t
6

p
4

p
6

t
5

p
8

p
5p

7

t
8

body

send paiting engine

wait_2 wait_1

Subsystem 1 Subsystem 2

b

t

Fig. 1. A DcontPN marked graph modeling a car manufacturing plant where pa and pb are buffer places.

matrices; (iii) m0 ∈ R≥0 is the initial marking (state).

For v ∈ P ∪ T, the sets of its input and output nodes are

denoted as •v and v•, respectively. Let pi, i = 1, . . . , |P |

and tj , j = 1, . . . , |T| denote the places and transitions. Each

place can contain a non-negative real number of tokens, this

number represents the marking of the place. The distribution

of tokens in places is denoted by m. A transition tj ∈ T

is enabled at m iff ∀pi ∈• tj , m(pi) > 0 and its enabling

degree is given by

enab(tj , m) = min
pi∈

•tj

m(pi)

Pre(pi, tj)

ff

which represents the maximum amount in which tj can fire.

An enabled transition tj can fire in any real amount α, with

0 < α ≤ enab(tj ,m) leading to a new state m′ = m + α ·

C(·, tj) where C = Post − Pre is the token flow matrix.

If m is reachable from m0 through a finite sequence σ, the

state (or fundamental) equation is satisfied: m = m0+C ·σ,

where σ ∈ R
|T|
≥0 is the firing count vector, i.e., σj is the

cumulative amount of firings of tj in the sequence σ.

Left and right natural annullers of the token flow matrix

C are called P-semiflows (denoted by y) and T-semiflows

(denoted by x), respectively. If ∃ y > 0, y · C = 0, then

the net is said to be conservative. If ∃ x > 0, C · x = 0 it

is said to be consistent. The support of a vector v is the set

of nonzero components and denoted by ‖v‖. A semiflow v

is said to be minimal when its support, ‖v‖, is not a proper

superset of any other and the greatest common of its elements

is one.

Definition 2.2 (MTS): A continuous Petri net system is

mono T-semiflow (MTS) net if it is conservative, consistent

and has only one minimal T-semiflow.

In the time framework, the marking of place pi at time τ

is denoted by m(pi, τ) ∈ R≥0. The vector of all token loads

is called state or marking and, is denoted by m(τ) ∈ R
|P|
≥0.

In contPNs the state equation has an explicit dependence

on time: m(τ) = m0 + C · σ(τ) which through time

differentiation becomes ṁ(τ) = C · σ̇(τ). The derivative

of the firing sequence f(τ) = σ̇(τ) is called the firing

flow. Depending on how the flow is defined, many firing

semantics appear, being the most used ones infinite and

finite server semantics [10], [11]. For a broad class of Petri

nets it is shown that infinite server semantics offers better

approximation than finite server semantics [12]. This paper

deals with infinite server semantics for which the flow of a

transition tj at time τ is the product of the firing rate λj

associated to each transition tj , and the enabling degree of

the transition at m(τ)

f(tj , τ) = λj · enab(tj , m(τ)) = λj · min
pi∈

•tj

m(pi, τ)

Pre(pi, tj)

ff

(1)

Definition 2.3 (DcontPN): A distributed continuous Petri

net system is a set of contPN systems (called subsystems)

interconnected through buffers/channels modeled as places

(called buffer or channel places).

Let K denote the set of subsystems of a given DcontPN.

The set of places, transitions and token flow matrix of

subsystem k ∈ K is denoted by P k, T k and Ck ∈ R
|Pk|×|Tk|,

respectively. We assume, Pk∩Pl = ∅ and Tk∩Tl = ∅ , ∀k, l ∈

K, k 6= l. The directional connection between subsystems

is provided by a set of places called channels or buffers.

In particular, the directional connection from subsystem k

to l is provided by a set of places denoted B(k,l), whose

input transitions are contained only in subsystem k and

output transitions are contained only in subsystem l, i.e.,

B(k,l) = {b ∈ P |•b ∈ Tk, b• ∈ Tl, b 6∈ Pq ∀q ∈ K} for

every k, l ∈ K, k 6= l, and B(l,l) = ∅ for every l ∈ K.

Note that b ∈ B(k,l) is an input buffer of subsystem

l and an output buffer of subsystem k. The set of all

output buffers of subsystem k is denoted by B(k,∗), i.e.,

6754

B(k,∗) =
⋃

l∈K B(k,l), and the set of all input channels of

subsystem k is denoted by B(∗,k), i.e., B(∗,k) =
⋃

l∈K B(l,k).

The marking vector of subsystem k is denoted by

m(Pk) ∈ R
|Pk|
≥0 . When designing a controller, it must be

taken into account that the controller of a given subsystem

only knows its marking and the marking of its input buffers,

i.e., the marking of the other subsystems and their input

buffers are not observable.

Example 2.4: Let us consider the DcontPN given in Fig.

1. It is composed of two subsystems: P1 = {p1, p2, p3},

T1 = {t1, t2, t3}; P2 = {p4, p5, p6, p7, p8, p9} and

T2 = {t4, t5, t6, t7, t8}. These two subsystems communi-

cate through two channels: bb for the communication to

subsystem 2 and ba for the communication to subsystem

1. Hence, B(1,2) = {bb} and B(2,1) = {ba}, implying

B(∗,1) = B(2,∗) = {ba} and B(∗,2) = B(1,∗) = {bb}.

III. CONTROL OF DCONTPN

This section shows how control actions can be introduced

and establishes the control problem that is considered. The

autonomous (or uncontrolled) behavior of a DcontPN de-

scribed in the previous section can be modified by intro-

ducing control actions. In continuous Petri nets the control

actions are applied on the transitions and they can only slow-

down (never speed-up) the firing flow of the transitions to

which they are applied [11].

Definition 3.1: The controlled flow, w, of a timed Dcon-

tPN is defined as w(τ) = f(τ) − u(τ), with 0 ≤ u(τ) ≤

f(τ), where f is the flow of the uncontrolled system, i.e.,

defined as in (1), and u is the control action.

Therefore, the control input u is dynamically upper

bounded by the flow f of the corresponding unforced system.

Under these conditions, the overall behavior of the system

in which all transitions are controllable is ruled by:

ṁ = C · [f − u] = C · w

0 ≤ u ≤ f
(2)

The integral of the controlled flow of a transition tj over an

interval of time (τa, τb) is denoted by s(tj) =
∫ τb

τa
w(tj)dτ .

Note that, the flow integral vector of a contPN is the firing

count vector of the underlying untimed net. For the sake of

clarity, τ will be omitted: f(tj), m and m(pi) will be used

instead of f(tj , τ), m(τ) and m(pi, τ).

Among the different existing control problems, we will

deal with a control problem which aims at reaching a

particular target marking mf at each subsystem. That is,

after a finite period of time each subsystem is at its target

marking. In contrast to a centralized control, each subsystem

is equipped with its own controller that computes the control

actions that drive the subsystem to the target marking.

Fig. 2. A tree structure DcontPN system

Given that the subsystems are interconnected, they may

require resources to be available in the communication

buffers to reach the target marking.

Example 3.2: Consider the DcontPN in Fig. 1 with

m0(P
1) = [0 0 3]T , m0(P

2) = [0 0 0 0 2 2]T , m0(ba) = 1,

m0(bb) = 0 and let mf (P 1) = [0 0 3]T , mf (P 2) =

[0 0 1 0 2 1]T be the target markings of each subsystem.

Let the flow integrals of subsystem 1 and 2 be denoted as

s1 and s2 respectively.

A controller for the second subsystem could compute

s2(t6) = 1, s2(t4) = s2(t5) = s2(t7) = s2(t8) = 0 so

that the subsystem reaches the target marking. Given that the

initial and target markings of subsystem 1 are the same, a

controller for that subsystem could yield: s1(t1) = s1(t2) =

s1(t3) = 0. Since m0(bb) = 0, transition t6 cannot fire unless

t3 fires. Unfortunately, according to the computed controls,

t3 will not fire (s1(t3) = 0). Hence, these controls are not

valid to reach the desired target marking of subsystem 2. In

order to solve this situation, subsystem 2 may ask subsystem

1 to put enough tokens in bb. This can be achieved easily by

firing t3. However, this will imply that subsystem 1 moves

away from its desired target marking.

It could happen that the target markings cannot be reached

due to the system structure or the initial marking of the

buffers.

Example 3.3: Consider again the DcontPN in Fig. 1. For

subsystem 1, let the target marking be mf (P 1) = [0 0 3]T

which is locally reachable from m0(P
1) = [0 0 3]T . For sub-

system 2, let the target marking be mf (P 2) = [0 0 1 0 2 1]T

which is locally reachable from m0(P
2) = [0 0 0 0 2 2]T by

firing t6, i.e., if it is considered isolated from the rest of the

system. But when both subsystems are connected through

the buffers ba and bb with m0(ba) = m0(bb) = 0, the target

markings are locally reachable but not globally reachable.

IV. AN ITERATIVE ALGORITHM TO CONTROL DCONTPNS

This section is devoted to the design of a distributed

controller for distributed Petri net systems. We will extend

6755

t1

p3

t3

p2

t2

p1

t6

p14

p13

p8

p7

p6p5

pc1

t12

t13

t14

t7

pc6

pc2

pc5

2

p11

t8

p10p9

t9 t10

t11

pc3

pc4

t5

p12

p15

p4

t4

Subsystem1 Subsystem4Subsystem3Subsystem2

Fig. 3. A DcontPN used in Example 4.3.

our previous results in [8] where the problem has been

studied for DcontPN composed only by two subsystems.

In fact, we will show that iterating the algorithm in [8]

all subsystems will compute their controllers. We will first

present the algorithm associated to the local controller of

each subsystem and then prove its correctness. We consider

the following assumptions:

(A1) The target marking mf is strictly positive and reachable

at the overall system.

(A2) The DcontPN is composed of MTS subsystems. The

minimal T-semiflows of the subsystem i is denoted xi.

(A3) The overall system is a MTS net system.

The first assumption is simply a necessary condition for

reachability of the target markings. The second assumption

reduces the class of DcontPN to those systems composed by

MTS subsystems while the third one states that the overall

system is MTS. In order to drive the subsystems from their

initial states to the target states, Alg. 4.1 is developed. It

represents the local controller that will be executed in each

subsystem separately.

During the initialization, the algorithm requires the initial

and target markings, the token flow matrix, the input and

output buffers and the initial marking of the input buffers of

the corresponding subsystem. In step 1, each subsystem com-

putes the flow integral z required to reach its target marking

without taking into account the marking of the buffers, this

step is carried out by means of the Linear Programming

Problem (LPP) (3). Step 2 sets the number of iterations

to |K| − 1, where |K| is the number of subsystems, these

iterations will be used in the next section where DcontPN

with general structure are considered. Step 3 computes the

amounts of tokens qreq
p to be produced in each input buffer

p in order to be able to fire z. The connected subsystems are

informed about the amounts of required tokens qreq
p in step

4. In step 5, each subsystem receives the amount of tokens

Algorithm 4.1: [Distributed controller of subsystem k]

1) Solve

min 1
T · z

s.t. mf (P k) − m0(P
k) = Ck · z,

z ≥ 0

(3)

2) For Iteration=1 to |K| − 1 do

3) For every p ∈ B(∗,k) compute

qreq
p =

(

∑

t∈p•

Pre(p, t) · z(t)

)

− m0(p)

4) For all p ∈ B(∗,k) send qreq
p to the connected subsys.

5) For all p ∈ B(k,∗) receive rreq
p from the conn. subsys.

6) For all p ∈ B(k,∗) compute

hp =

(

∑

t∈•p

Post(p, t) · z(t)

)

− rreq
p

7) If min
p∈B(k,∗)

{hp} < 0 then solve

min 1
T · s

s.t. mf (P k) − m0(P
k) = Ck · s,

(

∑

t∈•p

Post(p, t) · s(t)

)

≥ rreq
p ,∀p ∈ B(k,∗)

s ≥ 0
(4)

Else

s = z

End_If

8) z = s

9) End_For

10) return s

6756

it has to produce (if any) in its output buffers.

In step 6, it is computed how many tokens would remain in

each output buffer if the present control was applied. If this

value is negative, more tokens must be produced in the output

buffers, and therefore the control law must be recomputed.

This re-computation is achieved in step 7 using LPP (4).

Observe that comparing with LPP (3) of step 1 only one extra

constraint is added in order to ensure that enough tokens are

produced in the output buffers. Since |K| = 2, the algorithm

only executes one iteration.

The following Theorem shows that Alg. 4.1 computes a

control law for all subsystems that ensures the reachability

of their target markings. Moreover, there exists a (finite) time

instant at which all subsystems are in their target markings.

Theorem 4.2: Let N be a DcontPN satisfying assump-

tions (A1), (A2) and (A3) by each pair of connected

subsystems. Let sk be the flow integral vectors computed

by Alg. 4.1 for subsystem k for a given initial and target

marking. The application of sk drives the subsystems to their

target markings.

Proof: Let us assume that Alg. 4.1 is applied to all sub-

systems. Let us consider the first iteration of the algorithm.

In step 1 each controller k computes the required firing count

vector zk to reach its final marking by solving LPP (3). In

step 5, subsystem k, receives from all its neighbors their

requirements rreq
p . If it is necessary, the updating of zk to

satisfy such requirements is achieved by LPP (4) in step 7.

Observe that after each iteration, the requirements of

each subsystem are satisfied by the updating of the firing

count vector of the neighbors subsystems what makes the

marking of at least one buffer equal to zero (this is result of

minimizing the firing count vector in LPP (4)).

Assume that the Alg. 4.1 has been executed for |K| − 1

iterations and that after the last iteration, step 3 to 6 are

further executed in order to obtain values for hp. If all hp are

non-negative then the computed firing count vectors ensure

the reachability of the target marking in each subsystem.

On the other hand, let us assume that at least one hp

is negative. We will prove that this leads to the global

non-reachibility, violating assumption (A1). An negative hp

implies that: a) at each iteration of the algorithm at least one

subsystem updated its firing count vector; b) after |K| − 1

iterations, at least one subsystem would still need to update

its firing count vector. These both facts imply that there exists

a subsystem Q that would need to perform two updates,

what in turn involves that there is a cycle of subsystems

containing Q whose marking in the connecting buffers is

not positive. Notice that there exists a P-semiflow containing

such connecting buffers and places of the subsystems for

which the target marking is fixed. For this reason, the target

marking under consideration violates at least one existing

conservation law of the conservative global system, and

therefore such a marking is not globally reachable.

Example 4.3: Let us consider DcontPN in Fig. 3 which is

composed by 4 subsystems. Hence, |K| = 4 and Alg. 4.1 will

be iterated at most 4 times. These subsystems communicate

through 6 channel places. The set of buffers are: B(1,2) =

{pc1}, B(2,1) = {pc2}, B(3,2) = {pc3}, B(2,3) = {pc4},

B(4,3) = {pc5} and B(3,4) = {pc6}.

Let us assume the following initial markings: m0(P
1) =

[1 0 0 1]T , m0(P
2) = [1 2 0 1]T , m0(P

3) =

[1 1 0 0]T , m0(P
4) = [1 0 0]T , m0(pc2) = m0(pc6) = 1,

m0(pc1) = m0(pc3) = m0(pc4) = m0(pc5) = m0(pc5) = 0

and final markings mf (P 1) = [1 1 0 0]T , mf (P 2) =

[0 1 2 0]T , mf (P 3) = [0 1 1 0]T , mf (P 4) = [0 0 1]T .

The execution of Alg. 4.1 is given in Table II. According

to final flow integrals, the final markings of the buffers are

mf (pc1) = mf (pc2) = mf (pc3) = mf (pc4) = mf (pc5) =

mf (pc6) = 0. In the first iteration of the algorithm it holds

that hpc1
< 0 and hpc3

< 0, thus the flow integral of

subsystem 1 and subsystem 3 are recomputed. In the second

iteration, hpc5
< 0 is obtained, hence the flow integral of

subsystem 4 is updated. Observe that after two iterations the

control laws are computed. Therefore, the next two iterations

that are not given in Table II are redundant. Unfortunatelly

they cannot be avoided since at the side of each subsystem

the whole system structure is unknown.

Once the flow integral vectors s of the evolution from the

initial marking to the target marking have been computed by

Alg. 4.1, the value of the control actions u can be derived in

several ways (for example applying the procedure in [9]) as

long as s =
∫ τb

τa
(f − u)dτ is satisfied where τa and τb are

the initial and final time instants respectively. Remark that s

can be seen as a firing count vector in the untimed system.

V. CONCLUSIONS

Distributed systems are composed of several subsystems

that exchange parts in order to obtain a given goal. This paper

focus on distributed systems modeled by continuous Petri

nets and a reachability control problem has been considered.

The approach developed here is based on the design of a

local controller for each subsystem. The main difficulties

that must be taken into account when dealing with the

mentioned control problem are related to the coordination

among local controllers and the possibility of reaching the

target marking in every subsystem. It is proved that, under

certain assumptions on the system, the proposed algorithm

always yields an appropriate control law.

6757

Step Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Step 1 z = [1 1 0 0]T z = [1 2 0]T z = [0 1 0 0]T z = [0 1 1]T

Step 2 Iteration = 1 Iteration = 1 Iteration = 1 Iteration = 1

Step 3 & 4 Send qreq
pc2

= −1 Send qreq
pc1

= 2 Send qreq
pc4

= 1 Send qreq
pc6

= 0

Send qreq
pc3

= 1 Send qreq
pc5

= 0

Step 5 Receive rreq
pc1

= 2 Receive rreq
pc4

= 1 Receive rreq
pc6

= 0

Receive rreq
pc2

= −1 Receive rreq
pc3

= 1 Receive rreq
pc5

= 0

Step 6 hpc1
= −1 hpc2

= hpc4
= 1 hpc3

= −1, hpc6
= 0 hpc5

= 0

Step 7 s = [2 2 1 1]T s = [1 2 0]T s = [1 2 1 2]T s = [0 1 1]T

Step 8 z = s z = s z = s z = s

Step 2 Iteration = 2 Iteration = 2 Iteration = 2 Iteration = 2

Step 3 & 4 Send qreq
pc2

= 0 Send qreq
pc1

= 2 Send qreq
pc4

= 1 Send qreq
pc6

= 1

Send qreq
pc3

= 1 Send qreq
pc5

= 1

Step 5 Receive rreq
pc1

= 2 Receive rreq
pc4

= 2 Receive rreq
pc6

= 1

Receive rreq
pc2

= 0 Receive rreq
pc3

= 1 Receive rreq
pc5

= 1

Step 6 hpc1
= 0 hpc2

= hpc4
= 0 hpc3

= 0, hpc6
= 1 hpc5

= −1

Step 7 s = [2 2 1 1]T s = [1 2 0]T s = [1 2 1 2]T s = [1 2 2]T

TABLE I

EXECUTION OF ALG. 4.1 ON SUBSYSTEMS OF DCONTPN IN FIG. 3

REFERENCES

[1] J. Komenda and J. H. van Schuppen, “Control of discrete-event
systems with modular or distributed structure,” Theoretical Computer

Science, vol. 388, no. 1–3, pp. 199–226, 2007.

[2] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of
discrete-event systems,” Mathematics of Control, Signals, and Systems,
vol. 1, no. 1, 1988.

[3] P. Krishnan, “Distributed timed automata,” in WDS’99, Workshop on

Distributed Systems (A satellite workshop to FCT’99), ser. Electronic
Notes in Theoretical Computer Science, vol. 28, 2000, pp. 5 – 21.

[4] P. Darondeau, “Distributed Implementation of Ramadge-Wonham Su-
pervisory Control with Petri nets,” in CDC05: IEEE Conference on

Decision and Control, December 2005, pp. 2107–2112.

[5] R. P. Moreno, D. Tardioli, and J. Salcedo, “Distributed Implementation
of Discrete Event Control Systems based on Petri nets,” in IEEE Int.

Symposium on Ind. Electronics, June 2008, pp. 1738–1745.

[6] B. Bordbar, L. Giacomani, and D. Holding, “Design of Distributed
Manufacturing Systems Using UML and Petri nets,” in Proc. of

6th IFAC Workshop on Algorithms and Architectures for Real-Time

Control, Mallorca, Spain, May 2000, pp. 91–96.

[7] E. Fabre and L. Jezequel, “Distributed Optimal Planning: An Approach

by Weighted Automata Calculus,” in 48
th Conference on Decision and

Control (CDC), Shanghai, P.R. China, December 2009, pp. 211 – 216.
[8] H. Apaydin-Ozkan, J. Julvez, C. Mahulea, and M. Silva, “A Control

Method for Timed Distributed Continuous Petri nets,” in 2010 Amer-

ican Control Conference, Baltimore, USA, June 2010, to appear.
[9] ——, “An Efficient Heuristics for Minimum Time Control of Contin-

uous Petri nets,” in 3
rd IFAC Conf. on Analysis and Design of Hybrid

Systems, Zaragoza, Spain, September 2009, pp. 44–49.
[10] R. David and H.Alla, Discrete, Continuous, and Hybrid Petri Nets,

2
nd edition. Springer Berlin Heidelberg, 2010.

[11] M. Silva and L. Recalde, “On fluidification of Petri net models: from
discrete to hybrid and continuous models,” Annual Reviews in Control,
vol. 28, no. 2, pp. 253–266, 2004.

[12] C. Mahulea, L. Recalde, and M. Silva, “Basic Server Semantics and
Performance Monotonicity of Continuous Petri Nets,” Discrete Event

Dynamic Systems: Theory and Applications, vol. 19, no. 2, pp. 189 –
212, June 2009.

[13] C. Mahulea, A. Ramirez, L. Recalde, and M.Silva, “Steady state
control reference and token conservation laws in continuous petri net
systems,” IEEE Transactions on Automation Science and Engineering,
vol. 5, no. 2, pp. 307–320, April 2008.

6758

