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On observability and design of observers in timed
continuous Petri net systems

Jorge Júlvez, Emilio Jiménez, Laura Recalde, and Manuel Silva

Abstract—This paper is devoted both to the study of observ-
ability criteria and the design of observers in the continuous Petri
net setting. The concept of structural observability, regarding the
possibility of estimating the marking of places, i.e., the system
state, for any speed of the transitions is introduced and studied
for the subclass of Join-Free Petri Nets (JF). For non Join-Free
Petri Nets, conditions to compute suitable state estimatesare
established. The proposed observers are piecewise linear systems
that assure the continuity of the estimate even when a switch
occurs. The system simulation may allow to estimate even the
unobservable space of the net system during a given time period.

Note to practitioners- Petri nets represent a modeling
formalism for discrete dynamical systems that offers a great
modeling power. Among others, Petri nets have been success-
fully applied in the fields of manufacture, communication, lo-
gistics and traffic. Continuous Petri nets came up to handle the
state explosion problem inherent to highly populated discrete
systems. The state of a plant modeled with a continuous Petri
net is given by a set of real variables. This way, the initial load
of the plant has no effect on the complexity of the analysis
techniques to be applied.

Obtaining an accurate knowledge of the state of the plant is
a crucial task that can determine the feasibility and reliability
of subsequent activities as control. The usual way to catch
information about the dynamical system under consideration is
through sensors located on the physical plant. Unfortunately, in
many real situations some state variables cannot be measured
through sensors due to either their inaccessible location,the
lack of such sensors or the high cost involved in the installation
of the sensors. The good news is that the value of those a
priori non measurable variables can be estimated if the plant
fulfils some technical conditions. Usually, state estimates can
be obtained by building a dynamical system called ’observer’
whose output is the estimate for the plant.

The paper can be roughly divided into two parts: In the first
part, the conditions required to compute estimates are studied.
The second part presents a method to design observers whose
state converges to the state of the plant.

Index Terms—Continuous Petri nets, Observability, Observers,
Piecewise linear systems.
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I. I NTRODUCTION

Petri nets represent a powerful formalism for the modelling
of concurrent systems [1], [2]. In particular, stochastic T-timed
Petri nets represent a well-known performance evaluation
discrete event model [3], [4]. Under heavy loads, discrete
event systems often suffer from the state explosion problem.
In the framework of observability in discrete event systems,
the number of states of an observer is exponential after the
observation of a word of bounded length [5]. One way to
tackle this problem is to transform the original discrete model
into an easier to analyze model that preserves the properties
to be studied.

Fluidification is a relaxation technique in which discrete ele-
ments of the system are taken as continuous. The fluidification
of a timed Petri net system leads to a deterministic piecewise
linear system [6], [7]. At a given instant, the differential
equations that rule its evolution uniquely depend on the state
of the system (marking). Hence, the switch from one linear
differential equation system to another one is triggered byan
internal event, i.e., by a certain change in the marking of the
system.

This work focuses on the study of observability and the
design of observers in the framework of continuous Petri
net systems [8], [6]. Preliminary results on observabilityand
design of observers for continuous Petri nets can be found
in [9], [10].

With respect to the study of observability, our attention is
first focused on net systems without synchronizations, named
Join Free (JF) systems. For this class of net systems a single
linear differential equation system describes the system dy-
namics, thus classical results on observability of linear systems
apply here [11], [12], [13]. For JF systems, an effort has
been made to introduce and study the concept ofstructural
observability. A system is said to be structurally observable if
its marking can be estimated independently of the speeds of
the transitions.

Afterwards, general Petri net systems including synchro-
nizations will be considered. Such net systems are a subclass
of piecewise linear (PL) systems. In contrast to linear systems,
the study of observability in PL is a tough problem. There
is no link between the observability of a PL system and
the observability of the linear systems composing such PL
system [14] (the switching among the different linear systems
causes this phenomenon). Fortunately the specific features
of continuous Petri net systems allow to obtain interesting
observability conditions.

Regarding the design of observers, the starting point is



to consider one Luenberger observer for each differential
equation system that may rule the evolution of the net system
(in a similar way to [15]). Each observer will yield an estimate
that will be classified assuitableor non-suitablewith respect
to the current system output. In this paper an algorithm is
proposed that filters out non-suitable estimates and simulates
the net system from a given instant in order to compute an
estimate for the marking of the system.

The work is structured as follows. In Section II, continuous
Petri nets are introduced. In Section III, the observability
problem for continuous Petri nets is stated in a similar way to
the observability problem for linear systems. In Section IV, we
concentrate on JF systems. For this type of systems, structural
conditions of observability are obtained from the output ofa
fix point algorithm. Section V focuses on the computation of
estimates for general Petri net systems. Section VI shows how
a set of linear observers can be created for a net system and
the different classes of non-suitable observers’ estimates that
can appear. Finally, Section VII sums up the main presented
results.

II. CONTINUOUS PETRI NET SYSTEMS

A. Untimed Continuous Petri Net Systems

A PN system is a pair〈N ,m0〉, whereN specifies the
net structure,N = 〈P, T,Pre,Post〉 and m0 is the initial
marking. The sets of places and transitions are denoted byP
andT , respectively. MatricesPost andPre are the arc weight
matrices andC = Post−Pre is the token flow matrix. The
set of input (output) places of a given set of transitionsV
is denoted as•V (V •). Respectively, the set of input (output)
transitions of a given set of placesW is denoted as•W (W •).
A net is Join Free (JF) iff every transition has only one input
place (for everyt ∈ T , |•t| = 1).

In continuous PN systems a transitiont is enabledat a
marking m iff every input place oft is marked (for every
p ∈ •t, m[p] > 0). The enabling degreeat markingm of a
transition measures the maximum amount in which the tran-
sition can be fired in a single occurrence, i.e.,enab(t,m) =
minp∈•t{m[p]/Pre[p, t]}. The firing of t in an amountα,
0 < α ≤ enab(t,m) produces a new markingm′, and it is
denoted asm αt−→m′, wherem′ = m+α ·C[P, t]; hence, the
state equationm = m0 + C · σ ≥ 0 summarizes the way
the marking evolves, whereσ is the firing count vector (thus
σ ≥ 0).

B. Timed Continuous Petri Net Systems

For the timing interpretation, a first order (or deterministic)
approximation of the discrete case [16] will be used, assuming
that the delays associated to the firing of the transitions
can be approximated by their mean values. Each transition
t has associated to it an internal firing speedλ[t] > 0. The
state-transition equation has an explicit dependence on time
m(τ) = m0 + C · σ(τ). Differentiating with respect to time,
ṁ(τ) = C · σ̇(τ) is obtained. Let us denotef = σ̇, since it
represents theflow through the transitions.

Infinite server semantics will be used in the timed model.
Under this semantics the flow of a transition is proportionalto

its enabling degree. More precisely, the flow of a transitiont
is computed as the product ofλ[t] by its enabling degree, i.e.,
f [t] = λ[t] · enab(t,m) = λ[t] · minp∈•t{m[p]/Pre[p, t]}.

In JF systems, transitions have only one input place, and so
the computation of the enabling degrees does not require the
min operator, i.e., they are linear positive systems. Hence, the
flow of the transitions can be expressed asf = Ψ · m where
Ψ[t, p] = λ[t]/Pre[p, t] if p = •t, Ψ[t, p] = 0 otherwise1.
Consequently, the evolution of the marking can be described
by an equation in the formṁ = C · f = A · m, where
A = C · Ψ is a constant matrix.

For a general PN system, matrixA is not constant but
piecewise-constant. The value ofA at a given instant is
determined by the markingm at that instant. To compute
A, it is necessary to know the set of places that is actually
enabling the transitions, i.e., the set of places that is giving
the minimum in the expression for the enabling degree. Once
this set is computed, it is easy to establish a linear relationship
between the marking of the places in this set and the flow of
the transitions:ṁ = A(m)·m, with A(m) = C·Ψ(m) where
Ψ[t, p](m) = λ[t]/Pre[p, t] if p ∈ •t andm[p]/Pre[p, t] =
minq∈•t{m[q]/Pre[q, t]}, Ψ[t, p](m) = 0 otherwise.

The PT-set of a system at markingm is the set of all the
pairs,(p, t), such that the marking ofp is restricting the flow
of transitiont at m.

Definition 1: The PT-set of a given system at markingm

is defined as:

PT-set(m) = {(p, t) | f [t] = λ[t] · m[p]/Pre[p, t]}

Notice that each transition is contained at least in one pair
of a PT-set (and will belong to more than one only if several
of its input places define the same enabling degree). Thus, any
PT-set has at least as many pairs as transitions. Obviously,for
JF systems a unique PT-set exists. Otherwise, if the PT-set is
known, the system evolves according toṁ = A1 · m where
A1 depends onPT-set(m) and theλ of the transitions. If at a
given instant the PT-set changes, i.e., a transition is restricted
by other input place, the system will be ruled by another linear
systemṁ = A2 ·m. That is, every PT-set,k, has associated a
square matrixAk and a linear systemΣk : ṁ = Ak ·m. The
set of PT-sets that will be active during the evolution of the
system, i.e.,behavioral PT-sets, depends on the net structure,
on λ, and on the initial marking. If the initial marking is not
known, the net structure defines the set of potential PT-sets,
i.e., structural PT-sets, that might be active.

In order to illustrate the evolution of a non JF system,
let us consider the system in Figure 1 with initial marking
m0 = (3 0 0) and transition speedsλ = (0.9 1 1). If
m[p1] < m[p2], the flow of transitiont2 will be defined by
the marking ofp1 (Σ1).

Similarly, if m[p1] > m[p2] the flow of t2 will be defined
by the marking ofp2 (Σ2).

Σ1 : ṁ =





−1.9 0 2
−0.1 0 0

1.0 0 −1



 · m

1Notice that places and transitions are transposed w.r.t. the incidence matrix.
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Fig. 1. A non JF net system with two PT-sets.

Σ2 : ṁ =





−0.9 −1 2
0.9 −1 0
0.0 1 −1



 · m

At the time instant in whichm[p1] = m[p2], Σ1 and Σ2

behave in the same way and any of them can be taken. Figure 2
shows the evolution of the system along time. At the beginning
the system evolves according toΣ2. Then a switch occurs and
the dynamics of the system is described byΣ1. A second
switch turns the system back toΣ2, the system stabilizes and
no more switches take place.
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System evolution
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Σ Σ Σ2 2 1 
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Fig. 2. Marking evolution of the system in Figure 1 withm0 = (3 0 0).

III. O BSERVABILITY: PROBLEM STATEMENT

Let us first consider linear time invariant systems, for which
observability has been thoroughly studied [13], [17], [11], [12].
An unforced linear system (i.e., without inputs) is usually
expressed by equationṡx = A · x,y = S · x where x is
the state of the system andy is the output. Knowing the
matricesA and S and being able to watch the evolution of
y, a linear system is said to beobservableiff it is possible to

compute its initial state,x(τ0). A well-known observability
criterion exists that allows to decide whether a continuous
(deterministic) time linear system is observable or not: The
linear system is observable iffϑ = [S′ A′S′ · · · (A′)n−1S′]
has full rank. Matrixϑ is called the observability matrix of the
system, and the initial state can be deduced from the following
equation:









y(0)
ẏ(0)
. . .

y(n−1)(0)









=









S

S ·A
. . .

S ·An−1









· x0 = ϑ · x0 (1)

A drawback of this theoretical result is that it requires the
use of higher order derivatives to compute the initial state.
However, different approaches exist in practice to estimate the
state of a continuous time linear system, even guaranteeing
convergence in finite time [18]. The estimate for the marking
of a PN will be denoted as̃m.

Here it will be assumed that each place is eithermeasured
or unmeasured. It will be said that a placepi is measured iff
there exists a rowj in S such thatS(j, i) 6= 0 andS(j, k) = 0
for everyk 6= i.

Let us define the concept of observability for a continuous
Petri net system:

Definition 2: Let 〈N , λ,m0〉 be a continuous PN system
andD the set of measured places.

• A place p ∈ P is observablefrom D iff it is possible
to compute its initial markingm0[p] = m(τ0)[p] by
measuring the marking evolution of the places inD.

• N is observablefrom D iff every place p ∈ P is
observable.

IV. OBSERVABILITY IN JOIN FREE SYSTEMS

In this section, an observability criterion that is independent
of the internal speeds of the transitions, i.e., vectorλ, is
obtained.

A. Structural Observability

Definition 3: Let N be a continuous PN andD the set of
measured places of the system:

• Placep is structurally observablefrom D iff it is observ-
able fromD for any λ > 0.

• N is structurally observablefrom D iff every placep is
structurally observable.

In other words, structural observability seeks for observabil-
ity for any λ, like structural boundedness seeks for bound-
edness for anym0 [2]. Structural observability can be seen
as a “robust” observability property because a structurally
observable net remains observable for any variation that its
vector λ may suffer. For instance, let us suppose that the
only measured place of the system in Figure 3 isp3 and that
the vectorλ is known. The variation, i.e., the derivative, of
the marking of a place is given by the difference between its
input and output flows. Forp3, we haveṁ[p3] = f2 − f3
where: f2 = λ[t2] · m[p2] and f3 = λ[t3] · m[p3], and so
m[p2] = (ṁ[p3] + λ[t3] · m[p3])/λ[t2]. Therefore, from the
evolution of m[p3], m[p2] can be computed. Furthermore,
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it holds ṁ[p2] = f1 − f2 and f1 = λ[t2] · m[p1]. Thus,
m[p2] being computable,m[p1] can also be computed. This
procedure can be carried out whatever the value ofλ is, i.e.
this net is structurally observable.

replacements

t1 t2 t3p1 p2 p3

Fig. 3. The system marking can be computed from the observation of p3.

This result can be generalized as follows:
Theorem 4:Let N be a continuous PN andD the set of

measured places. If a placep is structurally observable then a
forward path fromp to D exists.

Proof: The marking of a placep can only have impact
on downstream places and transitions. If there is no forward
path fromp to D, then the marking ofp cannot be observed
from the variation of the marking of the places inD.

B. Computation Algorithm

A similar approach to the one considered to observep1 and
p2 in the system in Figure 3 can be used to observep1 and
p2 in the system in Figure 4, where the measured places are
p3, p4, andp5. Let us consider a matrixPostu ∈ IR|P |×|T |

containing only the output arc weights of the transitions whose
flow is, “in principle”, unknown, i.e., the marking of their input
places is not known. More formally, in the iterative algorithm
that will be proposed, for anypi ∈ tj

•, Postu[i, j] = 0 if the
marking of the place•tj is measured or has been computed
in previous iterations, andPostu[i, j] = Post[i, j] otherwise.

t1 t2 t3

p1 p2 p3

p4 p5

a
b c d e

f

q r s

Fig. 4. A JF system whose marking is computable from the evolution of
p3, p4 andp5.

The first three rows (that correspond to placesp1, p2 and
p3) of Postu are zeros (because they were zeros inPost) and
the forth and fifth rows (that correspond to placesp4 andp5)
are (a c 0) and (b d 0), respectively. The marking evolution
of placesp4 and p5 is known (because they are measured)
and here it is equal to their input flow. Subtracting the flow
coming fromp3, f

p3

i4 andf
p3

i5 , we will obtain the flow coming
from the unknown placesp1 andp2:

(

ṁ[p4] − f
p3

i4

ṁ[p5] − f
p3

i5

)

=

(

a c
b d

)

·







λ[t1] ·
m[p1]

q

λ[t2] ·
m[p2]

r






(2)

Hence, if the matrix(a c; b d) has full rank it will be
possible to compute the markings ofp1 andp2 independently
of the λ of the transitions.

The procedure developed for the above examples can be
generalized leading to a fix point algorithm.

Given a set of placesH, Postu
H denotes a matrix composed

by the rows ofPostu corresponding to the places inH, and
whose null columns have been removed.

Algorithm 5

Input (N , D)
Output Q % places that can be observed∀ λ > 0

Q := D
ComputePost

u

While ∃ H ⊆ Q, such that•(•H) 6⊂ Q and
Post

u

H has full rankdo
Q := Q∪ •(•H)
ComputePost

u according toQ
End While

Notice that the setQ increases at each iteration. Since the
number of places in the net is finite, so is the final setQ.
Hence, the algorithm cannot execute indefinitely.

Proposition 6: Let N be a JF net,D the set of measured
places andQ the output of the Algorithm 5 applied on (N ,
D). Everyp ∈ Q is structurally observable.

Proof: Since they are measured, all places inD are
trivially structurally observable. At each iteration of algorithm
5 the setQ increases. The marking of the newly added places
toQ can be computed (Equation 2) from the marking of places
that already were inQ. Thus, the marking of everyp ∈ Q
can be computed whatever the value ofλ is.

V. OBSERVABILITY IN GENERAL NET SYSTEMS

A. Structural Observability in non-JF Systems

The PN system in Figure 5 represents a manufacturing sys-
tem that produces tables (see [19], [16] for details). Transition
t5 has two input places,p5 andp6, thus, it is not a JF system.
However, if placesp5 andp6 are measured, i.e.,p5 ∈ D and
p6 ∈ D, Algorithm 5 can be executed in the same way as for JF
systems. Let us assume thatD = {p5, p6}. In the first iteration
of the algorithm,p3 is added to the set of observable places.
Placesp7 andp4 are also added to the set of observable places
in the second and third iteration, respectively. At that point
the algorithm stops. However, if the set of measured places
is eitherD = {p1, p5, p6} or D = {p2, p5, p6} the algorithm
will include all places in the set of observable places in four
iterations.

B. Computing Estimates

The greatest advantage of the structural observability ap-
proach is that it is independent ofλ. The main drawback is
that every place in a synchronization should be measured in
order to apply the method. Ifλ is known, another way to
face the observability problem in general systems consistsin
computing an estimate for every structural PT-set of the net.
The computed estimates can be used to filter out those PT-sets
that for sure are not ruling the evolution of the system.

Definition 7:
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Fig. 5. PN modelling a table factory.

• An estimatem̃ for a PT-setW is infeasibleif Equation 1
has no solution when applied forW .

• An estimate m̃ for a PT-set W is incoherent if
W 6⊆ PT-set(m̃), i.e, W is not a PT-set of̃m.

If an estimate is either infeasible or incoherent, then its
associated PT-set must be filtered out. Let us consider the
subnet composed ofp1, p2 and t2 of the system in Figure 1.
The net has two structural PT-sets,W1 = {(p1, t2)} and
W2 = {(p2, t2)} (the PT-setW3 = {(p1, t2), (p2, t2)} is
not considered to avoid redundancy, i.e, whenm(p1) =
m(p2) all three PT-sets are equivalent). The evolution of
the system according to PT-setW1 is ruled by the matrix
A1 = (−1 0;−1 0). The system matrix for PT-setW2

is A2 = (0 −1; 0 −1). Considering that the initial marking
is m0 = (4; 2), the initial PT-set for the system isW2, and so
m(τ) = (2 · e−τ + 2; 2 · e−τ ).

As external agents of the system we will consider 4 cases
depending on: 1) the output of the system, i.e., the measured
place, which can be eitherp1 or p2, and 2) the PT-set that is
assumed to be ruling the net system, which can be eitherW1

or W2.
In the first two casesm[p1] is the output of the system, i.e.,

y = 2 · e−τ + 2 (hence,m[p1] can be estimated correctly):

Case 1:W2 is assumed to be the PT-set. For this case
ϑ = (1 0; 0 − 1) whose rank is 2. The initial mark-
ing m0 = (4; 2) can be recovered.

Case 2:W1 is assumed to be the PT-set. The observability
matrix is ϑ = (1 0;−1 0). Equation 1 has no solu-
tion, thus, an estimate form[p2] cannot be computed.

In this way, by means of an “infeasible” estimate (case 2),
it has been detected that the PT-set of the system isW2.

If p2 is measured, i.e.,y = 2 · e−τ (hence,m[p2] can be
estimated correctly), the two cases are:

Case 3:W2 is assumed to be the PT-set.ϑ = (0 1; 0 − 1),
which is not a full rank matrix. Thus, it is only
possible to observe the marking ofp2.

Case 4:W1 is assumed to be the PT-set. The observability
matrix is ϑ = (0 1;−1 0) which has full rank. The
solution for Equation 1 ism̃0 = (2 2). Given that
m̃0 is coherent withW1, it is a suitable estimate,
even if, in this case,p1 is not estimated correctly.

Finally, let us show when an incoherent estimate may appear
for the system in Figure 1. Let us assume thatW1 rules the
system evolution. Let us further assume that an estimatem̃0

is obtained such that̃m0[p1] > m̃0[p2]. The PT-set of such
estimate isW2. Hence,m̃0 is incoherent with the assumed
PT-setW1, and therefore it cannot be a suitable estimate.

The steps required to obtain suitable estimates are summed
up as:

• Compute an estimate per structural PT-set.
• Filter out non-suitable estimates: infeasible or incoherent.
• The remaining estimates represent every potential mark-

ing of the net.

VI. OBSERVERS AND ESTIMATES

The main drawback of the method presented in the previous
section is that it is very sensitive to the noise that may
appear in the outputy. In order to overcome that problem,
observers are introduced. For linear systems, Luenberger’s
observers [13], [11] are widely used. A Luenberger observer
for a PN with a single PT-set can be expressed as:˙̃m =
A·m̃+K·(y−S·m̃) wherem̃ is the marking estimate,A and
S (see Section III) are the matrices defining the evolution of
the marking of the system and its output in continuous time,
y is the output of the system, andK is a design matrix of
parameters.

The “goodness” of an estimate can be measured by means
of a residual [15]. Let us use the 1-norm|| · ||1, which is
defined as||x||1 = |x1| + . . . + |xn|. The residual at a given
instant,r(τ), is the distance between the output of the system
and the output that the observer’s estimate,m̃(τ), yields, i.e.,
r = ||S · m̃(τ) − y(τ)||1.

A. Filtering estimates

One (Luenberger) linear observer [11] will be designed per
PT-set of the PN. The designed observers will be launched
simultaneously. In a similar way to the previous section,
observer estimates are expected to verify the following confi-
tions:

• The residual must tend to zero.
• The estimates of the places in a synchronization have to

becoherentwith the PT-set for which they are computed.

Thus, at a given time instant, only coherent estimates are
suitable. Moreover, a criterion must be established to decide
which coherent estimate is, at a given time instant, the most
appropriate. An adequateheuristicsis to choose the coherent
estimate with minimum residual.

B. Design of a switching observer

Consider again the continuous PN system in Fig-
ure 1. Let its output be the marking of placep1, i.e.,
S = (1 0 0). The net has two PT-sets: let one of the PT-
sets beZ1 = {(p1, t1), (p1, t2), (p3, t3)} and the other be
Z2 = {(p1, t1), (p2, t2), (p3, t3)}. For the PT-setZ1 the mark-
ing of p2 is unobservable. However, for the PT-setZ2 the
marking of all the places can be estimated. Letλ = (0.9 1 1)
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and m0 = (3 0 0). The marking evolution of this system is
depicted in Figure 2.

One observer per PT-set will be designed: observer
i for PT-set Zi, i = 1, 2. Let the initial state of
observer 1 bee01 = (1 2) and its eigenvalues be
(−12 + 2 ·

√
3 · i, −12 − 2 ·

√
3 · i). Since observer 1 can

only estimatep1 and p3, the first component of its state
vector corresponds to the estimate form[p1], and its second
component to the estimate form[p3]. For observer 2, let
the initial state bee02 = (1 0 2) and its eigenvalues be
(−15, −12 + 2 ·

√
3 · i, −12 − 2 ·

√
3 · i). The evolution

of the coherent estimate with minimum residual is shown in
Figure 6.
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Fig. 6. Minimum residual and coherent observer,(omcr1, omcr2, omcr3)
is the estimate for(m[p1], m[p2], m[p3]).

The resulting estimate can be improved by taking into
account some considerations. When the first system switch
happens, the estimate becomes discontinuous and, what is
more undesirable, the estimate for the marking ofp3 becomes
worse. A similar effect happens when the second system
switch occurs. Another undesirable phenomenon is that, after
the first switch, the estimate of the marking ofp2 just
disappears (sincem[p2] is unobservable in PT-setZ1).

One way to avoid discontinuities in the resulting estimate,
is to use the estimate of the observer that is going to be filtered
out to update the estimate of the observer that is not going tobe
filtered out. This estimate update must be done when a system
switch is detected. In order not to lose the estimate of the
marking of a place when it was “almost perfectly” estimated
(recall the case ofp2 when the first switch happened) a
simulation of the system can be launched. The initial marking
of this simulation is the estimate of the system just before the
observability of the place is lost. Such a simulation can be
seen as an estimate for those places that are not observable by
the observer being considered. The simulation should only be
carried out when an estimate for all the places exists and the
residual is not significant. Figure 7 shows the evolution of the
estimate obtained by this strategy.

The resulting observer can be seen as a set of switching
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Fig. 7. Resulting observer’s estimate that makes use of a simulation,
(obss1, obss2, obss3) is the estimate for(m[p1], m[p2], m[p3]).

linear observers. One of the main advantages is that the
residual does not increase sharply when the PT-set of the
system changes. Another interesting feature is that the use
of a simulation allows to estimate the marking of places that
in some PT-sets are in principle not observable: in Figure 7
it can be seen that the marking ofp2 can be estimated, even
when it is unobservable due to PT-setZ1 being active.

VII. C ONCLUSIONS

The performance model of continuous PNs working un-
der infinite server semantics has been considered. Structural
observability has been introduced and studied for continuous
Petri net systems without synchronizations (JF systems).

For general (with synchronizations) continuous PN an esti-
mate can be computed for each structural PT-set (linear sys-
tem). Although this may lead to a large number of estimates,
the ones classified asinfeasibleor incoherentare non-suitable
and can be filtered out.

In order to design an observer for a timed continuous
PN, one linear (Luenberger) observer per PT-set has been
considered. The estimate yielded by a given observer is not
suitable if it produces anon null residualor it is non-coherent.
Based on the idea of choosing the suitable estimate with the
smallest residual, a switching observer has been proposed.
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