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Abstract—This paper is devoted both to the study of observ- I. INTRODUCTION
ability criteria and the design of observers in the continuas Petri
net setting. The concept of structural observability, regading the Petri nets represent a powerful formalism for the modelling

possibility of estimating the marking of places, i.e., the ystem  of concurrent systems [1], [2]. In particular, stochastitirited
state, for any speed of the transitions is introduced and stdied Petri nets represent a well-known performance evaluation

for the subclass of Join-Free Petri Nets (JF). For non Join-Fee . .
Petri Nets, conditions to compute suitable state estimateare discrete event model [3], [4]. Under heavy loads, discrete

established. The proposed observers are piecewise linearsteems  €vent systems often suffer from the state explosion problem
that assure the continuity of the estimate even when a switch In the framework of observability in discrete event systems

occurs. The system simulation may allow to estimate even the the number of states of an observer is exponential after the
unobservable space of the net system during a given time ped. observation of a word of bounded length [5]. One way to
tackle this problem is to transform the original discretedelo
Note to practitioners- Petri nets represent a modelingnto an easier to analyze model that preserves the propertie
formalism for discrete dynamical systems that offers atgref@ be studied.
modeling power. Among others, Petri nets have been succesd-luidification is a relaxation technique in which discrele-e
fully applied in the fields of manufacture, communicatias, | ments of the system are taken as continuous. The fluidifitatio
gistics and traffic. Continuous Petri nets came up to haindle tof a timed Petri net system leads to a deterministic pie@wis
state explosion problem inherent to highly populated digcr linear system [6], [7]. At a given instant, the differential
systems. The state of a plant modeled with a continuous Petguations that rule its evolution uniquely depend on thtesta
net is given by a set of real variables. This way, the initi@ld of the system (marking). Hence, the switch from one linear
of the plant has no effect on the complexity of the analysdifferential equation system to another one is triggeredby
techniques to be applied. internal eventi.e., by a certain change in the marking of the
Obtaining an accurate knowledge of the state of the plantsgstem.
a crucial task that can determine the feasibility and rdltgb ~ This work focuses on the study of observability and the
of subsequent activities as control. The usual way to catdesign of observers in the framework of continuous Petri
information about the dynamical system under considamagio net systems [8], [6]. Preliminary results on observabitityd
through sensors located on the physical plant. Unfortdyaite design of observers for continuous Petri nets can be found
many real situations some state variables cannot be mehsune[9], [10].
through sensors due to either their inaccessible locatlm,  With respect to the study of observability, our attention is
lack of such sensors or the high cost involved in the ingtalta first focused on net systems without synchronizations, mlame
of the sensors. The good news is that the value of thosel@in Free (JF) systems. For this class of net systems a single
priori non measurable variables can be estimated if thet pldimear differential equation system describes the systgm d
fulfils some technical conditions. Usually, state estimatan namics, thus classical results on observability of lingatesms
be obtained by building a dynamical system called 'obsérveapply here [11], [12], [13]. For JF systems, an effort has
whose output is the estimate for the plant. been made to introduce and study the concepstnictural
The paper can be roughly divided into two parts: In the firstbservability A system is said to be structurally observable if
part, the conditions required to compute estimates areestud its marking can be estimated independently of the speeds of
The second part presents a method to design observers wiibseiransitions.

state converges to the state of the plant. Afterwards, general Petri net systems including synchro-
_Index Terms—Continuous Petri nets, Observability, Observers, nizations will be considered. Such net systems are a subclas
Piecewise linear systems. of piecewise linear (PL) systems. In contrast to linearesyst,

the study of observability in PL is a tough problem. There
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to consider one Luenberger observer for each differentiéd enabling degree. More precisely, the flow of a transition
equation system that may rule the evolution of the net systesncomputed as the product aft] by its enabling degree, i.e.,

(in a similar way to [15]). Each observer will yield an estima £[t] = A[¢] - enab(t, m) = A[t] - minye+,{mp|/Pre[p, t]}.

that will be classified asuitableor non-suitablewith respect  In JF systems, transitions have only one input place, and so
to the current system output. In this paper an algorithm fke computation of the enabling degrees does not require the
proposed that filters out non-suitable estimates and stegilamnin operator, i.e., they are linear positive systems. Henee, th
the net system from a given instant in order to compute #low of the transitions can be expressedfas ¥ - m where
estimate for the marking of the system. U[t,p] = A[t]/Pre[p,t] if p = *t, ¥[t,p] = 0 otherwise?.

The work is structured as follows. In Section Il, continuou€onsequently, the evolution of the marking can be described
Petri nets are introduced. In Section Ill, the observabiliy an equation in the formm = C-f = A - m, where
problem for continuous Petri nets is stated in a similar vy tA = C - ¥ is a constant matrix.
the observability problem for linear systems. In Sectionwé For a general PN system, matrix is not constant but
concentrate on JF systems. For this type of systems, stalictpiecewise-constant. The value & at a given instant is
conditions of observability are obtained from the outputof determined by the markingn at that instant. To compute
fix point algorithm. Section V focuses on the computation oA, it is necessary to know the set of places that is actually
estimates for general Petri net systems. Section VI shows henabling the transitions, i.e., the set of places that isngiv
a set of linear observers can be created for a net system &gl minimum in the expression for the enabling degree. Once
the different classes of non-suitable observers’ estisntiiat this set is computed, it is easy to establish a linear relatigp
can appear. Finally, Section VII sums up the main presentedtween the marking of the places in this set and the flow of

results. the transitionsm = A (m)-m, with A(m) = C-¥(m) where
Wt,p|(m) = A[t]/Prelp,t] if p € *t andm[p]/Pre[p,t] =
[I. CONTINUOUS PETRI NET SYSTEMS mingee;{mlq]/Prelq, t]}, ¥[t,p](m) = 0 otherwise.
A. Untimed Continuous Petri Net Systems The PT-set of a system at marking is the set of all the

A PN system is a paif\', mo), where V" specifies the pairs, (p, t), such that the marking qf is restricting the flow

net structure N' = (P, T, Pre, Post) and mg is the initial of tl‘ar.'IS.It.IOI’lt atm. . .
marking. The sets of places and transitions are denote#t by, Def_|n|t|on 1 The PT-set of a given system at marking
andT’, respectively. MatricePost andPre are the arc weight is defined as:

matrices andC = Post — Pre is the token flow matrix. The PT-set(m) = {(p,?) | f[t] = A[t] - m[p]/Pre[p, 1]}

set of input (output) places of a given set of transitidns

is denoted a8V (V'*). Respectively, the set of input (output) fNoS_cl:_e trt1at egch_l':rznlsmontls contatlrr:ed at Ieas: |r_1fone pa:r
transitions of a given set of placég is denoted a8W (W*). of a PT-set (and will belong to more than one only if severa

A net is Join Free (JF) iff every transition has only one inp tl_'ts TEUt plﬁzes ?eflne the same en?bllng[.degreoez). '_I;ihysl, an
place (for everyt € T, [*¢] = 1). -set has at least as many pairs as transitions. Obvidasly,

In continuous PN systems a transitionis enabledat a JF systems a unique PT-set exists. Otherwise, if the PTset i

. . : : known, the system evolves accordingrio = A; - m where
marking m iff every input place oft is marked (for every ) "
p € *t, m[p] > 0). The enabling degreet markingm of a A; depends o T-set(m) and the of the transitions. If at a

transition measures the maximum amount in which the tra%'—ven Instant the PT-set changes,.l.e., a transition '$'cm
sition can be fired in a single occurrence, i@ab(t,m) = y other. input place, the ;ystem will be ruled by anotherame
minyce,{m[p]/Prelp, £]}. The firing of ¢ in an amounta, systemm = _Ag-m. That_ is, every PT—setq;z has associated a

0 < a < enab(t,m) produces a new markingn’, and it is square matrbA,, and a linear Systertiy, : i = Ay -m. The
denoted asn_*,m’, wherem’ — m + - C[P, ]; hence, the set of PT—sets thqt will be active during the evolution of the
state equatioom = mg + C - o > 0 summarizes the way system, |.e.behav_|o.r:.;1I PT—serdepends.o.n_ the net_strgcture,
the marking evolves, where is the firing count vector (thus on A, and on the initial markllng. If the initial mark|r_19 Is not
o > 0). !(nown, the net structure de_flnes the s_et of potential PT-sets

- i.e., structural PT-setsthat might be active.

) i i In order to illustrate the evolution of a non JF system,
B. Timed Continuous Petri Net Systems let us consider the system in Figure 1 with initial marking
For the timing interpretation, a first order (or determiiglst my = (3 0 0) and transition speeds\ = (0.9 1 1). If
approximation of the discrete case [16] will be used, asegmim|p,] < m[p], the flow of transitiont, will be defined by

that the delays associated to the firing of the transitiofise marking ofp, ().

can be approximated by their mean values. Each transitionsimilarly, if m(p;] > m[p,] the flow of ¢, will be defined
t has associated to it an internal firing spe¥d > 0. The by the marking ofps (X5).

state-transition equation has an explicit dependenceroa ti

m(7) = mp + C - o(7). Differentiating with respect to time, -1.9 0 2
m(r) = C-o(7) is obtained. Let us denote= &, since it p:m = —-01 0 0 |- m
represents th8ow through the transitions. 1.0 0 -1

Infinite server semantics will be used in the timed model.
Under this semantics the flow of a transition is proportidnal  !Notice that places and transitions are transposed we.inthiidence matrix.



- b P2 compute its initial statex(r). A well-known observability

criterion exists that allows to decide whether a continuous
(deterministic) time linear system is observable or note Th
linear system is observable iff = [S’ A’S’ ... (A")""19/]

has full rank. Matrixi is called the observability matrix of the

9 2 system, and the initial state can be deduced from the fatigwi
equation:
Q bs y(0) S
y (0 S-A
y y( ) = xo=1-%0 (1)
5 .. ..
y(n—l) (O) S. A1
Fig. 1. A non JF net system with two PT-sets. A drawback of this theoretical result is that it requires the
use of higher order derivatives to compute the initial state
09 —1 9 However, different approaches exist in practice to estntiag
So: m = 0.9 -1 0l m state of a continuous time linear system, even guaranteeing
0.0 1 -1 convergence in finite time [18]. The estimate for the marking
. . _ . of a PN will be denoted as.
At the time instant in whichm[p;] = m[p,], £, and ¥, Here it will be assumed that each place is eithiasured

behave in the same way and any of them can be taken. Figurgr Zinmeasuredit will be said that a place; is measured iff
shows the evolution of the system along time. At the begimnifmhere exists a row in S such thatS(j,i) # 0 andS(j,k) =0
the system evolves accordingin. Then a switch occurs andfgr everyk # i.

the dynamics of the system is described By. A second  [et us define the concept of observability for a continuous
switch turns the system back k0, the system stabilizes andpetri net system:

no more switches take place. Definition 2: Let (A, A\, mq) be a continuous PN system
and D the set of measured places.
System evolution | « A placep € P is observablefrom D iff it is possible
— mip1] to compute its initial markingme[p] = m(7)[p] by
o] measuring the marking evolution of the placesTin
« N is observablefrom D iff every placep € P is
observable

V. OBSERVABILITY IN JOIN FREE SYSTEMS
In this section, an observability criterion that is indegent

-~ /—-—-—-—- of the internal speeds of the transitions, i.e., veckris
i m m e e obtained.

A. Structural Observability

Definition 3: Let N be a continuous PN anB® the set of
measured places of the system:

« Placep is structurally observablérom D iff it is observ-
! ! ‘ able fromD for any A > 0.
« N is structurally observablérom D iff every placep is
2 structurally observable

In other words, structural observability seeks for obskitva
ity for any A, like structural boundedness seeks for bound-
edness for anymg [2]. Structural observability can be seen
as a “robust” observability property because a structyrall
observable net remains observable for any variation tisat it

Ill. OBSERVABILITY: PROBLEM STATEMENT vector A may suffer. For instance, let us suppose that the

Let us first consider linear time invariant systems, for viahiconly measured place of the system in Figure 34sand that
observability has been thoroughly studied [13], [17], [I1P]. the vectorA is known. The variation, i.e., the derivative, of
An unforced linear system (i.e., without inputs) is usuallythe marking of a place is given by the difference between its
expressed by equations = A - x,y = S-x wherex is input and output flows. Fops, we havem[p;] = fo — f3
the state of the system angl is the output. Knowing the where:fs = Alts] - m[ps] andfs = Ats] - m[ps], and so
matricesA andS and being able to watch the evolution ofm[ps] = (a[ps] + A[ts] - m[ps])/A[t2]. Therefore, from the
y, a linear system is said to lwbservabldff it is possible to evolution of mps], m[ps] can be computed. Furthermore,

Fig. 2. Marking evolution of the system in Figure 1 withg = (3 0 0).



it holds m[p2] = fi — f3 and fi = Aftz] - m[p1]. Thus, Hence, if the matrix(a ¢;b d) has full rank it will be
m/p;] being computablem|p,] can also be computed. Thispossible to compute the markings f andp, independently
procedure can be carried out whatever the valua @f, i.e. of the X of the transitions.

this net is structurally observable. The procedure developed for the above examples can be
generalized leading to a fix point algorithm.
po ot P2t ps 13 Given a set of placel, Post}, denotes a matrix composed
Q () () by the rows ofPost" corresponding to the places i, and
H H whose null columns have been removed.
Fig. 3. The system marking can be computed from the observati ps. AIgorlthm 5
Input (N, D)

This result can be generalized as follows: Output Q % places that can be observed\ > 0

Theorem 4:Let A/ be a continuous PN anf the set of (%O:n?platePost“
measured places. If a plagds structurally observable then a While 3 H C Q, such that"(*H) ¢ Q and
forward path fromp to D exists. PostY, has full rankdo

Proof: The marking of a place can only have impact Q:=QU"(*H) _

on downstream places and transitions. If there is no forward End (\lemlgutePost“ according toQ
path fromp to D, then the marking op cannot be observed -
from the variation of the marking of the places7h ] Notice that the seD increases at each iteration. Since the

number of places in the net is finite, so is the final €kt
Hence, the algorithm cannot execute indefinitely.
Proposition 6: Let A/ be a JF netD the set of measured
A similar approach to the one considered to obsexvand places andQ the output of the Algorithm 5 applied on\f,
p2 in the system in Figure 3 can be used to obsgrve@nd D). Everyp € Q is structurally observable.
p2 in the system in Figure 4, where the measured places are Proof: Since they are measured, all places 7in are
ps3, p4, andps. Let us consider a matriPost" ¢ RIF1XIT] trivially structurally observable. At each iteration ofjatithm
containing only the output arc weights of the transition®sé 5 the setQ increases. The marking of the newly added places
flow is, “in principle”, unknown, i.e., the marking of theinput to Q can be computed (Equation 2) from the marking of places
places is not known. More formally, in the iterative algbnit that already were irQ. Thus, the marking of every € Q

B. Computation Algorithm

that will be proposed, for any; < ¢;°*, Post“[i, j] = 0 if the can be computed whatever the valueXofs. [
marking of the placet; is measured or has been computed
in previous iterations, anBost"[i, j| = Post[i, j] otherwise. V. OBSERVABILITY IN GENERAL NET SYSTEMS

A. Structural Observability in non-JF Systems

The PN system in Figure 5 represents a manufacturing sys-
tem that produces tables (see [19], [16] for details). Titeoms
t5 has two input placegs andpg, thus, it is not a JF system.
However, if placegs andpg are measured, i.eps € D and
pe € D, Algorithm 5 can be executed in the same way as for JF
systems. Let us assume tHat= {p;, ps}. In the first iteration
of the algorithm,p; is added to the set of observable places.
Placesp; andp, are also added to the set of observable places
in the second and third iteration, respectively. At thatnpoi
Fig. 4. dAJ': system whose marking is computable from the éemiwof  the algorithm stops. However, if the set of measured places
Pa: pa anaps. is eitherD = {p1, ps,ps} or D = {pa2,ps, ps} the algorithm
will include all places in the set of observable places inrfou
iterations.

The first three rows (that correspond to plages p» and
p3) of Post® are zeros (because they were zeroPast) and
the forth and fifth rows (that correspond to plagasandps)
are (a ¢ 0) and (b d 0), respectively. The marking evolutionB. Computing Estimates
of placesp, and ps is known (because they are measured) The greatest advantage of the structural observability ap-
and here it is equal to their input flow. Subtracting the floyroach is that it is independent &f The main drawback is
coming fromps, £} andf};’, we will obtain the flow coming that every place in a synchronization should be measured in
from the unknown places; andp.: order to apply the method. IA is known, another way to

face the observability problem in general systems consists
computing an estimate for every structural PT-set of the net
mp, — 2\ [a ¢ Alta] ) The computed estimates can be used to filter out those PT-sets

( th[ps] — £ ) = ( b d ) ' m@»z] (2)  that for sure are not ruling the evolution of the system.

Definition 7:




Finally, let us show when an incoherent estimate may appear
for the system in Figure 1. Let us assume tHat rules the
system evolution. Let us further assume that an estimate
is obtained such thafng[p;] > mg[ps]. The PT-set of such
estimate islW,. Hence,m, is incoherent with the assumed
PT-setl¥y, and therefore it cannot be a suitable estimate.

The steps required to obtain suitable estimates are summed
up as:

« Compute an estimate per structural PT-set.

« Filter out non-suitable estimates: infeasible or incohere

« The remaining estimates represent every potential mark-

ing of the net.

Fig. 5. PN modelling a table factory. VI. OBSERVERS AND ESTIMATES

The main drawback of the method presented in the previous
« An estimaterh for a PT-setiV’ is infeasibleif Equation 1 Section is that it is very sensitive to the noise that may

has no solution when applied & . appear in the outpuy. In order to overcome that problem,
.« An estimate m for a PT-set W is incoherent if oObservers are introduced. For linear systems, Luenbsrger
W ¢ PT-set(rm), i.e, W is not a PT-set ofn. observers [13], [11] are widely used. A Luenberger observer

r a PN with a single PT-set can be expressedras=

:m+K-(y—S-m) wherem is the marking estimate\ and

associated PT-set must be filtered out. Let us consider thie

subnet composed of, p» andt, of the system in Figure 1 (see Section Ill) are the matrices defining the evolution of
The net has two stlr,uct2ural P%I'—setﬁfl ~ {(p1,t2)} and " the marking of the system and its output in continuous time,

Wo = {(pa,t2)} (the PT-setWs = {(p1,t2), (pa,t2)} is y is the output of the system, arld is a design matrix of

\ . ; arameters.
not considered to avoid redundancy, i.e, what(p;) = P . - .
m(ps) all three PT-sets are equivalent). The evolution of The “goodness” of an estimate can be measured by means

the system according to PT-s&t; is ruled by the matrix of a residual [15]. Let us use the 1-norr ; 1, Wh'Ch_'S
A, = (-1 0;—1 0). The system matrix for PT-selt/; defined ag|x||1 = |x1| + ... + |x,|. The residual at a given
is Ay = (0 — 1’ 0 —1). Considering that the initial marking instant,r(7), is the distance between the output of the system
is mo = (4;2), t’he initial PT-set for the system 1§, and so and the qutput that the observer’s estimaid;r), yields, i.e.,
m(r) = (2-e 7 +22- 7). r=|S-m(r) —y(7)|.

As external agents of the system we will consider 4 cases
depending on: 1) the output of the system, i.e., the measurgdFiltering estimates
place, which can be eithen or p,, and 2) the PT-set that is
assumed to be ruling the net system, which can be eitfier
or Ws.

If an estimate is either infeasible or incoherent, then ifg

One (Luenberger) linear observer [11] will be designed per
PT-set of the PN. The designed observers will be launched
simultaneously. In a similar way to the previous section,

In the first two casesn[py] is the output of the system, i.e.,qsorver estimates are expected to verify the followingficon
y =2-e”" +2 (hencem(p:] can be estimated correctly): .

Case }9:1/17/2 is .assumed hto be thke_ P;’—ﬁ_er;[. For :his ckase. The residual must tend to zero.
v =(10;0 — 1) whose rank is 2. The initial mark- | 10 estimates of the places in a synchronization have to
ing mo = (4;2) can be recovered.

) o be coherentwith the PT-set for which they are computed.
Case 2W/; is assumed to be the PT-set. The observability h . . . | h .
matrix is 9 — (1 0;—1 0). Equation 1 has no solu- us, at a given time instant, only coherent estimates are

tion, thus, an estimate fan[p] cannot be computed suitable. Moreover, a criterion must be established toddeci
In this wa’ b ;neans of an “infeasible” estimate (case “which coherent estimate is, at a given time instant, the most
it has been )c;’etgcte d that the PT-set of the systeHis ppropriate. An adequatesuristicsis to choose the coherent

, ) estimate with minimum residual.
If po is measured, i.ey = 2-e~7 (hence,m|p;] can be
estimated correctly), the two cases are:

Case 3WW, is assumed to be the PT-sét= (0 1;0 — 1), B- Design of a switching observer
which is not a full rank matrix. Thus, it is only Consider again the continuous PN system in Fig-
possible to observe the marking pf. ure 1. Let its output be the marking of plaga, i.e.,

Case 4/, is assumed to be the PT-set. The observabiliy= (1 0 0). The net has two PT-sets: let one of the PT-
matrix is¢ = (0 1; —1 0) which has full rank. The sets beZ; = {(p1,t1), (p1,t2), (ps,t3)} and the other be
solution for Equation 1 iany = (2 2). Given that Zs = {(p1,t1), (p2,t2), (ps, t3)}. For the PT-sef; the mark-
my is coherent withiWy, it is a suitable estimate, ing of p, is unobservable. However, for the PT-s&t the
even if, in this casep; is not estimated correctly. marking of all the places can be estimated. Aet (0.9 1 1)



andmg = (3 0 0). The marking evolution of this system is
depicted in Figure 2.

One observer per PT-set will be designed: observe,,|
i for PT-set Z;, i = 1,2. Let the initial state of
observer 1 beeg; (1 2) and its eigenvalues be ,
(—=124+2-+/3-4, —12—-2-+/3-4i). Since observer 1 can
only estimatep; and ps3, the first component of its state os
vector corresponds to the estimate fafp;], and its second
component to the estimate fan[ps]. For observer 2, let
the initial state beegs (1 0 2) and its eigenvalues be
(=15, —12+2-+/3-i, —12 —2-+/3 -i). The evolution
of the coherent estimate with minimum residual is shown in
Figure 6.

Combine observer and Simulation
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Fig. 7. Resulting observer’s estimate that makes use of ailaiion,
(obssl, obss2, obss3) is the estimate fo(m[pi], m[p2], m[p3]).

o9F
linear observers. One of the main advantages is that the
residual does not increase sharply when the PT-set of the
system changes. Another interesting feature is that the use
of a simulation allows to estimate the marking of places that

in some PT-sets are in principle not observable: in Figure 7

» it can be seen that the marking pf can be estimated, even

/ when it is unobservable due to PT-s&ét being active.

0811

0.7

0.6

VIlI. CONCLUSIONS

0.4

The performance model of continuous PNs working un-
der infinite server semantics has been considered. Stalictur
observability has been introduced and studied for contisuo
Petri net systems without synchronizations (JF systems).

The resulting estl_mate_ can be |mprove_d by taking |n.to For general (with synchronizations) continuous PN an esti-
account some considerations. When the first system sw;&%h

Fig. 6. Minimum residual and coherent obsen(erncrl, omecr2, omer3)
is the estimate fofm[p1], m[p2], m[ps]).

X . . n m for h str ral PT- linear -
happens, the estimate becomes discontinuous and, wh fte can be computed for each structura set (linear sys

more undesirable, the estimate for the markingpbecomes e'rﬁ). Although this may lead to a large number of estimates,
L 29 the ones classified asfeasibleor incoherentare non-suitable
worse. A similar effect happens when the second system

. . ; nd can be filtered out.
SW'tCh oceurs. Another ur_ldeswable phenome.non IS thair af? In order to design an observer for a timed continuous
the first switch, the estimate of the marking pf just

. . . . PN, one linear (Luenberger) observer per PT-set has been
disappears (since[p2] is unobservable in PT-séf;). . - . . .
e L : . considered. The estimate yielded by a given observer is not
One way to avoid discontinuities in the resulting estimate, . o . e
. : . . ... Slitable if it produces aon null residualor it is hon-coherent
is to use the estimate of the observer that is going to bediter’ s . . . .
) . : Based on the idea of choosing the suitable estimate with the
out to update the estimate of the observer that is not goibg to : o
! : . smallest residual, a switching observer has been proposed.
filtered out. This estimate update must be done when a system
switch is detected. In order not to lose the estimate of the
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(recall the case ofpo when the first switch happened) a[l] T. Murata, “Petri nets: Properties, analysis and agiins,” Proceed-
H i initi i ings of the IEEEvol. 77, no. 4, pp. 541-580, 1989.
S|mu_lat|9n of t.he S.yStem ca}n be launched. The .Imtlal may’km[Z] M. Silva, “Introducing Petri nets,” inPractice of Petri Nets in Manu-
of this simulation is the estimate of the system just befoee t facturing Chapman & Hall, 1993, pp. 1-62.
observability of the place is lost. Such a simulation can b¢g] J. Campos and M. Silva, “Structural techniques and perémce bounds
seen as an estimate for those places that are not obseryable b of stochastic Petri net models,” iAdvances in Petri Nets 1992er.

. . . . Lecture Notes in Computer Science, G. Rozenberg, Ed. 1§92,
the observer being considered. The simulation should oaly b P g Smiag
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