
Retiming and Recycling for Elastic Systems with
Early Evaluation

Dmitry E. Bufistov∗
Universitat Politècnica de

Catalunya,
Barcelona, Spain

Jordi Cortadella†

Universitat Politècnica de
Catalunya

Barcelona, Spain

Marc Galceran-Oms‡

Universitat Politècnica de
Catalunya

Barcelona, Spain

Jorge Júlvez§

University of Zaragoza
Zaragoza, Spain

Mike Kishinevsky
Strategic CAD Lab, Intel Corp.

Hillsboro, OR, USA

ABSTRACT
Retiming and recycling are two transformations used to optimize
the performance of latency-insensitive (a.k.a. synchronous elas-
tic) systems. This paper presents an approach that combines these
two transformations for performance optimization of elastic sys-
tems with early evaluation. The method is based on Mixed Integer
Linear Programming.

On a set of random benchmarks the proposed method achieves,
in average, 14.5% performance improvement over min-delay re-
timing configurations.
Categories and Subject Descriptors: B.5.2 [Register-transfer-level
implementation]: Design Aids.
General Terms: Design, Theory, Performance.
Keywords: Elastic systems, early evaluation, optimization.

1. INTRODUCTION
Latency-insensitive (a.k.a. synchronous elastic) systems tolerate

changes in communication and computation latencies [3, 5]. The
term “elastic system”, ES, will be used in this paper.

An ES can be viewed as a composition of combinational blocks
and elastic FIFOs connected by channels. A channel is comprised
of data wires and a pair of handshake control signals: (valid, stop).
The basic case of an elastic FIFO, called elastic buffer, EB, has
a latency of one clock cycle and a capacity to store two pieces of
information (tokens). An EB initially storing one token of infor-
mation is an elastic equivalent of a synchronous register. An empty
EB which contains no tokens is called a bubble.

The valid and stop bits in elastic channels implement a hand-
shake protocol between the sender and the receiver. The valid bit,
∗Supported by FPU grant AP2005-4866, research projet CICYT
TIN2007-66523
†Partially supported by a grant from Intel Corp., CICYT TIN2004-
07925.
‡Supported by FI grant B1 00063
§Supported by Juan de la Cierva fellowship from the Spanish Min-
istry of Education and Science

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2009, July 26 - 31, 2009, San Francisco, California, USA.
Copyright 2009 ACM ACM 978-1-60558-497-3 -6/08/0006 ...$5.00.

1−α

α

m

m

0

1

F1 F2 F3

f

(b)

0

1

F1 F2 F3

f

(a)

Figure 1: (a) A retiming and recycling graph, (b) Optimal re-
timing&recycling solution

going in the forward direction, is used by the sender to indicate
when useful data is being sent. The stop bit, going in the back-
ward direction, is used for stalling the sender by propagating back-
pressure when the receiver is not ready.

Any synchronous circuit can be transformed into an equivalent
ES following a simple automatic flow [5, 4].

A key aspect of ESs is that they accept a set of valid transfor-
mations [7] that preserve the circuit behavior regardless the timing
characteristics of its components.

1.1 Retiming and Recycling Graph
Retiming [8] is a well-known technique for sequential optimiza-

tion. It moves registers across combinational blocks to minimize
the clock cycle or area. It preserves the sequential behavior of a
circuit. In ESs, retiming moves EBs instead of regular registers.

An ES is modeled by a Retiming and Recycling Graph (RRG).
Each node of the graph is a combinational block with an associated
combinational delay. Each edge represents a connection between
combinational blocks labelled with EBs when needed. The RRG
can be viewed as an extension of the retiming graph [8].

Figure 1(a) shows an example of an RRG. Only the datapath of
the ES is drawn. Each box at the edges represents an EB. If the
box is empty, the EB contains no valid information. If the box is
marked with a dot, the EB contains one token. E.g., the top edge
between nodes f and m has three EBs each labelled with a token.
Multiplexors (such as node m) are drawn by using a different sym-
bol than other nodes. Later we will see why.

Assuming that nodes F1, F2, F3 have unit combinational delays
while other nodes have zero delays, the cycle time of the RRG in
Figure 1(a) is equal to three time units, determined by the critical
combinational path F1, F2, F3, f, m.

−2

mα

1−α

0

1

F1 F2 F3

f

Figure 2: Optimal retiming&recycling with early evaluation

1.2 Retiming and Recycling (RR)
In ESs it is possible to insert an empty EB at any channel of the

system preserving sequential behavior with respect to valid tokens
of information. Empty buffer insertion is called recycling.

The directed cycle F1, F2, F3, f, m in Figure 1(a) with a bot-
tom edge f, m contains only one EB. Retiming preserves the total
number of EBs at each directed cycle [8]. Thus, the moves of retim-
ing cannot reduce the cycle time in this example: 3 is the minimal
cycle time achievable by retiming. Despite, the RRG in Figure 1(b)
obtained by applying one retiming move and inserting two bubbles
has a smaller cycle time. It is equal to 1 time unit.

This reduction of cycle time is, however, useless, since the actual
performance of the ES has not been improved. Indeed, two inserted
bubbles reduce the throughput of the ES (defined as the amount of
useful work done per cycle) to 1

3 . The multiplexor needs to wait for
both valid inputs before computing a new token. This is the reason
for throughput degradation.

To compare the performance of two ESs the effective cycle time
metrics is used. The effective cycle time is the ratio of the cycle
time to the throughput. Ignoring the delay overhead of inserting
extra EBs the effective cycle time of both ESs shown in Figures 1
is the same. It is equal to 3 time units. Minimizing the effective
cycle time of an ES by using RR is the main goal of this paper.

1.3 Early evaluation (EE)
Conventional ESs are based on late evaluation: the computation

is initiated only when all inputs are available. Sometimes this re-
quirement is too strict. For example, once a multiplexor received a
select signal, it is sufficient to wait for the selected data channel to
produce a token. The other data channel is a “don’t care”.

Early evaluation (EE) takes advantage of this flexibility to im-
prove the performance of the ES. Care must be taken of the late
arriving irrelevant tokens to avoid spurious enabling of functional
units. The control logic for ESs with EE is presented in [4]. When
EE occurs, a negative token, also called anti-token, is generated in
the late channels that were not using for enabling the block. When
an anti-token and a token meet in the same channel, they cancel
each other. Anti-tokens can be passive, waiting for the token to ar-
rive, or active, traveling backwards through the control until they
meet a token. This paper considers only passive anti-tokens.

1.4 Motivational Example
Let us show how RR applied together with EE can improve per-

formance of the RRG from Figure 1. Assume that the select chan-
nel of the multiplexor is always valid and it chooses the top data
channel with probability 0 < α< 1, and the bottom channel with
probability (1− α).

The behavior of ESs with EE can be modeled using Markov
chains [6]. Although this approach does not scale in general, it
can be used for analysis of this small example to compute an ex-
act expression for the throughput. Recall that with late evaluation
the effective cycle time of the ES in Figure 1(b) is equal to 3. With
EE, the throughput is 0.491 for α = 0.5. Hence, the effective cycle
time is 1/0.491 ≈ 2.037 time units. For α = 0.9 the throughput is
higher and is equal to 0.719 and the effective cycle time is approx-
imately 1.39 time units.

Using RR it is possible to further improve the performance in

the example. The obtained optimal solution is shown in Figure 2.
Resolving the Markov chain for the ES in Figure 2, the following
expression for the throughput is obtained: 1/(3−2α). For α = 0.9,
the throughput is equal to 5

6 ≈ 0.833 that is about 16% better than
the throughput for the ES from Figure 1(b) with an EE mux.

The bottom channel coming to the multiplexor contains two anti-
tokens (drawn in the rhombus). Note that the total sum of tokens is
an invariant and is equal to four for the top cycle and to one (3− 2)
for the bottom cycle.

The contributions. The first contribution of this paper is the
demonstration, as shown in the introductory example, that allowing
anti-tokens in initial configurations may help to achieve a better
throughput. This is not the case for ESs without EE.

The second contribution is a precise marked graph model for
performance estimation of ESs with EE.

The last contribution is a formal method for minimization of the
effective cycle time of ESs with EE. The work is an extension of
the paper about performance optimization of ESs with late evalua-
tion [1].

2. BACKGROUND
This section formalizes basic concepts.

DEFINITION 2.1 (RRG). A Retiming and Recycling Graph
(RRG) is a tuple 〈S, β, R0, R, γ〉, where:

• S = (N, E) is the underlying multi-graph of the ES, N
is the set of nodes and E is the set of edges. The set N is
partitioned into N1 and N2: N1 includes the simple combi-
national nodes and N2 the EE nodes.

• β : N → R+ assigns a combinational delay to each node.

• R0 : E → Z is the number of the tokens on each edge. If
negative, R0 is the number of anti-tokens. To ensure live-
ness the sum of tokens on each directed cycle of S must be
positive.

• R : E → Z+ is the number of EBs on each edge. Condition
R ≥ R0 must hold.

• γ : E → R+\{0} is the branch selection probability for in-
put edges of EE nodes n ∈ N2. The sum of the probabilities
for all inputs of an EE node n ∈ N2 is equal to one, i.e.:P
e=(ni,n)∈E

γ(e) = 1.

As an example, the values of R0, R and γ of the top (bottom) edge
(f, m) of the RRG in Figure 1(b) are 3, 3 and α (0, 1 and 1− α).

Given an RRG, a combinational path is a sequence of adjacent
edges e1, . . . , ek such that R(ei) = 0, 1 ≤ i ≤ k. The delay of the
combinational path is the sum of the delays of the corresponding
nodes. For example, the path formed by the nodes F1, F2, F3 in
Figure 1(a) is a combinational while the path f, m, F1 is not.

The cycle time of an RRG, τ(RRG), is the maximum delay of
all combinational paths.

Let us assume that combinational delays of nodes F1, F2, F3
are equal to 1 time unit while the delays of the rest of the nodes
are equal to 0. Then, the cycle time of the RRG in Figure 1(a) is
equal to 3. The combinational path F1, F2, F3, f, m is critical.
Its delay is equal to the cycle time of the RRG.

The throughput, Θ(n), of node n ∈ N of a RRG is defined as:
Θ(n) = lim

t→∞
σn(t)

t , where σn(t) is the number of tokens produced
by n till time stamp t. The throughput of every node is the same [6],
i.e., Θ(ni) = Θ(nj) for every ni, nj ∈ N . Thus, the throughput
of any node can be denoted by Θ(RRG).

Notice that if an RRG has no bubbles (see Figure 1(a)), one
token is produced by each EB each cycle, then Θ(RRG) = 1. The
effective cycle time of a RRG, ξ(RRG), is the ratio of the cycle
time and the throughput.

A retiming vector r ∈ Z|N| of a given RRG, is a map N → Z
that for every edge e = (u, v) transforms R0 to R′0 as follows:
R′0(e) = R0(e) + r(v)− r(u).

In contrast to the classical definition in [8] this definition allows
negative values for R0. This is because in ESs EBs can keep anti-
tokens [4].

DEFINITION 2.2 (RR CONFIGURATION). Given an RRG, a
RR configuration, RC, is a pair of vectors R′0 ∈ Z|E|, R′ ∈ Z+|E|

that satisfies the following constraints:

R′0(e) = R0(e) + r(v)− r(u),

R′(e) ≥ R′0(e), for each edge e = (u, v),
(1)

where r is a retiming vector.

An RRG has a lot of different RCs. For instance, the retiming vec-
tor: r(m) = −2, r(F1) = −2, r(F2) = −1, r(f) = r(F3) = 0,
transforms the RC in Figure 1(a) to the RC in Figure 2.

Combinational path constraints. In order for an RC to meet a
cycle time τ , the delay of every combinational path in the corre-
sponding RRG must be smaller than or equal to τ . There are a set
of linear constraints that guaranties this [1].

In the following, these constraints for a given RC and cycle time
τ will be refereed as Path_Constr(RC, τ).

3. THROUGHPUT OF RRG
The performance of an RRG can be estimated by using the result

from [6] on performance analysis of guarded marked graphs.
A Guarded Marked Graph (GMG) is a tuple 〈N, E, m0, G〉where

N is the set of nodes which is partitioned into subsets N1 and
N2: N1 includes the simple nodes and N2 - the EE nodes; E ⊂
N × N is the set of edges; m0 : E → Z assigns an initial num-
ber of tokens (possibly negative), m0(e), to each edge e; G :

N → 22E
assigns a set of guards to every node, such that the

following condition is satisfied. Let us denote the set of input and
output edges of a node ni as •ni = {(nj , ni)|(nj , ni) ∈ E} and
n•

i = {(ni, nj)|(ni, nj) ∈ E}, respectively. Then for n ∈ N1 the
guards set G(n) is one element set {{•n}}. This means that all
input edges of the node n are in the same guard. For n ∈ N2 the
guards set has |•n| elements, G(n) = {•n}.

The dynamic behavior of an GMG is determined by the follow-
ing firing rules:
1. Guard selection. A guard g(n) ∈ G(n) for the next firing of n
is selected nondeterministically. The guard selection is trivial for
simple nodes, since they only have one guard. For EE nodes any
guard in G(n) can be selected.
2. Enabling. If the guard g(n) has been selected for the next firing
of n, then the node n becomes enabled when corresponding input
edge has positive marking.
3. Firing. An enabled node n at marking m can fire leading to
another marking m′ by removing one token from each input edge
and adding one token to each output edge.

Timed guarded marked graphs. In order to carry out perfor-
mance analysis on GMGs a timing interpretation must be added
to it and each guard must be assigned the probability of being se-
lected.

A Timed Guarded Marked Graph (TGMG) is a tuple
〈N, E, m0, G, δ, γ〉where 〈N, E, m0, G〉 is a GMG; δ : N → R+

assigns a nonnegative delay to every node; γ : G → R+\{0}

assigns a strictly positive probability to each guard of G(n). It
must hold that:

P
e∈G(n)

γ(e) = 1.

For the time evolution of an TGMG it is assumed that the guard
selection process has zero duration and that it respects the proba-
bilities (γ) in any infinite execution.

The throughput, Θ(N), of an TGMG is defined as: Θ(N) =

lim
t→∞

σ(t)
t , where t represents the time and σ(t) is the firing count

vector at time t, i.e., the j’s component of σ(t) corresponds to the
number of times node nj has fired till the time stamp t.

Notice, Θ(N) is defined as a vector. In [6] it is shown that all
nodes of an TGMG have the same throughput. The throughput is
upper bounded by the solution of the following LP problem:

Maximize φ :
δ(n) · φ ≤ bm(e), n ∈ N1, e ∈ •n
δ(n) · φ ≤

P
e∈•n γ(e) · bm(e), n ∈ N2

bm(e) = m0(e) + σ(u)− σ(v), e = (u, v).

(2)

The vector σ is real in the constraints.
RRG throughput constraints. There is a simple procedure that

constructs a TGMG model for an RRG. Because of the lack of the
space the formal description is skipped. It can be found in [2]. For
illustration the initial TGMG model for the RRG in Figure 1(b) is
shown in Figure 3(a). Figure 3(b) shows the final version. Basi-
cally, a unit delay self loop for each EE node has been added and
then TGMG was transformed to preserve the guard’s set G(n) [2].

Applying (2) to the TGMG model of an RRG it can be guar-
anteed with the linear constraints that given RC has throughput
upper bound 1/x, x ≥ 1 [2]. Let us denote the set of this con-
straints as Thr_Constr(RC, x). The throughput upper bound of
a given RC can be found as a minimum value of x subject to the
Thr_Constr(RC, x). Let us denote this upper bound as Θlp(RC)
and the corresponding effective cycle time as ξlp(RC), i.e., ξlp =
τ(RC)/Θlp(RC), where τ(RC) refers to the cycle time of the RC.

4. RETIMING AND RECYCLING
A straightforward method that combines the combinational path

and throughput constraints for minimizing the effective cycle time
leads to the following non-convex mixed integer quadratic pro-
gramming problem:

Minimize x · τ,
R′0(e) = R0(e) + r(v)− r(u),
R′ ≥ R0, R

′ ≥ 0,
Path_Constr(RC, τ),
Thr_Constr(RC, x),
R′ ∈ INT, r ∈ INT.

(3)

The exact solution of (3) is not necessarily the one with the mini-
mum effective cycle time, RCmin, but it is a very good approxima-
tion. On the other hand, (3) represents a big challenge for existing
solvers. [2] provides a heuristics based on a MILP to solve (3).
This heuristics finds few non-dominated RCs and select one with
the minimal effective cycle time, RClp

min.

5. EXPERIMENTAL RESULTS
A set of experiments was performed to verify the throughput

model and to demonstrate optimization power of the algorithm for
ESs with EE.

A set of random RRGs has been generated. The ISCAS89 cir-
cuits have been used to extract the underlying graph structures. All
parameters have been set randomly, based on simple criterions. For
each test case the RC with the minimal effective cycle time, RClp

min,

(b)

1

0

1

0 1 100

3

0

s

0

3

1

0 1 10

(a)

e1

n1

n2 e2
n2

n1
e1

4n

e2

α
mf F1 F2 F3

e3

n3

1−α

α
mf F1 F2 F3

e3

1−α

Figure 3: (a) Simple TGMG, (b) refined TGMG.

Table 1: All non-dominated RCs for the test case s526
Name τ Θlp Θ err(%) ξlp ξ ∆(%)
s526 19.98 0.2500 0.2390 4.6025 79.9200 83.5983

24.10 0.3333 0.3050 9.2896 72.3000 79.0164
31.74 0.4936 0.4200 17.5219 64.3041 75.5714
56.54 0.8367 0.7910 5.7787 67.5742 71.4791
74.52 1.0000 1.0000 0.0000 74.5200 74.5200 5.4

was found. The Verilog representation of elastic controller was
generated for each non-dominated RC. The actual throughput was
calculated by performing intensive simulations.

Table 1 shows all non-dominated RCs for the test case s526.
Rows of the table correspond to different RCs. The column τ pro-
vides the cycle time of the RC. The columns Θlp and Θ provide the
throughput upper bound and the actual throughput of the RC (ob-
tained by simulation) respectively. The column err(%) provides
the relative difference between the throughput upper bound Θlp

and Θ. The effective cycle times of RClp
min and RCmin are marked

in bold in the columns ξlp and ξ respectively. The last column
∆(%) is the relative difference between ξ(RCmin) and ξ(RClp

min),
e.g., for s526 it is equal to (75.5714−71.4791)/71.4791·100% ≈
5.4%. It can be seen that the RClp

min and RCmin are different con-
figurations in this case, however RClp

min has only 5.4% worse per-
formance. Also the second best configuration returned by the algo-
rithm does correspond to RCmin.

Table 2 shows the obtained results. The first column is the name
of the underlying ISCAS89 circuit. The next three columns are
the number of simple nodes, EE nodes and edges respectively.
The column ξ∗ provides the cycle time before the optimization
(it is equal to the effective cycle time because originally RRGs
have no bubbles). The column ξnee provides the minimal effective
cycle time of the RRG with all nodes being simple (late evalua-
tion). It often coincides with the min-delay retiming cycle time
(see [1] for details). In the experiments the ξnee was always pro-
vided by min-delay retiming configuration. The columns ξlp

min

and ξsim
min show ξ(RClp

min) and ξ(RCmin), respectively. E.g., for
s526 the corresponding values are equal to 75.57 and 71.48. The
last column I(%) provides the performance improvement obtained
by MIN_EFF_CYC using EE. It is calculated as follows: I =
((ξnee − ξsim

min)/ξnee) · 100%.
CPLEX was used as an MILP solver. The timeout for integer op-

timization was set to 20 minutes in all experiments. For all MILPs
the optimal solutions were always found.

Observation 1: The average effective cycle time improvement
is equal to 14.5% (the average value of the column I%). The im-
provement strongly depends from the position of EE nodes. The
ξnee was not improved for s832, s1488, s1494. This is because
some critical directed cycles (the cycles where bubbles have to be
inserted) have no early evaluation nodes. The EE does not affect
the performance of such ESs.

Observation 2: The RClp
min coincides with RCsim

min in more than
half of the examples. In s641,s386, s400,s526, s713, s953 the value
of ∆(%) is within 5%.

Table 2: Experimental results.
Name |N1| |N2| |E| ξ∗ ξnee ξlp

min ξsim
min I%

s641 206 15 270 183.15 109.62 93.72 89.98 17.9
s27 9 5 24 43.73 43.73 32.31 32.31 26.1
s444 45 13 82 174.88 106.75 92.50 92.50 13.3
s386 36 12 131 74.80 74.60 58.55 59.81 21.5
s344 122 13 176 130.63 114.19 90.79 82.89 27.4
s400 37 9 66 149.29 79.50 80.10 77.63 2.3
s526 43 7 71 144.47 74.52 75.57 71.48 4.1
s382 35 7 60 84.65 68.47 66.07 66.07 3.5
s420 7 1 9 76.70 76.70 59.78 59.78 22.1
s832 76 41 462 62.11 50.39 50.39 50.39 0.0
s1488 85 48 572 64.28 59.52 59.52 59.52 0.0
s510 63 40 407 116.63 116.63 73.26 73.26 37.2
s953 232 36 371 354.86 292.28 125.92 119.53 59.1
s713 229 27 341 119.15 96.63 99.13 95.96 0.7
s1494 88 48 572 61.97 55.80 55.80 55.80 0.0
s820 72 38 424 55.64 53.23 46.90 46.90 13.5

Observation 3: The average error err(%) of the throughput
estimation is equal to 12.5%. The error achieves 35% for some
configurations. Usually the error is proportional to the difference
between throughputs of an RRG with and without EE nodes.

6. CONCLUSIONS AND FUTURE WORK
A MILP based algorithm for retiming and recycling of elastic

systems with early evaluation has been presented. The proposed
MILPs are difficult to solve exactly for circuit graphs with more
than one thousand edges. However, there are simple and efficient
heuristics for solving MILP problems. Exploring such heuristics is
a part of the future work.

The proposed model can be extended to handle telescopic nodes
(i.e., nodes with variable combinational delays).

7. REFERENCES
[1] D. Bufistov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar. A

general model for performance optimization of sequential systems. In
Proc. Int. Conf. Computer-Aided Design (ICCAD), Nov. 2007.

[2] D. E. Bufistov, J. Cortadella, M. Galceran-Oms, J. Júlvez, and
M. Kishinevsky. Retiming and recycling for elastic systems with early
evaluation. Technical Report LSI-09-11-R, 2009.
http://www.lsi.upc.edu/˜techreps/files/R09-11.zip.

[3] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on
Computer-Aided Design, 20(9):1059–1076, Sept. 2001.

[4] J. Cortadella and M. Kishinevsky. Synchronous elastic circuits with
early evaluation and token counterflow. In Proc. ACM/IEEE Design
Automation Conference, pages 416–419, June 2007.

[5] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of
synchronous elastic architectures. In Proc. ACM/IEEE Design
Automation Conference, pages 657–662, July 2006.

[6] J. Julvez, J. Cortadella, and M. Kishinevsky. Performance analysis of
concurrent systems with early evaluation. In Proc. Int. Conf.
Computer-Aided Design (ICCAD), Nov. 2006.

[7] T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Oms.
Correct-by-construction microarchitectural pipelining. In Proc. Int.
Conf. Computer-Aided Design (ICCAD), Nov. 2008.

[8] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5–35, 1991.

