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Abstract— In many discrete event dynamic systems, there
exist tasks that can start performing before every input data
is available. A common device exhibiting such a feature is
the multiplexer: its output can be produced as soon as data
is available in the selected channel without waiting for data
in the other channels. The Petri net formalism can be easily
extended to model this behavior by allowing a transition have
several guards. Under this extension, a transition can fire as
soon as the guard selected for the next firing is satisfied, what
usually enhances the system performance with respect to the
conventional “mono-guarded” system. This paper explores how
some fundamental qualitative properties are preserved or lost
when a conventional system is transformed to a system with
several guards. The main properties studied are reachability,
boundedness, and liveness.

I. INTRODUCTION

Many formalisms for discrete event dynamic systems rely
on the AND-causality paradigm, which is often associated
with rendez-voussynchronizations. A well-known formalism
based on AND-causality is the Petri net [6], [9] formalism.
For many modeling purposes the AND-causality paradigm
is appropriate. However, it can be excessivelyrigid when
trying to model operations that can produce results when
some input data are not available.

This paper deals with a class of Petri nets that associates
several guards to every transition. This feature naturally
models the fact that some operations can start performing
even if some input data are not available.

Unfortunately, fundamental system properties as liveness
may be lost when several guards are considered. The main
goal of this work is to study how some basic qualitative prop-
erties change when a conventional Petri net is transformed
to a Petri net with several guards. Namely, the paper focuses
on reachability, boundedness, and specially on liveness.

A. Early Evaluation

In some discrete event dynamic systems an event cannot
occur until all input data are available. Consider, for instance,
a machine that assembles four legs and one board to make
a table: The machine cannot produce a table until four legs
and one board are made available to the machine. In contrast
to this strict precondition, there exist tasks that can produce
a result even if some input data are not available. A typical
component in digital circuits that exhibits this behavior is
the multiplexer.

The Petri net in Fig. 1 models a simple multiplexer with
two input data (a and b), one input control signal (c) and
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one output data (z). Its behavior is given by the following
expression:

if c then z = a else z = b (1)

The availability of information is determined by the pres-
ence of tokens, e.g., a token inpc means that the value ofc
is available. A simple strategy to compute the value ofz is
to wait for a, b, andc to be available, consume their values
and apply (1). Although this strategy is correct, it turns out
to be too conservative when aiming at improving the system
performance. Let us assume that at a given instant,c and b

are available (see Fig. 1), and that the value ofc is false.
Then, the resultz = b can be produced without waiting for
a to be available. Analogously, ifc is true there is no need
to wait for b to yield the result.
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Fig. 1. A Petri net modeling a multiplexer with two input data and one
input control signal.

The strategy of performing operations as soon as possible,
which is commonly known asearly evaluation, has already
been applied to asynchronous design [1], [7], and can be used
to enhance the system performance [5]. The synchronization
mechanism of conventional Petri nets does not allow to
model early evaluation in an easy way. This paper con-
siders a class of Petri nets that models early evaluation by
allowing a transition have several guards. The introduction
of transitions with several guards enriches the formalism
and allows one to describe many different behaviors, e.g.,
multiplexers, logic gates, conditional constructs, operations
with OR-causality [13], etc.

A guard of a given transition is a set of input places that,
depending on the system variables, represents a sufficient
condition to fire the transition. For instance, early evaluation
of transitiontm in Fig. 1 can be modeled by considering two
guards fortm, {pa, pc} and{pb, pc}. For each firing oftm,
the value ofc determines which guard must be satisfied to
fire tm, e.g., if c is true the guard{pa, pc} must be satisfied,
i.e., the availability ofa andc suffices to firetm.

Once the guard for a given firing instance is selected, it
must be satisfied, i.e., there must be enough tokens in the
places contained in the guard, to enable the firing of the



transition. The data in the rest of input places is not necessary
and must be discarded, or equivalently consumed, in order to
avoid the use of “out-of-date” data by subsequent firings. It
will be shown that a natural way to discard unnecessary data
is to allow places be negatively marked. Thus, in addition
to transitions with several guards, the class of Petri nets
considered here allows places have negative tokens to discard
unnecessary data. In order to cover every potential evolution
of the system, neither a time interpretation nor a policy for
the selection of guards will be established.

The rest of the paper is organized as follows: Section II
defines multi-guarded Petri nets. Section III shows that the
reachability set is enlarged when several guards are consid-
ered. In Section IV the boundedness property is discussed.
Section V is devoted to deadlock-freeness and liveness. The
main results are summarized in Section VI.

II. MULTI-GUARDED PETRI NETS

A. Basic Definitions
In the following it is assumed that the reader is familiar

with Petri nets (PN s) (see [6], [9] for instance).
Definition 1 (MPN): A Multi-Guarded Petri Net(MPN)

is a tupleN = 〈P, T, Pre, Post,G〉 where:
• P is a set of|P | places
• T is a set of|T | transitions
• Pre : P × T → N∪ {0} andPost : P × T → N∪ {0}

are thepre- and post- incidence functions that specify
the arc weights. The incidence matrix of the net is
C = Post − Pre. The preset and postsetof a node
x ∈ P ∪ T are denoted•x andx•.

• G : T → 22P

assigns a set of guardsG(t) to every
transitiont. The following conditions must be fulfilled:

– for every guardh ∈ G(t) it holds h ⊆ •t

– ∪
h∈G(t)

h = •t

In a MPN, a transitiont can also satisfy the condition
G(t) = {{•t}}. Such transitions will be calledconven-
tional transitions; the rest of transitions will be calledmulti-
guardedtransitions. Conventional transitions will be repre-
sented graphically as empty rectangles, e.g.,ta in Fig 1,
multi-guarded transitions will be represented as rectangles
with oblique lines inside, e.g.,tm.

For a given MPN N = 〈P, T, Pre, Post,G〉,
its corresponding “conventional” PN is defined as
Nc = 〈P, T, Pre, Post,Gc〉 where Gc(t) = {{•t}}
for every t ∈ T . That is,Nc is a conventional PN, i.e., only
one guard per transition, with the same structure asN .

Definition 2 (MPN system):A Multi-Guarded Petri Net
System is a tuple 〈N ,M0〉 where N is a MPN, and
M0 : P → N ∪ {0} assigns an initial marking to each place
p. The initial marking of placep is denoted asM0(p).

B. Enabling Condition and Firing Rule

Each guard of a multi-guarded transitiont is a set of places
from which tokens may be required to fire a given instance
of t. In a real system, the guard for a given firing instance
may depend on the particular values of the system variables,
e.g., the guard oftm in Fig. 1 is {pa, pc} if c is true, and
{pb, pc} if c is false. In order to cope with every potential
system behavior, the following assumption is made:

Assumption: The guard for a given firing instance oft

is selected among the elements inG(t). Such a selection is
non-deterministic.

Notice that the potential behaviors that a system can
exhibit under this assumption include the potential behaviors
under any policy for the selection of guards, e.g., determin-
istic, probabilistic, etc. This way, if a given property, e.g.,
liveness, is satisfied under the assumed non-deterministic
guard selection, it will be also satisfied under any other
selection policy. The state of a MPN system is composed
of a marking together with the guards selected for the next
firings of the transitions:

Definition 3 (State):A stateof a MPN system is a tuple
〈M, g〉 whereM : P → Z is the marking of the state, and
g : T → 2P are the guards selected for the next firings
of the transitions. The following condition must be fulfilled:
g(t) ∈ G(t) for every t ∈ T .

The initial state of a MPN system is denoted as
s0 = 〈M0, g0〉, whereg0 is the initial selection of guards.
A transition is said to be enabled at a given state if there are
enough tokens in the set of input places selected as guard.

Definition 4 (Enabling condition):Transitiont is enabled
at state〈M, g〉 if M(p) ≥ Pre(p, t) for everyp ∈ g(t).

In contrast to conventional transitions, a multi-guarded
transition t can be enabled even ifp ∈ •t exists such that
M(p) < Pre(p, t). Hence, the enabling condition of MPNs
can be seen as a relaxation with respect to the enabling
condition of conventional PNs. Once transitiont is enabled,
it can fire yielding a new marking.

Definition 5 (Firing rule): Let transitiont be enabled at
state〈M, g〉. The firing of t yields a new markingM ′ such
that M ′ = M + C(P, t) whereC(P, t) is the column ofC
that corresponds to transitiont.

Thus, the firing of a multi-guarded transitiont changes
the system marking in the same way a transition in a con-
ventional PN does:Pre(p, t) tokens are removed/consumed
from everyp ∈ •t (even if p 6∈ g(t)), andPost(p, t) tokens
are put/produced in everyp ∈ t•. After the firing of t a new
guardg(t) is selected for the next firing oft, the guards for
the rest of transitions are kept.

Unlike conventional transitions, the firing of a multi-
guarded transition may produce negative markings (this is
equivalent to antitokens in [10]). More precisely, every place
p ∈ •t such thatM(p) < Pre(p, t) will become negatively
marked after the firing oft. If M(p) < 0 we say that placep
has|M(p)| negative tokens. Negative tokens will be depicted
as white circles, see Fig. 2(b).

The described firing rule models satisfactorily the kind of
behaviors we want to model. Consider the MPN system in
Fig. 2(a) withG(t3) = {{p3, p5}, {p4, p5}}. Let us assume
that p3 (p4, p5, p6) contains a token iff a given variablea
(b, c, z) is available, then the MPN system can be seen as a
graphical representation of the following pseudocode:
loop

compute a; compute b; compute c;
if c then z = a else z = b end if;
deliver output z;

end loop
where operations are allowed to happen simultaneously.



(b) (c)(a)

replacements

t1

t1 t1t1t2 t2t2

t3 t3t3

t3

t4 t4t4

t5 t5t5

p1 p1p1p2 p2p2

p3 p3p3p4 p4p4

p5 p5p5

p6 p6p6p7 p7p7

Fig. 2. (a) A MPN system withG(t3) = {{p3, p5}, {p4, p5}}. If the initial guard fort3 is g(t3) = {p4, p5}, t3 can fire (b). The negative token in
p3 cancels the positive token produced by the firing oft1 (c).

Assume that the initial state is〈(1 0 0 1 1 0 0), ({p3, p5})〉
(for clarity, only the guard of the multi-guarded transition t3
is specified). At the initial state onlyt1 is enabled, its firing
drives the system to the state〈(0 0 1 1 1 0 0), ({p3, p5})
at which t3 is enabled. The firing oft3 yields the marking
M = (0 0 0 0 0 1 0) at which a new guard fort3 must be
selected, i.e., the new state will be either〈M, ({p3, p5})〉 or
〈M, ({p4, p5})〉.

Let us now assume that the initial state is
〈(1 0 0 1 1 0 0), ({p4, p5})〉. At such a state botht1
andt3 are enabled. Assume thatt3 fires first what yields the
marking(1 0 −1 0 0 1 0), and produces a negative token in
p3, see Fig. 2(b). Ift1 fires from marking(1 0 − 1 0 0 1 0)
the incoming positive token will be cancelled by the
negative token inp3 leading to marking(0 0 0 0 0 1 0),
see Fig. 2(c). Thus, the negative token gets rid of the input
data not contained in the selected guard. Such data is in fact
“out-of-date” data that must not be consumed byt3 in the
next firing instance: Imagine that no negative token exists
in Fig. 2(b), then if{p3, p5} is the guard for the next firing,
t3 will consume data produced byt1 for the previous firing
instance oft3.

III. R EACHABILITY

The fact that a transitiont of a given MPN is enabled at
states = 〈M, g〉 and fires leading to states′ = 〈M ′, g′〉 is
denoted bys t

−→s′. A firing sequence froms is a sequence
σseq = tatb . . . ti ∈ T ∗ such thats ta−→sa

tb−→sb . . . ti−→si,
this is denoted bysσseq

−→si.
Definition 6 (Reachability set):The reachability set of

the MPN system〈N ,M0〉 is defined asRS(N ,M0) =
{M | there exists a firing sequenceσseq such that
〈M0, g0〉

σseq

−→〈M, g〉}.
Since the firing of a multi-guarded transitiont changes

the marking in the same way a transition in a conventional
PN does, the state equationM = M0 + C · σ provides
a necessary condition for the reachability ofM , where σ

is the firing count vector of the transitions (notice that
the marking of a MPN system can have negative values).
Hence, as in conventional PNs, vectorsY ≥ 0, Y · C = 0

(X ≥ 0, C · X = 0) represent P-semiflows, also called
conservative components (T-semiflows, also called consistent
components). A semiflowV will be said to beminimalwhen
its support,‖V ‖1, is not a proper superset of the support of
any other, and the greatest common divisor of its elements
is one. A MPNN is conservative (consistent) if there exists
Y > 0 such thatY · C = 0 (X > 0 such thatC · X = 0).

Given that a transitiont is enabled at 〈M, g〉 iff
M(p) ≥ Pre(p, t) for everyp ∈ g(t), the firing oft does not
produce negative markings in the places contained ing(t).
In other words, for every reachable markingM , there exists
at least one placep ∈ P such thatM(p) ≥ 0.

Proposition 1: Let 〈N ,M0〉 be a MPN system. If
M ∈ RS(N ,M0) then there existsσ ∈ (N ∪ {0})|T | such
thatM = M0 + C · σ andp ∈ P exists such thatM(p) ≥ 0.

The following proposition states that the reachability set
of a MPN system contains the reachability set of its corre-
sponding conventional PN system.

Proposition 2: Let N be a MPN and Nc

be its corresponding conventional PN. Then,
RS(Nc,M0) ⊆ RS(N ,M0) for everyM0 ≥ 0.
Proof: Let M ∈ RS(Nc,M0), then a firing sequence
σseq = tatb . . . ti exists such thatM0

ta−→M1 . . . ti−→M

(given that every transition has only one guard, it is not nec-
essary to specify them in the sequence). SinceNc is a con-
ventional PN, ifta is enabled atM0 thenM0(p) ≥ Pre(p, t)
for every p ∈ •t. Hence,ta can also fire in the MPNN
from s0 = 〈M0, g0〉, whateverg0(t) is, leading to the same
markingM1. This reasoning can now be applied to the rest
of transitions inσseq. �

Given that MPN systems can reach negative mark-
ings and conventional PN systems cannot, in general
RS(N ,M0) 6⊆ RS(Nc,M0). The enlargement of the reach-
ability set in a MPN system with respect to the con-
ventional PN system has a direct impact on bounded-
ness, deadlock-freeness and liveness, e.g., the set difference
RS(N ,M0)\RS(Nc,M0) might be infinite, and might con-
tain markings that kill a given transition or make it live.

1The support, or set of non-null entries, ofV is denoted by‖V ‖.



IV. B OUNDEDNESS

A MPN system is said to be bounded if the number of
positive and negative tokens in each place does not exceed
a finite numberk for any marking reachable fromM0.

Definition 7 (Boundedness):
• A MPN system 〈N ,M0〉 is bounded if there exists

k ∈ N such that for everyM ∈ RS(N ,M0) it holds
that−k ≤ M(p) ≤ k for everyp ∈ P .

• A MPN N is structurally bounded (str. bounded) if
for any initial markingM0 ∈ (N ∪ {0})|P |, the system
〈N ,M0〉 is bounded.

Given thatRS(Nc,M0) ⊆ RS(N ,M0) (Proposition 2),
boundedness of〈N ,M0〉 is a sufficient condition for bound-
edness of〈Nc,M0〉.

Proposition 3: Let N be a MPN andNc be its cor-
responding conventional PN. If〈N ,M0〉 is bounded then
〈Nc,M0〉 is bounded.

The converse of Proposition 3 is not true given that
RS(〈N ,M0〉) can be an infinite set andRS(〈Nc,M0〉)
finite: The system in Fig. 2(a) is bounded if all transi-
tions are conventional. However, ift3 is multi-guarded with
G(t3) = {{p3, p5}, {p4, p5}}, thenp3 (andp4) is not lower-
bounded, i.e., there does not existk ∈ N such that for every
M ∈ RS(N ,M0) it holds that−k ≤ M(p3). This can be
easily checked by selecting repeatedly the guard{p4, p5} and
firing indefinitely the sequencet3t5t2t4t3t5t2t4 . . .. Thus, in
contrast to conventional PNs, a conservative MPN (like the
one in Fig. 2(a)) is not necessarily structurally bounded.

t1 t2
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t4

t5

p1 p2

p3 p4

p5

p6 p7

p′3 p′4
k3 k4+1

Fig. 3. Bounded version of the system in Fig. 2(a) withG(t3) =
{{p3, p5, p′

3
, p′

4
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3
, p′

4
}}. For every reachable markingM it

holdsM(p3) ≥ −k3 andM(p4) ≥ −k4.

Similarly to conventional PNs, an easy way to
lower-boundthe input places of a multi-guarded transition
is by adding some places. Assume that a placep is desired
to store at mostk negative tokens in any reachable marking.
This can be achieved by adding a placep′ to the net such
that Pre(p′, T ) = Pre(p, T ), Post(p′, T ) = Post(p, T ),
M0(p

′) = M0(p)+k and includingp′ in every guard of every
output transition ofp. Given thatp′ is contained in every
guard of its output transitions,M(p′) ≥ 0 for any reachable
M . Moreover, the addition ofp′ entails the existence of the
invariant M(p′) = M(p) + k that holds for any reachable
M . Then,M(p′) ≥ 0 implies M(p) ≥ −k.

If the described addition of places to lower-bound the
input places of multi-guarded transitions is applied to a
conservative MPN system, the system becomes bounded:
Fig. 3 shows the net resulting of applying this approach
on p3 and p4 of Fig. 2(a) (there is no need to lower-
boundp5 because it is contained in every guard). The new
guards oft3 areG(t3) = {{p3, p5, p

′
3, p

′
4}, {p4, p5, p

′
3, p

′
4}}.

Given, that every place is now lower-bounded and the net
is conservative, every place is also upper-bounded, i.e., the
system is bounded.

V. DEADLOCK-FREENESS AND LIVENESS

A. Definitions and Preliminary Results

A natural way to define deadlock-freeness and liveness is
to adapt the existing definitions [9] for conventional PNs to
the enabling condition in MPNs.

Definition 8 (Deadlock-freeness and Liveness):
• A MPN system〈N ,M0〉 is deadlock-free if for every

M ∈ RS(N ,M0) and for any selection of guardsg
there existst ∈ T such thatt is enabled at〈M, g〉.

• Transition t is live in 〈N ,M0〉 if for every
M ∈ RS(N ,M0) and for any selection of guardsg
there existsM ′ ∈ RS(N ,M) such thatt is enabled
at 〈M ′, g〉.

• A MPN system〈N ,M0〉 is live if every t ∈ T is live.
• A MPN N is structurally live (str. live) if an initial

marking M0 ∈ (N ∪ {0})|P | exists such that〈N ,M0〉
is live.

Deadlock-freeness of a MPN system is a sufficient condi-
tion for deadlock-freeness of its corresponding PN system.

Proposition 4: Let N be a MPN andNc be its corre-
sponding conventional PN. If〈N ,M0〉 is deadlock-free then
〈Nc,M0〉 is deadlock-free.
Proof: Assume thatM ∈ RS(Nc,M0) exists such that no
transition is enabled atM , i.e., for everyt ∈ T there exists
p ∈ •t such thatM(p) < Pre(p, t). By Proposition 2, it
holds thatM ∈ RS(N ,M0). By definition ∪

h∈G(t)
h = •t,

hence, a selection of guardsg exists such that for everyt ∈ T

there existsp ∈ g(t) such thatM(p) < Pre(p, t), i.e., no
transition is enabled at〈M, g〉. �

The fact thatRS(Nc,M0) ⊆ RS(N ,M0) can pro-
duce two different phenomena related to liveness: a) The
set RS(Nc,M0) does not contain deadlock markings, but
RS(N ,M0) does (thus, the converse of Proposition 4 does
not hold); b) A given transition is not live inRS(Nc,M0) but
is live in RS(N ,M0). In other words, liveness of〈N ,M0〉
is neither necessary nor sufficient for liveness of〈Nc,M0〉.

Fig. 4(a) illustrates case a). The system is live (and
deadlock-free) if considered as a conventional PN. Assume
now that t3 is multi-guarded withG(t3) = {{p4}, {p5}},
and that the guards selected for its first and second firings
are {p4} and {p5}. Then the firing sequencet1, t3, t1 is
feasible leading to marking(0 0 2 1 − 1 1 0) at which no
transition is enabled. The MPN system is not live (and not
deadlock-free).

Case b) is illustrated in Fig. 4(b). Transitionst3 and t4
are not live if all transitions are conventional. If transition t3
is multi-guarded withG(t3) = {{p1}, {p2}} every transition
becomes live.
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Fig. 4. (a) Live as conventional PN system, not live as MPN system. (b)
Not live as PN system, live as MPN system.

B. Liveness and Boundedness

Live and bounded systems are often calledwell-behaved
systems. It is well-known that a str. bounded and str. live
conventional PN is conservative and consistent [9]. Such fun-
damental necessary conditions also hold for MPN systems.

Lemma 5:Let N be a MPN. IfN is str. bounded and str.
live, thenN is consistent.
Proof: The proof is similar to the proof for conventional
PNs [8]. If 〈N ,M0〉 is bounded and live, the set of reachable
markings is finite and any strongly connected component of
the reachability graph contains all transitions. Then, from
any markingM in a given strongly connected component,
all transitions can be fired reaching againM . Then, there
exists a T-semiflow that contains all transitions. �

Lemma 6:Let N be a MPN. IfN is str. bounded and
consistent, thenN it is conservative.
Proof: If N is str. bounded, then its corresponding con-
ventional PNNc is also str. bounded (Propostion 3). It
is well-known that any str. bounded and consistentNc is
conservative [8]. Since the incidence matrices ofN andNc

are identical,N is also conservative. �

From Lemma 5 and Lemma 6 the following proposition
immediately follows:

Proposition 7: Let N be a MPN. IfN is str. bounded and
str. live, thenN is consistent and conservative.

C. Equal Conflict Nets

As shown in Subsection V-A, liveness of a MPN system
〈N ,M0〉 is, in general, neither necessary nor sufficient
for liveness of the corresponding conventional PN system
〈Nc,M0〉. There is, however, an important net subclass,
namely conservative and strongly connected Equal Conflict
(EC) nets [12], for which liveness of〈N ,M0〉 is neces-
sary and sufficient for liveness of〈Nc,M0〉. This liveness
preservation allows us to directly apply the existing liveness
conditions for conventional EC PNs [12], [2] to EC MPNs.

Two transitions,t and t′, are in Equal Conflict Relation
(denoted by(t, t′) ∈ ECR) iff t = t′ or Pre(P, t) =
Pre(P, t′) 6= 0. This is an equivalence relation on the set of
transitions. Each equivalence class is called Equal Conflict
Set (ECS).

Definition 9 (EC MPN):A MPN is Equal Conflict (EC
MPN) if for every t, t′ ∈ T such that•t ∩ •t′ 6= ∅ it holds
(t, t′) ∈ ECR.

From a structural perspective, the class of EC nets
subsumes several classes of ordinary Petri nets: Marked
Graphs [3] (∀ p |•p| = |p•| = 1), Choice Free nets [11]
(∀ p |p•| = 1), and Free Choice nets [4] (∀ t, t′, if •t∩•t′ 6= ∅
then •t = •t′).

In an ECS of conventional transitions, all transitions be-
come simultaneously enabled when there are enough tokens
in their input places, if there are not enough tokens then no
transition in the ECS is enabled. Interestingly, an ECS of
multi-guarded transitions can behave in the same way if the
guards are selected appropriately: LetTEC be an ECS, and
let pl ∈

•TEC be the last place that receives enough tokens to
enable transitions, i.e.,M(pl) ≥ Pre(pl, t) for any t ∈ TEC

implies thatM(p) ≥ Pre(p, t) for everyp ∈ •TEC and any
t ∈ TEC . If every transitiont ∈ TEC selects a guard that
containspl, then all transitions in the ECS become enabled
simultaneously. Such guard selection is feasible given that
by definition ∪

h∈G(t)
h = •t for every t ∈ T . Notice thatpl

may differ along the system execution, hence, the guards for
each firing instance must be updated to contain the newpl.

A strongly connected and bounded EC PN system is live
iff it is deadlock-free [12]. We establish a similar statement
for strongly connected and conservative (not necessarily
bounded, see Fig. 2(a)) EC MPN systems.

Proposition 8: A conservative and strongly connected EC
MPN system is live iff it is deadlock-free.
Proof: Only the direction ’deadlock-freeness⇒ liveness’
must be proved. Assume a conservative and strongly con-
nected EC MPN system〈N ,M0〉 exists such that it is
deadlock-free and not live. Then, there exists a reachable
marking M at which every transition in a non-empty set
Td ⊂ T is dead, i.e., the transitions inTd are not enabled
at any marking reachable fromM . Let us select the guards
for transitions inT \ Td in such a way that they behave
as conventional transitions. Hence, ift and t′ are in ECR
then t ∈ Td iff t′ ∈ Td. Thus, the input places of dead
transitions keep every incoming token. Given that the system
is conservative the input transitions of such places cannot
fire indefinitely producing an ever increasing number of
tokens and will eventually deadlock. Since the net is strongly
connected every transition will finally deadlock. �

In order to prove the liveness equivalence between a
conservative and strongly connected EC MPN system and
its corresponding conventional EC PN system, a technical
lemma will be used. Such a lemma states that, if the EC PN
system is live, then for any markingM that is solution of
the state equation, a markingM ′ exists such thatM ′ can
be reached fromM by the EC MPN system, and fromM0

by the EC PN system. A similar lemma is proved in [12]
for non-negative solutions of the state equation. Here, the
scope is extended to handle the negative markings that a
MPN system can reach.

Lemma 9:Let N be an EC MPN, andNc be its
corresponding conventional PN. If〈Nc,M0〉 is live and
M = M0 + C · σ for a given σ ∈ (N ∪ {0})|T |, then M ′

exists such thatM ′ ∈ RS(N ,M) ∩RS(Nc,M0).



Proof: LetM = M0 + C · σ for a givenσ ∈ (N ∪ {0})|T |.
It will be shown thatM ′ exists such that it is reachable by
〈N ,M〉 and by〈Nc,M0〉.

Let us decompose the firing count vectorσ asσ = σ0+σ1,
where the firing count vectorσ0 ≥ 0 can be fired fromM0 in
Nc leading toM0

PN at which no transition in‖σ1‖ is enabled
(such a decomposition can be obtained by starting with a null
σ0 andσ1 = σ, and then, iteratively firing transitions in the
successive‖σ1‖ until no transition in‖σ1‖ is enabled). Then,
M0

PN = M0 + C ·σ0, M = M0
PN + C ·σ1 and no transition

in ‖σ1‖ is enabled atM0
PN .

Since〈Nc,M0〉 is live, so is〈Nc,M
0
PN 〉. Hence,t ∈ T ex-

ists such thatt is enabled atM0
PN , i.e.,M0

PN (p) ≥ Pre(p, t)
for every p ∈ •t. Given that the net is equal conflict, there
is no transition in‖σ1‖ that is in ECR witht (otherwise
such transition in‖σ1‖ would be enabled atM0

PN ). In other
words, there is no transition in‖σ1‖ that takes tokens from
input places oft, and thereforeM(p) ≥ Pre(p, t) for every
p ∈ •t. Thus, t is also enabled atM in the MPN system,
whatever the guard fort is.

Let us fire t from M0
PN in the PN system leading to

markingM1
PN , andt from M in the MPN system leading to

markingM1
MPN . Then,M1

MPN = M1
PN + C · σ1, i.e., the

firing of t in both systems makes them advance in parallel.
The procedure described forM0 andM can now be repeated
for M1

PN and M1
MPN : If there exists a transition in‖σ1‖

that is enabled atM1
PN , it is fired in the PN system leading

to a marking that approachesM1
MPN ; If no transition in

‖σ1‖ is enabled atM1
PN , then a transitiont ∈ T exists such

that t is enabled atM1
PN in the PN system, and atM1

MPN

in the MPN system, the firing oft in both systems leads to
new markingsM2

PN andM2
MPN from which the procedure

is repeated.
Given that〈Nc,M0〉 is live, the firing count vectorσ1 can

be eventually fired. Since the procedure makes the PN and
MPN systems either approach or advance in parallel, when
σ1 is fired, a common successorM ′ is reached. A graphical
sketch of the proof is shown in Figure 5. �

M0

M

M0
PN

M1
PN

M1
MPN

M ′

σ

σ0
σ1

RS(Nc,M0)

Fig. 5. Graphical sketch of the proof of Lemma 9. A common successor
is reached by making the systems advance in parallel and approaching their
markings when possible.

Proposition 10: Let N be a conservative and strongly
connected EC MPN, andNc be its corresponding conven-
tional PN.〈N ,M0〉 is live iff 〈Nc,M0〉 is live.
Proof: (⇒) It follows from these facts: a) liveness and
deadlock-freeness are equivalent in EC MPN systems

(Proposition 8) and in EC PN systems [12]; b) deadlock-
freeness of〈N ,M0〉 implies deadlock-freeness of〈Nc,M0〉
(Proposition 4).
(⇐) Assume that〈Nc,M0〉 is live. We will prove that every
transitiont is live in 〈N ,M0〉. Let M be a marking reached
by the MPN system fromM0, then there existsσ ≥ 0 such
that M = M0 + C · σ. By Lemma 9, a markingM ′ exists
such thatM ′ ∈ RS(N ,M)∩RS(Nc,M0). Since〈Nc,M0〉
is live, so is〈Nc,M

′〉. Then, if the selected guards make the
MPN system behave as a conventional one, any transition of
the MPN system can eventually fire fromM ′. �

VI. CONCLUSIONS

Multi-guarded transitions represent a natural approach to
model early evaluation of operations. We have investigated
how some qualitative properties change when a conventional
PN system,〈Nc,M0〉, is transformed to a MPN system,
〈N ,M0〉. The following table summarizes the main results.

RS(N ,M0) ⊇ RS(Nc,M0)
〈N ,M0〉 bounded ⇒ 〈Nc,M0〉 bounded

〈N ,M0〉 deadlock-free ⇒ 〈Nc,M0〉 deadlock-free

〈N ,M0〉 live
6⇐

〈Nc,M0〉 live
6⇒

N str. bounded & str. live ⇒ N consistent & conservative
N is conservative and strongly connected EC:

〈N ,M0〉 live ⇔ 〈Nc,M0〉 live
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