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Abstract: This paper considers the problem of controlling timed continuous Petri nets under
infinite server semantics. The proposed control strategy assigns piecewise constant flows to
transitions in order to reach the target state. First, by using linear programming, a method
driving the system from the initial to the target state through a linear trajectory is developed.
Then, in order to improve the time of the trajectory, intermediate states are added by means
of bilinear programming.
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1. INTRODUCTION

Petri nets (PNs) are frequently used for modeling, analysis
and synthesis of discrete event systems. The distributed
state or marking of a PN is given by a vector of natural
numbers which represent the number of tokens in each
place. Similarly to most formalisms for discrete event
systems, PNs suffer from the state explosion problem. One
possible way to overcome this problem is fluidification, a
classical relaxation technique.

Continuous Petri nets are a fluid approximation of classical
discrete Petri nets (David and Alla (2005); Silva and
Recalde (2004)). Unlike conventional PNs, a transition in
a continuous Petri net can be fired in a “real” non integer
quantity. This leads to continuous markings instead of
discrete ones. Similarly to discrete PNs, a time delay can
be associated to the firing of transitions, the resulting net
is called timed continuous Petri net (contPN).

As in discrete PNs, different server semantics can be
adopted for the firing of transitions. Among them the most
widely used semantics are finite server and infinite server.
In Mahulea et al. (2009), it is shown that infinite server
semantics provides a better approximation of the steady
state throughput than finite server semantics for a wide
class of Petri nets under some general conditions.

A ContPN system with infinite server semantics is a
subclass of Piecewise Linear Systems (PWL), with input
constraints. A PWL system is composed of several linear
subsystems together with switching rules. Many works
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deal with stability analysis or control law design of such
systems (Montagner et al. (2006); Yang et al. (2006);
Habets et al. (2006)). However, most of these methods
cannot be directly applied to contPNs, because of their
particular dynamic input constraints.

Control of contPNs with infinite server semantics has
already been considered in the literature. In Mahulea
et al. (2008b) it is shown that, the optimal steady state
control problem of timed contPN system can be solved by
means of Linear Programming Problem (LPP) when all
transitions are assumed to be controllable. The transitory
control problem is also solved by means of implicit and
explicit MPC control strategy (Mahulea et al. (2008a)). A
Lyapunov-function-based dynamic control algorithm was
proposed in (Xu et al. (2008)), which can ensure global
convergence of both system states and input signals. In
contrast to the method in this last reference, the technique
proposed here for the computation of control law for direct
linear trajectory is based on linear programming instead of
nonlinear programming. Although the complexity of this
new approach is significantly lower, i.e., it can be solved
in polynomial time, the time of the obtained trajectory is
very similar in general. Moreover, the method in (Xu et al.
(2008)) requires solving a BiLinear Programming Problem
(BLP) for the computation of intermediate states as our
method requires. Refinement of the trajectory by means of
intermediate states is carried out by a recursive algorithm
which computes new intermediate states until the time can
not be improved significantly.

In this work, we design a control strategy which aims at
driving the system from an initial state to a target one
by minizing the time. The proposed strategy computes
first the control actions to drive the system to the target
state through a straight line. Such control actions are the
result of solving a LPP. Then, as in Xu et al. (2008), in
order to obtain faster trajectories, intermediate states, not
necessarily on the line connecting the initial and the target
marking, are computed by means of a BLP. Moreover,



an algorithm that recursively refines the initially obtained
trajectory is given.

This paper is structured as follows. Section 2 briefly in-
troduces the required concepts of contPN systems and
introduces the formulation of applied control. A LPP
based method to obtain linear trajectories in order to reach
target marking, mf , from initial marking m0 is given
in Section 3. In Section 4, the heuristics for minimizing
time by means of intermediate states is considered. Fi-
nally, some conclusions and future directions are drawn in
Section 5.

2. CONTINUOUS PETRI NETS

We assume that the reader is familiar with discrete PNs. In
contPN systems, the firing is not restricted to the natural
numbers but to the nonnegative real numbers.

2.1 Timed Continuous Petri nets

Definition 1. A continuous PN system is a pair 〈N , m0〉
where N = 〈P, T, Pre, Post〉 is the net structure with
the set of places P , the set of transitions T , pre and post

matrices Pre, Post ∈ R
|P |×|T |

≥0
and m0 ∈ R

|P |

≥0
is the

initial state.

Let pi, i = 1, . . . , |P | and tj , j = 1, . . . , |T | denote the
places and transitions. For a place pi ∈ P and a transition
tj ∈ T , Preij and Postij represent the weights of the arcs
from pi to tj and from tj to pi, respectively. Each place
pi has a marking denoted by mi ∈ R≥0 . The vector of all
token loads is called state or marking, and is denoted by

m ∈ R
|P |

≥0
. For every node v ∈ P ∪ T , the sets of its input

and output nodes are denoted as •v and v•, respectively.

A transition tj ∈ T is enabled at m iff ∀pi ∈• tj , mi > 0
and its enabling degree is given by

enab(tj, m) = min
pi∈

•tj

{

mi

Preij

}

which represents the maximum amount in which tj can
fire. An enabled transition tj can fire in any real amount
α, with 0 < α ≤ enab(tj, m) leading to a new state
m′ = m+α·C·j where C = Post−Pre is the token flow
matrix and C ·j is its jth column. If m is reachable from
m0 through a finite sequence σ, the state (or fundamental)

equation is satisfied: m = m0 + C · σ, where σ ∈ R
|T |

≥0
is

the firing count vector, i.e., σj is the cumulative amount
of firings of tj in the sequence σ.

Definition 2. A contPN system 〈N , λ, m0〉 is a continuous

PN system 〈N , m0〉 together with a vector λ ∈ R
|T |

>0
where

λj is the firing rate of transition tj .

The state equation has an explicit dependence on time,
denoted by τ : m(τ) = m0 + C ·σ(τ) which through time
differentiation becomes ṁ(τ) = C · σ̇(τ). The derivative
of the firing sequence f (τ) = σ̇(τ) is called the firing
flow. Depending on how the flow is defined, many firing
semantics appear, being the most used ones infinite and
finite server semantics. This paper deals with infinite
server semantics for which the flow of a transition tj is
defined as:

fj(τ) = λj · enab(tj, m(τ)) = λj · min
pi∈

•tj

{

mi(τ)

Preij

}

(1)

Since the flow of a transition depends on its enabling
degree which is based on the minimum function, a timed
contPN with infinite server semantics is a PWL system
with polyhedral regions and everywhere continuous vector
field. The state space (or reachability set) R of a contPN
system can be divided into regions 1 as follows: R = R1 ∪
...∪Rγ where γ ≤

∏

|T |

j=1
|•tj |. Intuitively, each Rz denotes

a region where the flow is limited by the same subset
of places (one for each transition). More formally, two
markings ma and mb belong to the same region Rz iff
[∀ t ∈ T and ∀ pu, pv ∈ •t it holds that ma(pu) ≤
ma(pv) ↔ mb(pu) ≤ mb(pv)].

For a given Rz , we can define the constraint matrix

Πz ∈ R
|P |

≥0
as follows. Let m be an interior point of Rz,

then Πz is defined as:

ΠΠΠz
ji =







1

Preij
, if

mi

Preij
= min

ph∈
•tj

{

mh

Prehj

}

0, otherwise
(2)

If marking m belongs to Rz, we denote Π(m) = Πz the
corresponding constraint matrix (if m is a border point
and belongs to several regions, Π(m) is the constraint
matrix of any of these regions). In the constraint matrix,
each row j = 1, 2..., |T | has only one non-null element in
the position i that corresponds to the place pi that restricts
the flow of transition tj . Furthermore, the firing rate of
transitions can also be represented by a diagonal matrix
Λ = diag{λ1, ....λ|T |}. Using this notation, the nonlinear
flow of the transitions at a given state m can be written
as:

f = ΛΛΛ ·Π(m) · m (3)

Example 3. Let us consider the PN in Fig. 1. Assume
λ = [4 1 3 1]T , m0 = [7.5 4.5 4 2 1.5 5 4 2.5]T and
mf = [7 5 5 1 1 4 5 3]T .

p1

p4

p3

p2
p5

p6

p7

p8

t1

t4

t3

t2

Fig. 1. A PN taken from (Zhou et al. (1990))

1 These regions are disjoint except possibly on the borders.



Independently of m0, the system dynamics is described as
follows:
ṁ1 = f4 − f1 = λ4 · m4 − λ1 · min{m5, m1, m8}
ṁ2 = f1 − f2 = λ1 · min{m5, m1, m8}− λ2 · min{m2, m6}
ṁ3 = f2 − f3 = λ2 · min{m2, m6}− λ3 · min{m3, m7, m8}
ṁ4 = f3 − f4 = λ3 · min{m3, m7, m8}− λ4 · m4

ṁ5 = f2 − f1 = λ2 · min{m2, m6}− λ1 · min{m5, m1, m8}
ṁ6 = f3 − f2 = λ3 · min{m3, m7, m8}− λ2 · min{m2, m6}
ṁ7 = f4 − f3 = λ4 · m4 − λ3 · min{m3, m7, m8}
ṁ8 = f2 + f4 − f1 − f3 = λ2 · min{m2, m6} + λ4 · m4

−λ1 · min{m5, m1, m8}− λ3 · min{m3, m7, m8}
(4)

Note that m0 and mf are in different regions: m0 ∈ R1 :
{m | m5 ≤ m1, m5 ≤ m8, m8 ≤ m7, m8 ≤ m3, m2 ≤
m6} and mf ∈ R2 : {m | m5 ≤ m1, m5 ≤ m8, m8 ≤
m7, m8 ≤ m3, m6 ≤ m2}.

For example, the system dynamics for R1 are:






































ṁ1 = m4 − 4 · m5

ṁ2 = 4 · m5 − m2

ṁ3 = m2 − 3 · m8

ṁ4 = 3 · m8 − m4

ṁ5 = m2 − 4 · m5

ṁ6 = 3 · m8 − m2

ṁ7 = m4 − m8

ṁ8 = m2 + m4 − 4 · m5 + 3 · m8

(5)

2.2 Controlled Timed Continuous Petri Nets

In this section we consider contPN systems subject to ex-
ternal control actions, and assume that the only admissible
control law consists in slowing-down the firing speed of
transitions (Silva and Recalde (2004)). If a transition can
be controlled (its flow can be reduced or even stopped), we
will say that it is a controllable transition (Mahulea et al.
(2008b)).

Definition 4. The controlled flow, w, of a timed contPN
is defined as w(τ) = f(τ) − u(τ), with 0 ≤ u(τ) ≤ f(τ),
where f is the flow of the uncontrolled system, i.e., defined
as in (1), and u is the control action.

Therefore, the control input u is dynamically upper
bounded by the flow f of the corresponding unforced
system. Under these conditions, the overall behaviour of
the system in which all transitions are controllable is ruled
by the following system:

ṁ = C · [f − u] = C · w
0 ≤ u ≤ f

(6)

The constraint 0 ≤ u ≤ f can be rewritten as
0 ≤ f − u ≤ f . Defining w = f − u and using (3),
the constraint can be expressed as:

0 ≤ w ≤ Λ · Π(m) · m (7)

The following sections show how to compute a control
action u that drives the system from the initial marking
m0 to a desired target marking mf . Section 3 describes a
method to obtain a linear trajectory. Section 4 makes use
of such a method to compute piecewise linear trajectories
in order to improve the time to reach mf . Notice that
in order to be reachable, mf necessarily satisfies the state
equation, i.e., mf = m0 +C ·σ. Our procedure consists of
assigning constant controlled flow w that satisfies dynamic
upper bounds. We assume that m0 and mf are interior

points of the reachability space, i.e., the markings are
strictly positive. The assumption that m0 is positive
ensures that the system can move at τ = 0 in the direction
of mf ; the assumption that mf is positive ensures that
mf can be reached (Júlvez et al. (2003)) in finite time
(Mahulea et al. (2008b)).

3. COMPUTATION OF LINEAR TRAJECTORIES

In this section, we will distinguish two cases: (A) m0 and
mf are in the same region and (B) they are in different
regions. In this last case the crossing points of the straight
line and borders must be considered.

(A) m0 and mf are in the same region Rz . Then all
the states on the straight line connecting them are also
interior points of Rz since all the regions are convex.
The following LPP computes the correspondig control law,
where x = w · τf ,

min τf

mf = m0 + C · x (a)
0 ≤ xj ≤ λj · Π

z
ji · min

{

m0i, mf i

}

· τf ,
∀ j ∈ {1, .., |T |} where i satisfies Πz

ji #= 0 (b)

(8)

The equations correspond to: (a) the time dependent
equation of the straight line connecting m0 to mf , (b) flow
constraints in (7). Notice that (8)(b) is a linear constraint
because m0i

and mfi
are known.

(B) m0 and mf are in different regions. The line connect-
ing m0 and mf can be divided in several segments, each
one starting in a border (or in m0 for the first segment)
and ending in a border (or in mf for the last one). Then
LPP (8) is applied on each of these segments.

Algorithm 1 computes the total time τf by using LPP
in (8) for the linear trajectory # from m0 to mf which
crosses n ∈ {1, 2, .., γ} borders. In this algorithm, mi

c
stands for state at the intersection of # and ith crossed
border (starting from m0) i ∈ {1, 2, .., n}. m0

c and mn+1
c

denote m0 and mf , respectively. wi is the flow obtained
from the state mi

c to the state mi+1
c . Note that, if # does

not cross any border, then n = 0, that is m0
c = m0 and

m1
c = mf .

Algorithm 1 Linear trajectory

Input: 〈N , m0〉, mf

Compute the line # connecting m0 and mf

Compute the intersection of # and the crossed bor-
ders: m1

c , m2
c , .....mn

c

m0
c = m0, mn+1

c = mf

for i = 0 to n do
Determine τi by solving LPP in (8) with m0 = mi

c

and mf = mi+1
c

end for
Output: τ1, w1, τ2, w2, ..., τn+1, wn+1, τf =

∑n+1

i=1
τi

Proposition 5. Let 〈N , λ, m0〉 be a contPN system with
m0 > 0. If mf belongs to R and mf > 0:

• LPP(8) is feasible
• The control action given by Algorithm 1 ensures that

mf is reached in finite time.

Proof. Since mf is a reachable marking, then there
exists x such that the state equation is satisfied 8(a).



By taking τf sufficiently large 8(b) can be satisfied
since λj · Πz

ji · min
{

m0i, mf i

}

> 0. Then, by (Júlvez et al.
(2003)) the linear trajectory from m0 to mf can be fol-
lowed by the system since m0 > 0 and mf > 0, i.e. ,
all intermediate states are not spurious. Moreover, since
mf > 0, by (Mahulea et al. (2008b)) mf can be reached
in finite time.

Example 6. Let us consider the control law design for the
contPN in Ex. 3. Assume the same λ, m0 and mf . Note
that the line # connecting m0 and mf crosses only one
border: m2 = m6 and the crossing point is calculated as:
m1

c = [7.33 4.67 4.33 1.67 1.33 4.67 4.33 2.67]T , m0
c = m0,

m2
c = mf . The trajectory is illustrated in Fig.2. According
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Fig. 2. Trajectory for Ex. 6

to Algorithm 1, first LPP (8) with m0 = m0
c and mf =

m1
c is solved. Its constraints are:

7.33 = x4 − x1 + 7.5
4.67 = x1 − x2 + 4.5
4.33 = x2 − x3 + 4
1.67 = x3 − x4 + 2 (a)
1.33 = x2 − x1 + 1.5
4.67 = x3 − x2 + 5
4.33 = x4 − x3 + 4
2.67 = x2 + x4 − x1 − x3 + 2.5

0 ≤ x1 ≤ 4 · 1.33 · τf

0 ≤ x2 ≤ 4.5 · τf (b)
0 ≤ x3 ≤ 3 · 2.5τf

0 ≤ x4 ≤ 1.66 · τf

The optimal solution is τf = 0.2 t.u. and w1 = 2.49,
w2 = 1.67, w3 = 0, w4 = 1.67. In the second case, i.e.,
m0 = m1

c and mf = m2
c :

7 = x4 − x1 + 7.33
5 = x1 − x2 + 4.67
5 = x2 − x3 + 4.33
1 = x3 − x4 + 1.67 (a)
1 = x2 − x1 + 1.33
4 = x3 − x2 + 4.67
5 = x4 − x3 + 4.33
3 = x2 + x4 − x1 − x3 + 2.67

0 ≤ x1 ≤ 4 · τf

0 ≤ x2 ≤ 4 · τf (b)
0 ≤ x3 ≤ 3 · 2.67 · τf

0 ≤ x4 ≤ τf

The optimal solution is τf = 0.67 t.u. and w1 = 1.5,
w2 = 1, w3 = 0, w4 = 1. The total time to go from m0

to mf through the line # is τtotal = 0.2 + 0.67 = 0.87 t.u.
And the control is obtained as:

u(τ) =





















































4 · m5(τ) − 2.49
m2(τ) − 1.67

3 · m8(τ)
m4(τ) − 1.67







, if 0 ≤ τ ≤ 0.2







4 · m5(τ) − 1.5
m2(τ) − 1
3 · m8(τ)

m4(τ) − 1







, if 0.2 < τ ≤ 0.87

(9)

Fig. 3(a) illustrates the convergence of the marking m1

under the designed control law, while Fig. 3(b) shows the
control signal u1, w1 and their upper bound.
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Fig. 3. Evolution of (a) m1 and (b) u1, w1 and and their
upper bound for Ex. 6

4. A HEURISTICS FOR MINIMUM TIME CONTROL

This section illustrates how to compose a piecewise linear
trajectory by introducing intermediate states in order to
improve the time duration to reach mf .

The designed control in the previous subsection takes the
system from m0 to mf through a linear trajectory by
minimizing the time duration. In some cases, i.e., when
initial or final state have a small value, this may limit
the speed of the response. In order to improve the time
spent to move from m0 to mf , intermediate states denoted
by mk where k ∈ {1, 2...s}, that do not necessarily lie
on the line from m0 to mf , are computed. The new
trajectory is obtained as the union of s + 1 segments:
m0 → m1 → m2 → ... → ms → mf . In this work
we consider the intermediate states in the range:

RI =

{

m | mi ≤ max{mfi
, m0i

}, mi ≥ min{mfi
, m0i

},

i ∈ {1, 2, .., |P |}

}

,

(10)
Because m0, mf > 0, all m ∈ RI are positive and
reachable (Júlvez et al. (2003)). We will describe how to
compute intermediate states that lie on the borders and
the interior of regions, separately.

4.1 Intermediate states on the borders

Let the line from m0 to mf cross s borders, and pass
through s + 1 different regions: R1, R2, ..., Rs+1 with
corresponding constraint matrices Π1, Π2...Πs+1. We
assign constant flows for each transitions during each line
segments and the intermediate states on each border:
m1, m2....ms. Under these assumptions, the following



BLP with m0 = m0 and ms+1 = mf and with the
variables m1, m2,....,ms−1, ms, τk , xk = wk · τk,
k ∈ {1, ...s} obtains the intermediate states that yield a
minimum time trajectory:

min
s+1
∑

k=1

τk

mk+1 = mk + C · xk+1, k ∈ {0, 1, 2, .., s} (a)

(

ΠΠΠk −ΠΠΠk+1

)

· mk = 0, k ∈ {1, 2, .., s} (b)

mk
i ≤ mk+1

i if m0i
≤ mfi

i ∈ { 1, 2..|P |}, k ∈ {0, 1, 2, .., s} (c)
mk

i ≥ mk+1

i if m0i
≥ mfi

i ∈ { 1, 2..|P |}, k ∈ {0, 1, 2, .., s} (d)

0 ≤ xk
j ≤ λj · Π

k
ji · min{mk−1

i , mk
i } · τk,

with pi st. Πk
ji "= 0, j ∈ {1, 2...|T |}, k ∈ {1, 2..s} (e)

(11)
The constraints correspond to (a) the time dependent
equation of the connecting mk to mk+1: mk+1 = mk +C ·
wk+1 ·τf and mk is a reachable marking; (b) mk is on the
crossed border; (c & d) mk is contained in the hypercube
defined by the corners mk−1 and mk+1; (e) the constraints
on the controlled flow.

4.2 Interior intermediate states

In the case that m0 and mf are in the same region Rz a
recursive method can be used to determine intermediate
states. The same recursive method can also be applied to
find additional intermediate states between mk and mk+1,
since they are on the borders of the same region. In this
method we keep computing intermediate states until the
time cannot be improved by a considerable amount. In
this case, the BLP that will be solved in each step can be
simplified to the following problem where m0 and mf are
known; τ1, τ2, md, x1 = w1 · τ1, x2 = w2 · τ2 are variables:

min τ1 + τ2

md = m0 + C · x1

mf = md + C · x2, (a)

md = m0 + C · σ, md, σσσ ≥ 0 (b)

min{mfi
, m0i

} ≤ md
i ≤ max{mfi

, m0i
},

∀i ∈ {1, 2...|P |} (c)

0 ≤ x1

j ≤ λj · Π
z
ji · min{m0i

, md
i } · τ1,

with i st. Πk
ji "= 0, j ∈ {1, 2...|T |}

0 ≤ x2

j ≤ λj · Π
z
ji · min{md

i , mfi
} · τ2,

with i st. Πk
ji "= 0, j ∈ {1, 2...|T |} (d)

(12)
Algorithm 2 expresses the recursive method we proposed.
It computes new intermediate states until the stopping
criterion is satisfied. It is satisfied when the time of the
trajectory cannot be decreased more than a given value
ε. In the algorithm, path is a global variable storing the
ordered set of couples of states in the trajectory and the

relative times to reach them. The number of states in path
is denoted by size(path) and the ith element of the set path
is denoted by path(i).

Algorithm 2 Piecewise Linear Trajectory

Input: 〈N , m0〉, mf , ε
Global variable: path
Compute the line % connecting m0 and mf

Determine the number of crossed borders: s
if s = 0 then

Solve (8) to obtain τf

path0 = {(m0, 0), (mf , τf )}
else

Solve (11) to obtain τf

path0 = {(m0, 0), (m1, τ1), ..., (mf , τf )}
end if
τx = τf , path = path0

for i = 1 : size(path0) − 1 do
(mx, τx) = path0(i) , (my, τy) = path0(i + 1)
Call Split function with ((mx, τx), (my, τy))

end for
Calculate the total time for path, i.e., τy

Output:path

Split function

Input: (mx, τx), (my, τy)
Solve (12) to obtain τ1, τ2, md

if τy − (τ1 + τ2) > ε then

Insert (md, τ1) in path
Change (my, τy) in path by (my, τ2)
Call Split function with ((mx, τx), (md, τ1))
Call Split function with ((md, τ1), (my, τ2))

end if

Example 7. Let us consider the contPN system consid-
ered in Ex. 6, again. Since the linear trajectory between
m0 and mf crosses only one border, s = 1 and solv-
ing (11) with s = 1 yields 0.83 t.u. as a total time.
And the new path is m0 → m1 → mf , where m1 =
[7.5 4.5 4.5 1.5 1.5 4.5 4.5 3]T . For an additional inter-
mediate state, say m′1, between m0 and m1, we solve
(12) for m0 = [7.5 4.5 4 2 1.5 5 4 2.5]T and mf = m1.
Similarly, for an additional intermediate state between
m1 and mf , say m′2, we solve (12) for m0 = m1

and mf = [7 5 5 1 1 4 5 3]T . And the new path
m0 → m′1 → m1 → m′2 → mf is obtained, where
m′1 = [7.5 4.5 4.26 1.73 1.5 4.73 4.26 2.76]T and m′2 =
[7.45 4.77 4.50 1.22 1.22 4.45 4.77 3]T . The total time is
reduced to 0.74 t.u. with the control action u(τ) = [4 ·
m5(τ) − 1.73 m2(τ) − 1.73 3 · m8(τ) m4(τ) − 1.7321]T

for 0 ≤ τ ≤ 0.15; u(τ) = [4 · m5(τ) − 1.5 m2(τ) − 1.5 3 ·
m8(τ) m4(τ)−1.5]T for 0.15 ≤ τ ≤ 0.3; u(τ) = [4·m5(τ)−
1.23 m6(τ) 3 ·m8(τ) m4(τ)−1.2247]T for 0.3 ≤ τ ≤ 0.51;
u(τ) = [4·m5(τ)−3.21 m6(τ)−2.21 3·m8(τ) m4(τ)−1]T

for 0.51 ≤ τ ≤ 0.74. The trajectories for one and three
intermediate states are illustrated in Fig. 4(a) and Fig.
4(b), respectively. In these figures dotted line shows the
border between R1 and R2. The total time duration for
several intermediate states can be found in Table 1. The
experiments were performed by a Matlab program running
on a PC with Intel(R) Core(TM)2CPU T5600 @ 1.83GHz,
2.00 GB of RAM.
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Fig. 4. Trajectory for (a)1 int. state and (b)3 int. state for
Ex. 7

Table 1. Intermediate States

Number of int. states 0 1 3 9 13
Total duration (t.u.) 0.87 0.83 0.74 0.73 0.72
CPU time (sec.) 0.03 0.11 0.32 1.65 2.32

Example 8. Let us consider the net in Fig. 5 with λ =
[3 1 1]T . By using Algorithm 1, the total time to reach
mf = [1 10 6 2]T from m0 = [13 3 1 10]T through a
linear trajectory is obtained as 2.43 t.u., with the control
u(τ) = [3 · m4(τ) − 7 m2(τ) m3(τ) − 1]T for 0 ≤ τ ≤
0.93, u(τ) = [3 · m4(τ) − 12 m4(τ) m3(τ) − 1.71]T for
0.93 ≤ τ ≤ 1.26, u(τ) = [3 · m1(τ) − 3 m2(τ) m3(τ) −
0.42]T for 1.26 ≤ τ ≤ 2.43, while mf was reached in 4.4
t.u. in (Xu et al. (2008)). The piecewise linear trajectory
with 4 intermediate states obtained by Algorithm 2 yields
1.38 t.u.

p1

p4

p3p2

t1

t3t2

2

2

3

Fig. 5. A PN

5. CONCLUSION

The control problem adressed in the paper consists of
reaching a target state in minimum time through a piece-
wise linear trajectory. Besides the piecewise linear dynam-
ics of continuous Petri nets, the control method handles
the fact that the input constraints depend on the current
marking, i.e., the inputs are dynamically constrained.

The heuristics proposed in this paper computes first a
“rough” piecewise linear trajectory that is refined after-
wards in those intervals that allow an improvement. The
heuristics makes use of BPPs to obtain intermediate states
and LPPs to compute linear trajectories. The refinement
of the trajectory is achieved recursively .
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