
Polynomial Throughput Bounds for Equal Conflict Petri Nets with
Multi-Guarded Transitions

Jorge Júlvez

Department of Software, Universitat Politècnica de Catalunya
Jordi Girona 1-3, 08034 Barcelona, Spain

julvez@lsi.upc.edu

Abstract

Early evaluation is a strategy that aims at enhancing
the system performance by executing operations as soon as
enough information is available. A common unit that al-
lows early evaluation is the multiplexer: its output can be
produced as soon as data is available in the selected chan-
nel, without waiting for data in the other channels. Petri
nets can model early evaluation of operations by associat-
ing several guards with each transition. A multi-guarded
transition can fire as soon as the guard selected for the next
firing is satisfied. This paper proposes a linear program-
ming problem to compute throughput bounds for equal con-
flict Petri nets with multi-guarded transitions.

1 Introduction

Some common operations of computer systems can be
evaluated even if some input data are not available. Early
evaluation takes advantage of this fact by executing opera-
tions as soon as enough information is available. The early
evaluation of a given operation can trigger the evaluation of
other operations what might result in an overall enhance-
ment of the system performance.

Consider the multiplier device in Figure 1(a) that reads
two numbers from input channelsa and b, and produces
the result in channelc. A token in a given channel means
availability of data in the channel, e.g., a token ina means
that a number in channela is available. A multiplier without
early evaluation always waits for both input numbers to be
available, then it would consume both numbers and produce
the result inc. Assume that no number is available inb
(it has not been produced yet), but a number equal to0 is
available ina. Then, a multiplier with early evaluation can
produce the result0 without waiting forb.

The multiplexer is one of the most common units allow-
ing early evaluation. The multiplexer in Figure 1(b) has two
input channelsx andy, one control channels, and one out-
put channelz with the following behavior:

if s then z = x else z = y (1)

A multiplexer without early evaluation waits forx, y,
ands to be available, consume their values, and yields inz

This work was supported by the Spanish Ministry of Educationand
Science (Juan de la Cierva fellowship) and project TIN2007-66523.

the result of evaluating (1). A multiplexer with early eval-
uation can yield the result without waiting fory if s is true
(without waiting forx if s is false).

produce(s)

consume(z)

produce(x) produce(y)

Multiplexer

consume(c)

produce(b)produce(a)

Multiplier

(a) (b)

a b

c

x y

z

s

Figure 1. Both a multiplier (a) and a multiplexer (b)
can operate even if some inputs are not available.

Apart from some circuit devices (multiplier, multiplexer,
AND-gate, OR-gate, . . .), early evaluation can be used in a
number of software and communication systems.

Example 1 Consider the parallel program in Figure 2(top)
which is executed by two processors with shared mem-
ory. Variablesi andj contain the current iteration number
which is reset when it reachescap. Subindices are used to
access the value of the variables produced at a given iter-
ation, e.g.,bk is the value yielded by functionfun b in the
kth iteration (it is assumed thatcap is high enough to ensure
that every variablexk is used before its value is overwritten
by iterationk + cap).

The Petri net in Figure 2(bottom) is a graphical rep-
resentation of the parallel program. Transitionsta, tb,
tc, td, tf are associated with tasksread(ai), fun b(ai),
fun c(bi, ei), read(dj), fun f(ej), and te is associated
with the conditional statement in processor2. Placespae

and pec act as communication channels (or queues) be-
tween the processors: whenta (te) fires, a token joins queue
pae (pec) and waits to be served byte (tc) following a first-
come-first-served discipline.

Let us assume thatbool cond is a boolean expression
that depends on the environment and not on the particular
values of the program variables. Then, ifaj is available and
bool cond is known to betrue, the conditional statement
can be evaluated without waiting for a token indj to be
available. Similarly, ifbool cond is false, the conditional
statement can be evaluated without waiting foraj .

1

Processor 1 Processor 2
i = 0 j = 0
loop loop
read(ai) read(dj)
bi = fun b(ai) if bool cond
ci = fun c(bi, ei) thenej = fun e(aj)
i = (i+ 1)mod cap elseej = fun e(dj)
end loop end if

fj = fun f(ej)
j = (j + 1) mod cap
end loop

Processor 1 Processor 2

ta

tb

tc

td

te

tf

pae

pec

pca

pab

pbc

pfd

pde

pef

Figure 2. A parallel program and its graphical rep-
resentation as a Petri net.

Early evaluation has already been used in asynchronous
design [1]. The primary reason to use early evaluation of
operations is to enhance the system performance. Petri
nets [7] represent a well-known formalism for the model-
ing and analysis of a wide variety of discrete event sys-
tems. Conventional Petri nets rely on the AND-causality
paradigm (often associated withrendez-voussynchroniza-
tions). According to AND-causality, every input of a given
operation must be available to perform the operation.

In contrast to conventional Petri nets, multi-guarded
Petri nets [4] associate a set of guards with each transi-
tion. If the guard selected for the next firing of a transi-
tion is satisfied, it can fire even if some input places are not
marked. This way, multi-guarded transitions can be used to
model early evaluation of a number of operations. For in-
stance, early evaluation of the conditional statement in Ex-
ample 1 can be modeled by associating two guards withte,
g1 = {pae} andg2 = {pde}: if bool cond is true the guard
for te is g1 and it indicates thatte can fire as soon as a token
in pae is available; ifbool cond is falsethe guard isg2 and
thente just requires a token inpde to fire.

In order to define the time evolution of a multi-guarded
Petri net system, a delay is associated with each transi-
tion, and a real number representing the probability of be-
ing selected is associated with each guard, e.g., the proba-
bility associated withg1 is the (estimated) probability that
bool cond is true, and the probability associated withg2 is
the probability thatbool cond is false. Thus, the time evo-
lution of a multi-guarded Petri net system becomes a semi-
Markov process. Several techniques exist to compute the
steady state behavior of semi-Markov processes. Unfortu-

nately, most of them suffer from the state explosion problem
and are non suitable for large systems. An alternative ap-
proach is to intensively simulate the system, but this might
not be appropriate if quick estimations are required.

The main goal of this paper is to obtain an efficient
method to compute steady state throughput bounds of multi-
guarded Petri net systems. The method is based on a linear
programming problem that relates the throughput of each
transition to the average marking of its input places. We will
focus on Equal Conflict systems [9] working under infinite
server semantics. Preliminary results for marked graphs un-
der single server semantics can be found in [4].

The remainder of the paper is organized as follows: Sec-
tion 2 introduces multi-guarded Petri nets. The evolution
of timed multi-guarded Equal Conflict nets is defined in
Section 3. A linear programming problem to compute up-
per throughput bounds is designed in Section 4. Section 5
shows the bounds obtained for three multi-guarded systems.
The main conclusions are drawn in Section 6.

2 Untimed Multi-guarded Petri Nets
2.1 Basic Definitions

It is assumed that the reader is familiar with Petri nets
(PNs) (see [7] for instance).

Definition 1 (MPN) A Multi-guarded Petri Net(MPN) is a
tupleN = 〈P, T, Pre, Post,G〉 where:

• P is a set of|P | places, andT is a set of|T | transi-
tions.

• Pre : P×T → N∪{0} andPost : P × T → N ∪ {0}
are thepre- and post-incidence functions that spec-
ify the arc weights. The incidence matrix of the net
is C = Post− Pre. Thepresetandpostsetof a node
x ∈ P ∪ T are denoted as•x andx•.

• G : T → 22P

assigns a set of guardsG(t) to every
transitiont. The following two conditions must be ful-
filled: a) ∀ g ∈ G(t) it holdsg ⊆ •t; b) ∪

g∈G(t)
g = •t.

In a MPN, a transitiont can also satisfy the condition
G(t) = {{•t}}. Such transitions are calledsimpletransi-
tions; the rest of transitions are calledmulti-guardedtran-
sitions. Simple transitions are represented graphically as
empty rectangles; multi-guarded transitions are represented
as rectangles with oblique lines inside (seete in Figure 2).
Definition 2 (MPN system) A Multi-guarded Petri Net
system is a tuple 〈N ,M0〉 where N is a MPN, and
M0 : P → N ∪ {0} assigns an initial marking to each
placep. The initial marking of placep is denoted asM0(p).

2.2 Firing Rule

Each guard of a transitiont is a set of places from which
tokens are required for a given firing instance oft. In the
untimed framework, the guard for a given firing instance
is selected in a non-deterministic way. When the selected
guard is satisfied, the transition is enabled and can fire.

Definition 3 (Enabling condition) Let g ∈ G(t) be the
guard selected for the next firing oft, thent is enabled if
M(p) ≥ Pre(p, t) for everyp ∈ g.

Thus, a multi-guarded transitiont is enabled even if
p ∈ •t exists such thatM(p) < Pre(p, t), p 6∈ g. Hence,
the enabling condition of multi-guarded transitions can be
seen as a relaxation with respect to the enabling condition
of simple transitions.

(b) (c)

−1

(a)

t

ttt

tx txtx tyty ty

ty
tztztz

tststs pxpx px pypypy

pzpz pz
psps ps

Figure 3. (a) A MPN modeling the multiplexer in
Figure 1(b); (b) The firing oft produces a negative
token inpy; (c) The firing ofty produces a token that
is cancelled out by the negative token.

Consider the MPN system in Figure 3(a) modeling the
multiplexer in Figure 1(b). If transitiont is simple, it would
wait for a token inpx, py andps to be enabled. Its firing
removes a token from every input place (in order to evalu-
ate (1)) and produces a token inpz. Notice that if some input
tokens were not consumed, subsequent firings oft would
use data produced for a previous firing instance.

If t is multi-guarded withG(t) = {{px, ps}, {py, ps}},
and the guard selected for the next firing is{px, ps} thent
is enabled in Figure 3(a). In order to preserve the data flow
of the original simple transition, its firing should consume
a token from every input place and produce a token inpz.
Given thatpy is not marked in Figure 3(a) the firing oft
cannot consume a token inpy. However, it is possible to
consume the first token that will come intopy to obtain an
equivalent behavior. A simple way to achieve this is by pro-
ducing a negative token inpy, see Figure 3(b). This way,
when a token is produced byty, it is automatically can-
celled out by the existing negative token, see Figure 3(c).
Negative tokens or markings are a direct result of removing
tokens from every input place even if they are not marked.

Definition 4 (Firing rule) Lett be enabled atM , the firing
of t yields a new markingM ′ such thatM ′ = M +C(P, t),
whereC(P, t) is the column ofC corresponding tot.

Thus, although the firing of a multi-guarded transition
t can occur as soon as the selected guard is satisfied, it
changes the marking in the same way simple transitions do.
This way, the state equationM = M0 + C · σ provides a
necessary condition for the reachability ofM , whereσ is
the firing count vector of the transitions andM can contain
negative elements. Then, as in usual PNs, vectorsY ≥ 0,
Y · C = 0 (X ≥ 0, C · X = 0) represent P-semiflows or
conservative components (T-semiflows or consistent com-
ponents). A semiflowV is said to beminimalwhen its sup-
port, ‖V ‖, is not a proper superset of the support of any
other, and the greatest common divisor of its elements is
one. A MPNN is conservative (consistent) if there exists
Y > 0 such thatY · C = 0 (X > 0 such thatC ·X = 0).

2.3 Equal Conflict Nets

Transitionst andt′ are said to be in Equal Conflict Rela-
tion [9] (denoted by(t, t′) ∈ ECR) iff t = t′ orPre(P, t) =
Pre(P, t′) 6= 0. This is an equivalence relation on the set of
transitions. Each equivalence class is called Equal Conflict
Set (ECS).

Definition 5 (MEC) A MPN is a Multi-guarded Equal
Conflict net (MEC) if for every t, t′ ∈ T such that
•t ∩ •t′ 6= ∅ it holds(t, t′) ∈ ECR.

From a structural point of view equal conflict nets [9]
subsume several known classes of Petri nets: Weighted
T-Graphs (∀ p |•p| = |p•| = 1) which is the weighted ver-
sion of Marked Graphs, Choice Free nets (∀ p |p•| = 1),
and ordinary Free Choice nets (∀ t, t′, if •t ∩ •t′ 6= ∅ then
•t = •t′). The rest of the paper focuses on conservative and
consistent MEC systems.

3 Timed Multi-guarded Equal Conflict Nets

3.1 Definition and Time Evolution

The concept of time is introduced in MECs by means of
a time delay associated with each transition [3]. In order to
study the behavior of the timed system, a non-null probabil-
ity is associated with each guard.

Definition 6 (TMEC) A Timed Multi-guarded
Equal Conflict net (TMEC) is a tuple
N τ = 〈P, T, Pre, Post,G, α, δ,R〉 where:
• 〈P, T, Pre, Post,G〉 is a MEC.
• α : G → (0, 1] assigns a probability to each guard

such that for every transitiont:
∑

g∈G(t)

α(g) = 1.

• δ : T → R+ ∪ {0} assigns a delay to every transition.
• R is the routing matrix for transitions in ECR.

A transitiont is timedif δ(t) > 0; a transitiont is immediate
if δ(t) = 0. Immediate simple transitions are represented
graphically as lines (seetim1 in Figure 9).

We assume that the transitions to fire are selected at net
level, i.e., a preselection execution policy is adopted. The
preselection policy is introduced by means of immediate
simple transitions. This way, in the timed framework, only
immediate simple transitions can be in conflict with other
transitions, i.e., if(t, t′) ∈ ECR andt 6= t′ thent andt′ are
simple andδ(t) = δ(t′) = 0.

Let {t1, . . . , tk} be an ECS andri ∈ R+ be the routing
rate associated withti, i.e., the probability of firingti when
the ECS is enabled isri/Σk

j=1rj . The matrixR is obtained
in the following way: For each ECS{t1, . . . , tk}, k−1 rows
are added toR, each row corresponding to pairs{t1, t2},
. . ., {tk−1, tk}. If h is the row number for pair{ti, tj}, then
R(h, ti) = rj , R(h, tj) = −ri, and the rest of elements in
row h are zero.

Definition 7 (TMEC system) A Timed Multi-guarded
Equal Conflict systemis a tuple〈N τ ,M0〉 whereN τ is a
TMEC, andM0 : P → N ∪ {0} is the initial marking.

1

S1 S2 S3

S8 S9

S4

S10

S5

S11

S6

S12

1 3 2

2 1

2

2

1

1

1

3

1

1 2

1 1

2

1

2

1

1

1

11

1

1

−1

S7

S13

1

γγ

1-γ 1-γpae paepae

pde pdepdepdepde

Figure 4. Semi-Markov process of the TMEC system in Figure 2.

For the firing of transitions, infinite server semantics is
adopted. According to this semantics, several firing in-
stances of the same transition can proceed in parallel. As
in simple PNs, finite server semantics can be simulated by
adding extra places: An easy way to make a multi-guarded
transitiont work underk-server semantics is by adding a
self-loop placep, i.e., •p = p• = t, with initial marking
M0(p) = k, that is contained in every guard oft.

It will be assumed that all the delays are deterministic.
Thus, the evolution of a TMEC system along time is subject
to the following rules:
• For each firing instance of a transitiont a guardg ∈
G(t) is selected. The probability of selectingg isα(g).

• If a timed transitiont becomes enabled for a given fir-
ing instance at timeτ it will fire at τ + δ(t). Several
firing instances oft can progress simultaneously.

• Immediate transitions fire as soon as they become en-
abled. If an ECS is enabled,R determines the proba-
bility of firing each transition.

3.2 Semi-Markov Process

The evolution of a TMEC system along time depends on
the probability of the guards selected for each firing, and
the routing selected for transitions in conflict. Thus, the
marking evolution of a TMEC system can be described as a
semi-Markov process.

Example 2 Consider again the MEC system in Figure 2.
Assume that the delays associated with the transitions
are δ(ta) = 1, δ(tb) = 2, δ(tc) = 1, δ(td) = 3,
δ(te) = 1, δ(tf) = 1; and that the probability of each guard
is α({pde}) = γ andα({pae}) = 1 − γ. The states of the
associated semi-Markov process are depicted in Figure 4.
The sojourn time of every state is1. The time to fire of en-
abled transitions is shown on the right of the transitions.
The guard selected for the firing ofte is shown on top ofte
(it is not shown if the marking of both input places is zero).

At states1(s5) transition ta is enabled, its firing pro-
duces a token inpab andpae. If the guard selected forte
is pae, the new state iss2(s6) at which te is enabled and
fires. If the selected guard ispde, the new state iss8(s12),
andte waits for a token inpde to fire.

If the embedded Markov chain of the semi-Markov pro-
cess is irreducible and recurrent then the fraction of time,
ψ(s), that the process spends ins can be computed as [10]:

ψ(s) =
ρ(s) · Π(s)∑

si∈S

ρ(si) · Π(si)
(2)

whereS is the set of states,ρ(si) is the average sojourn time
of statesi, andΠ is the stationary measure (or distribution)
of the embedded Markov chain [10].

The value ofψ for the semi-Markov process in Fig-
ure 4 is: ψ(s1, . . . , s13) = γ

4+γ2 · (1, 1 − γ, 1 − γ,
1−γ

γ
, 1−γ

γ
, (1−γ)2

γ
, (1−γ)2

γ
, γ, γ, γ, 1, 1−γ, 1−γ). From

ψ, several steady state measures of interest can be obtained.
Let us compute, for instance, the steady state throughput of
ta, i.e., the average number of timesta fires per time unit in
the steady state. The steady state throughput of a transition
t, Th(t), can be computed as its average enabling degree,
enab(t), divided by its delay,δ(t):

δ(t) · Th(t) = enab(t) (3)

Sinceta is enabled ins1 ands5, the throughput ofta is:

Th(ta) =
enab(ta)

δ(ta)
= ψ(s1) + ψ(s5) =

1

4 + γ2
(4)

3.3 Singleton Guards

The behavior of a multi-guarded transitiont can be mim-
icked by a multi-guarded transitiont′ with singleton guards,
i.e.,∀ g ∈ G(t′) |g| = 1, and immediate transitions. This
property makes the developments in Section 4 easier. A
simple way to obtaint′ is to add as many immediate transi-
tion as|G(t)|, and duplicate each input placep of t as many
times as the number of guards that containp.

The net in Figure 5(b) shows the result of transform-
ing transitiont in Figure 5(a) which has two guardsg1 =
{p1, p2} andg2 = {p2, p3}, into a transitiont′ with sin-
gleton guards. Transitionstaux1 andtaux2

are immediate
transitions. The probabilities of the singleton guards are:
α(pg1) = α(g1), α(pg2) = α(g2). In the sequel, it is as-
sumed that multi-guarded transitions have singleton guards.

(b)

2

2

(a)

t

t1
t1

t2
t2

t3
t3

taux1 taux2

p1

p1

p2

p′2 p′′2

p3

p3

t′

pg1 pg2

Figure 5. (a) A multi-guarded transitiont with two
guards; (b) Its transformation to a multi-guarded tran-
sition with singleton guards.

4 Polynomial Throughput Bounds

This section presents a linear formulation to compute an
upper bound for the steady state throughput of a TMEC.

4.1 Throughput and Visit Ratios

The throughput of a transitiont is the average number
of times t fires per time unit in the steady state. For a
given TMEC system〈N τ ,M0〉, the throughput of all tran-
sitions,Th(N τ ,M0), is given by the following (Cesàro)

limit: Th(N τ ,M0) = lim
τ→∞

σ(τ)

τ
whereτ represents time

andσ(τ) is the firing count vector at timeτ . The aver-
age marking,M(N τ ,M0), of a TMEC system〈N τ ,M0〉

is: M(N τ ,M0) = lim
τ→∞

1

τ

∫ τ

0
M(ξ)dξ whereM(ξ) is the

marking at timeξ.
Both the throughput and the average marking can be ob-

tained from the semi-Markov process associated with the
TMEC system. For clarity, given a TMEC system, the
steady state throughput of transitiont is simply denoted as
Th(t) and the average marking of placep asM(p).

The relative throughputs of transitions are often
called visit ratios. The vector of visit ratios nor-
malized, for instance, for transitiont1 is defined as
v(1)(j) = Th(tj)/Th(t1). For a live and bounded simple
Equal Conflict net,v(1) is the only solution of [3]:

(
C
R

)
· v(1) = 0; v(1)(1) = 1 (5)

The vectorv(1) satisfying (5) is also the vector of visit
ratios of any TMEC system with incidence matrixC and
routing matrixR.

Proposition 1 Let 〈N τ ,M0〉 be a TMEC system. The only
solution of (5), v(1), is the vector of visit ratios.

Proof: Assume that the vector of visit ratios,v(1), is differ-
ent from the only solution of (5). NecessarilyR · v(1) = 0,
thenv(1) is not a T-semiflow. Since the system is conserva-
tive, the marking of at least one placep will tend to minus
infinity. This implies that the guards that containp are never
selected for the firing of its output transitiont. Contradic-
tion, by definition ∪

g∈G(t)
g = •t andα(g) > 0 for every

guardg ∈ G(t), i.e., p is contained at least in one guard
with strictly positive probability. �

4.2 Linear Programming Problem

Let us partition the set of transitions in two setsTm and
Ts: t ∈ Tm iff t is a multi-guarded transition;t ∈ Ts iff t
is a simple transition. We will design a linear programming
problem that includes an inequality for every input place
of a simple transition based on Little’s formula, and an in-
equality for everyt ∈ Tm based on the associated semi-
Markov process. Each pair{p, t} wherep• = t andt ∈ Ts

can be seen as a simple queuing system for which Little’s
formula [6] can be directly applied [3]:

M(p) = (Pre(p, t) · Th(t)) ·R(p) (6)

whereR(p) is the average residence time at placep, i.e., the
average time spent by a token inp. The average residence
time is the sum of the average waiting time due to a possi-
ble synchronization and the average service time which in
our case isδ(t). Therefore the service timeδ(t) is a lower
bound for the average residence time. On the other hand,
the average marking of the input places of simple imme-
diate transitions is clearly non-negative even if they are in
ECR. This leads to the inequality:

δ(t) ·Th(t) ≤
M(p)

Pre(p, t)
∀ {p, t} such thatp ∈ •t, t ∈ Ts

(7)
For eacht ∈ Tm a linear inequality exists that relates the

throughput oft to the average marking of its input places.

Theorem 2 Let 〈N τ ,M0〉 be a TMEC. Lett be a multi-
guarded transition of the TMEC, then:

δ(t) · Th(t) ≤
∑

p∈
•t

α({p}) ·
M(p)

Pre(p, t)
(8)

Proof: See Appendix. �

One can combine constraints (7) and (8) on the through-
put and on the average marking, to build a Linear Program-
ming Problem (LP) that maximizes a variable,φ1, corre-
sponding to the throughput of transitiont1, φ1 = Th(t1).
One scalar variable suffices since the throughput of all tran-
sitions is related by the vector of visit ratiosv(1) (Proposi-
tion 1). The resulting LP is:
max φ1 :

δ(tj) · φ1 · v
(1)(j) ≤

∑

p∈
•tj

α({p}) ·
M̂(p)

Pre(p, tj)
∀ tj ∈ Tm

δ(tj) · φ1 · v
(1)(j) ≤

M̂(p)

Pre(p, tj)
∀{p, tj}, p ∈

•tj , tj ∈ Ts

M̂ = M0 + C · σ, σ ≥ 0
(9)

whereσ represents the firing count vector that drives the
system from the initial marking,M0, to the estimated aver-
age marking,̂M . The LP (9) always has solution since all
its constraints must hold in the steady state. Given that the
throughput variable,φ1, is maximized, the vectorφ1 · v(1)

is an upper bound for the throughput of transitions.

4.3 Reduction Rule

This subsection presents a rule to merge the input places
of a multi-guarded transition in order to simplify (9).

Let •tj = {p1, . . . , pn} for a giventj ∈ Tm. The term
∑

p∈
•tj

α({p}) ·
M̂(p)

Pre(p, tj)
in (9) can be substituted by a sin-

gle variablêMtj such that̂Mtj =
∑

p∈
•tj

α({p})·
M̂(p)

Pre(p, tj)
.

This is equivalent to substituting the rows ofM0, Pre and
Post corresponding to{p1, . . . , pn} by a single row that is
a linear combination of them (in such a linear combination

the weight of the row corresponding topi is
α({pi})

Pre(pi, tj)
).

Let M0r, Prer, Postr andCr = Postr − Prer be the
arrays obtained after performing such a substitution on the
set of input places of every multi-guarded transition. Fig-
ure 6(a) shows the graphical interpretation of the reduction.

q s

u w

α1 α2

α1 ·
q

u
α2 ·

s

w

Figure 6. Reduction rule: the multi-guarded transi-
tion has two guards with probabilitiesα1 andα2.

Now the LP (9) can be expressed as:
max{ φ1 | φ1 ·D

(1) ≤M0r + Cr · σ, σ ≥ 0 } (10)
whereD(1)(p) = δ(p•) · v(1)(p•) · Prer(p, p

•) if |p•| = 1,
D(1)(p) = 0 if |p•| > 1 (recall that if|p•| > 1 thenp is an
input place of a simple immediate transition in ECR). Let

us defineρ =
1

φ1
, andσ′ =

σ

φ1
, then (10) becomes:

min{ ρ |D(1) ≤ ρ ·M0r + Cr · σ
′, σ′ ≥ 0 } (11)

The dual of (11) is:
max{ Y ·D(1) | Y ·Cr ≤ 0, Y ·M0r ≤ 1, Y ≥ 0 } (12)

One theorem of the alternatives [8] states that∃ X > 0
such thatCr ·X ≥ 0 iff ∀ Y ≥ 0 such thatY ·Cr ≤ 0 then
Y · Cr = 0. Since we are dealing with consistent systems,
Y · Cr ≤ 0 can be replaced byY · Cr = 0. Furthermore,
since the objective functionY ·D(1) is maximized, the solu-
tion must satisfyY ·M0r

= 1 (otherwise a “more optimal”
solution is possible withβ · Y , β = 1/(Y ·M0r)).
Theorem 3 Let 〈N τ ,M0〉 be a TMEC. LetCr, D(1) and
M0r be the matrices obtained after performing the above
reduction rule. LetΓ be the solution of:
Γ = max{ Y ·D(1) | Y · Cr = 0, Y ·M0r = 1, Y ≥ 0 }

(13)

Then,Th(N τ ,M0) ≤
1

Γ
· v(1).

This way, the computation of an upper throughput bound
for a TMEC can be achieved in polynomial time by solv-
ing the LP (13), which actually represents a search for the
bottleneck P-semiflow of the reduced net.

5 Experimental Results

This section shows the throughput bounds obtained for
three different TMEC systems.

5.1 Parallel Program

Consider again the system in Figure 2 to illustrate
the computation of throughput bounds. Let us rename
ta, . . . , tf by t1, . . . , t6. Let the delays beδ(t1) = δ(t3) =
δ(t5) = δ(t6) = 1, δ(t2) = 2, δ(t4) = 3, and the probabil-
ity of the guards beα({pde}) = γ, α({pae}) = 1 − γ.

t1

t2

t3

t4

t5

t6

p1

p2

p3

p4

p5

p6

p7

γ1-γ

(a)

0 0.2 0.4 0.6 0.8 1
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

th
ro

ug
hp

ut

Real
Bound

γ

(b)

Figure 7. (a) Net obtained after applying the reduc-
tion rule to the net in Figure 2. (b) Real throughput
and throughput bound forγ ∈ (0, 1).

Figure 7(a) shows the net obtained after apply-
ing the reduction rule to the net in Figure 2. For
the obtained system:M0r = (1, 0, 0, 1, 0, 0),
v(1) = (1, 1, 1, 1, 1, 1), D(1) = (1, 2, 1, 3, 1, 1, 1),
and two minimal P-semiflows exist which, normalized to
satisfy Y ·M0r = 1, are Y1 = (1, 1, 1, 0, 0, 0, 0) and
Y2 = (1 − γ, 0, 0, γ, 1, γ, 1 − γ). Thus,Y1 ·D(1) = 4
and Y2 · D(1) = 3 + 2 · γ. Then, according to The-
orem 3, the throughput of the system is bounded by
Th(N τ ,M0) ≤ min

{
1/4, 1/(3 + 2 · γ)

}
. Figure 7(b)

shows the system throughput (see Equation (4)) and the
obtained throughput bound forγ ∈ (0, 1).

5.2 Multipliers with Early Evaluation

A digital multiplier can yield a zero result as soon as one
of its inputs is known to be zero. The system in Figure 8(a)
models three processes,P1, P2, P3, that interchange data.
Each process (P1, P2, P3) reads a natural number from
an input file (FI1, FI2, FI3) at the beginning of each it-
eration. Then, each pair of numbers read fromFI1 and
FI2(fromFI2 andFI3) is multiplied by processP1(P3).
Afterwards, each process applies a given function,f1, f2,
f3, to the multiplication results, and writes the resulting
number in the output filesFO1, FO2, andFO3. In or-
der to model early evaluation of the multipliers with multi-
guarded transitions, one of the inputs is assumed to contain
always strictly positive numbers. It will be assumed that
every natural number inFI2 is strictly positive, and that a
number inFI1(FI3) is zero with probabilityβ(γ).

The early evaluation of the multiplier inP1 can be mod-
eled as follows: 1) Add a transitiont3 with t•3 = pb and

(a) (b)

P1 P2 P3

write FO1

Multiplier

read FI1 read FI2 read FI3

write FO2 write FO3

Multiplier

t1

t2 t3

t4

t5

t6

t7

t8

t9

t10

t11 t12

t13

t14

t15

pa pb pc pd

f1 f2 f3

Figure 8. (a) A system with early evaluated multipli-
ers. (b) Its associated TMEC system.

delay equal to the time required to perform the multiplica-
tion if both inputs are positive; 2) Add a transitiont2 with
t•2 = pa and delay equal to the time required to test whether
the input fromF1 is zero; 3) Add an immediate transition
t4 with two guards,G(t4) = {{pa}, {pb}}. A token inpa

means that the result of the0-test is available. Given that
the result of the test is true with probabilityβ, transitiont4
can fire without waiting for a tokenpa with probabilityβ,
hence,α({pa}) = β andα({pb}) = 1 − β. Figure 8(b)
shows the TMEC system obtained after modeling the early
evaluated multipliers inP1 andP3 with the described steps.

The visit ratio of every transition of the obtained TMEC
is equal to1, i.e., every transition has the same steady state
throughput. Let the delays associated with the transitionsbe
δ = (1, 0.2, 4.5, 0, 1, 1, 1.5, 1.5, 1.5, 1.2, 5, 0.3, 0, 1.2, 1.2).

β = 0.2
γ Real Bound error

0.2 0.1088 0.1193 9.69%
0.5 0.1145 0.1276 11.36%
0.8 0.1210 0.1276 5.41%

β = 0.8
γ Real Bound error

0.2 0.1165 0.1193 2.41%
0.5 0.1388 0.1493 7.55%
0.8 0.1717 0.1992 16.02%

Table 1. Bounds for the multipliers in Figure 8(b).

The bounds yielded by the LP (13) for several values of
β andγ of the TMEC system are reported in the column
Boundof Table 1. ColumnReal is the real throughput of
the TMEC system,error is the relative error of the bound
with respect to the real throughput.

The columnRealwas obtained by simulating the TMEC
system. The simulations were carried out using the indepen-
dent replication method [5]. The precision of the computed
throughput was set to1% with a confidence level of95%.

All the experiments were performed in the Matlab 7.3 en-
vironment running on Linux in a2.0 GHz processor. The
CPU time required to obtain each bound was less than0.01
seconds, the average time for each simulation (including all
the necessary replications) was75 seconds.

5.3 System of Communicating Modules

The TMEC system in Figure 9 represents a “System of
Asynchronously communicating Modules” (SAM) adapted
from [2]. It consists of three modules, A, C, and D, that
communicate through buffersb1, b2, b3, b4, b5, and b6.
We will assume that each firing ofta(tc, td) requires data
either from b1 or from b2(b3 or b4, b5 or b6). Hence,
ta, tc, andtd are multi-guarded transitions withG(ta) =
{{a1, b1}, {a1, b2}}, G(tc) = {{c1, b3}, {c1, b4}}, and
G(td) = {{d1, b5}, {d1, b6}}.

2

2

2

t1

ta

tc

td
b1

b2

b3

b4

b5
b6

c0

c1

d1a1
tim1 tim2

Figure 9. Asynchronously communicating modules.

Let us assume thatta(tc, td) requires data fromb1(b3,
b5) with probability0.3(0.3, 0.3). Let the routing for imme-
diate transitions berim1 = rim2 = 0.5, and the delays of
non-immediate transitions be equal to1. Table 2 reports the
throughput bounds obtained for different initial markings
of c0. ColumnM0(c0) is the initial marking ofc0, column
Realis the real throughput oft1, columnBoundis the ob-
tained bound fort1, and columnerror is the relative error
of the bound with respect to the real throughput.

M0(c0) Real Bound error
1 0.1290 0.1417 9.84%
2 0.2200 0.2250 2.25%
3 0.2833 0.3083 8.82%
4 0.3180 0.3409 7.21%

Table 2. Bounds for the TMEC system in Figure 9.

As in the previous example, the columnRealis obtained
by using the independent replication method with precision
of 1% and confidence level of95%. The average CPU time
for the computation of bounds was less that0.01 seconds,
and97 seconds for the simulations.

6 Conclusions
Early evaluation aims at enhancing the system perfor-

mance by executing operations as soon as possible. In Petri
nets, multi-guarded transitions can be used to model early
evaluation of some operations, e.g., multiplexers. In con-
trast to conventional transitions, a multi-guarded transition
becomes enabled when a selected subset of input places
have enough tokens. Thus, multi-guarded transitions can
fire even if some input places are not marked.

This paper has focused on the class of Equal Conflict
Petri nets. For such a class, a linear expression relating
the throughput of a multi-guarded transition to the aver-
age marking of its input places has been obtained. The
use of such an expression allows one to compute throughput
bounds in polynomial time by means of a linear program-
ming problem.

Acknowledgments
The author would like to thank Jordi Cortadella for his

valuable suggestions and comments.

References

[1] C.F. Brej and J.D. Garside. Early output logic us-
ing anti-tokens. InInt. Workshop on Logic Synthesis,
pages 302–309, May 2003.

[2] J. Campos, S. Donatelli, and M. Silva. Structured
solution of asynchronously communicating stochas-
tic modules. Software Engineering, 25(2):147–165,
1999.

[3] J. Campos and M. Silva. Structural Techniques and
Performance Bounds of Stochastic Petri Net Models.
In G. Rozenberg, editor,Advances in Petri Nets, vol-
ume 609 ofLecture Notes in Computer Science, pages
352–391. Springer, 1992.

[4] J. Júlvez, J. Cortadella, and M. Kishinevsky. Perfor-
mance analysis of concurrent systems with early eval-
uation. InProc. International Conf. Computer-Aided
Design (ICCAD), November 2006.

[5] Averill M. Law. Simulation Modeling and Analysis.
McGraw-Hill, 2007.

[6] J. D. C. Little. A proof of the queueing formulaL= λ
W. Operations Research, 9:383–387, 1961.

[7] T. Murata. Petri Nets: Properties, Analysis and Ap-
plications. Proceedings of the IEEE, 77(4):541–580,
1989.

[8] K. G. Murty. Linear Programming. Wiley and Sons,
1983.

[9] E. Teruel and M. Silva. Liveness and Home States in
Equal Conflict Systems. In M. Ajmone Marsan, editor,
Application and Theory of Petri Nets 1993, Lecture
Notes in Computer Science, pages 415–432.

[10] Ronald W. Wolff. Stochastic modeling and the theory
of queues. Prentice Hall, 1989.

7 Appendix: Proof of Theorem 2

This section presents a proof of Theorem 2. First,
some auxiliary definitions are introduced. Then, a techni-
cal lemma is presented. Finally, the linear relationship is
obtained.

7.1 Auxiliary Definitions

Each input placep of a multi-guarded transitiont can be
seen as a queue where tokens are arranged in cells, each cell
having capacityPre(p, t). For instance the capacity of the
cells in the queue corresponding top1 in Figure 10(a) is3,
see Figure 10(b).

1234

8
3

23

(a)

2 3 3

2100

0
3

2

(b)

cell index
p1p1

p2p2

Figure 10. Each place is seen as a queue where to-
kens are arranged in cells.

Cells are indexed according to their proximity to the
multi-guarded transition, see Figure 10(b). When a celli
is full, the new incoming tokens are stored in celli+ 1.

Consider the net in queue-like form in Figure 11 with
G(t) = {{p1}, {p2}} to show how the marking of the dif-
ferent cells evolves. Assume that the guard for the first fir-
ing of t is {p1} (see above each cell in Figure 11). Thus,
the first firing requires2 tokens inp1. Hence,t is not en-
abled in Figure 11(a), but becomes enabled whent1 fires,
Figure 11(b). The firing oft removes2 tokens fromp1 and
1 token fromp2. After the firing oft, the first cell of each
place becomes empty, and hence every cell is shifted to the
right, Figure 11(c). Assume thatt2 fires from the marking
in Figure 11(c), and the guards for the next two firings are
{p2} and {p2}, Figure 11(d). Then, the enabling degree
of t becomes2, i.e., 2 firing instances are enabled in Fig-
ure 11(d). The firing of the2 firing instances oft drives the
system to the marking in Figure 11(e). Ift1(t2) fires from
Figure 11(e) one token will go to cell1 of p1, one token will
go to cell2, and every cell will be shifted to the right(one
token will go to cell3 of p2 and one token will go to cell4).

The marking of thelth cell of pi is denoted asM(pi, l),
and the guard for thelth cell is denoted asg(t, l). For each
placepi and each celll, we define three boolean functions,
p+

i,l, p
0
i,l, andp−i,l, that take a markingM as input argument:

• p+
i,l(M) ↔ M(pi, l) = Pre(pi, t)

• p0
i,l(M) ↔ 0 ≤M(pi, l) < Pre(pi, t)

• p−i,l(M) ↔ M(pi, l) < 0

If the argumentM of the above functions is evident from
the context, it will be dropped for clarity. We use the short-
handαi to denoteα({pi}), and the boolean variablegi,l that
is true iff g(t, l) = {pi}. The fact thatg(t, l) 6= pi is de-
noted asnot(gi,l). The next statement illustrates the use of
the introduced notation: the firing instance corresponding

(a) (b) (c) (d) (e)

0 0 1

1000

0 0 1 2

1000

0 0 0 1

0000

0 0 0 1

1100 00

0 0 2 10
2 2

2
2 2

2
2 2

2
2 2 2

2 XX

2
2

tttttt1

t1

t1t1t1t1

t2

t2

t2t2t2t2

p1

p2

t 2 · t
p1p1

p2

p2

p2

p2

Figure 11. Each pair of cells with same index corresponds to a firing instance.

to thelth cell is enabled atM ′ iff there existspi ∈ •t such
that (p+

i,l(M
′) ∧ gi,l) (or simply (p+

i,l ∧ gi,l) given that the

argument ofp+
i,l is clearlyM ′).

By prob(statement) we denote the fraction of time
statementholds in the steady state. This way, as an exam-
ple,prob(p+

j,l ∧ p
0
k,l ∧ gk,l) is the fraction of time at which

the system marking satisfies thatM(pj , l) = Pre(pj , t),
0 ≤M(pk, l) < Pre(pk, t), andg(t, l) = pk.

7.2 Preliminary Lemma

This section focuses on cells with the same index, then
for clarity p+

i,l, p
0
i,l, p

−
i,l, gi,l are shortened top+

i , p0
i , p−i , gi.

Lemma 4 Let 〈N τ ,M0〉 be a TMEC system. Lett be a
multi-guarded transition of the TMEC andpj , pk ∈ •t, then
for each celll it holds that:

αk

αj

≤
prob(p+

j ∧ p0
k ∧ gk)

prob(((p+
j ∧ p0

k) ∨ p−k) ∧ gj)
(14)

Proof: The proof is based on the semi-Markov process asso-
ciated with the TMEC system. Without loss of generality,
we assume that the guard for thelth cell is selected when
there existsp ∈ •t such thatM(p, l) = Pre(p, t). For in-
stance, in Figure 4 a guard for cell1 is selected when leav-
ing s1 ands5. Let H(t, l) denote the set of states of the
semi-Markov process from which a guard for thelth cell
is selected, e.g.,H(te, 1) = {s1, s5} in Figure 4. Then,
among the successors ofh ∈ H(t, l), e.g., states1, there
are|•t| = n states,h1, . . . , hn that only differ on the guard
selected for thelth cell, e.g., statess2 ands8.

If the statement(p+
j ∧p0

k) does not hold for any successor
of H(t, l), then in any successorp+

j → p+
k , consequently

prob(p−k ∧ gj) = 0 and the lemma trivially holds. Assume
there existsh ∈ H(t, l), such that a successorhj of h exists
at which(p+

j ∧ p0
k ∧ gj) holds, e.g.,(p+

ae ∧ p
0
de ∧ gae) holds

in s2. Then, a successorhk, e.g.,s8, of h that only differs
fromhj in the guard must exists, namely athk the statement
(p+

j ∧ p0
k ∧ gk) holds. Given that the guard selected for cell

l does not affect the system evolution neither fromh to hj

nor fromh to hk,
αk

αj

is the ratio of visits between states

hk andhj . The lemma is true if the time fraction during
which (p+

j ∧ p0
k ∧ gk) holds fromhk is not less than the

time fraction during which(((p+
j ∧ p0

k) ∨ p−k) ∧ gj) holds

from hj . The statement(p+
j ∧ p0

k) will hold from hk until
Pre(pk, t)−Mhk(pk, l) tokens are put in celll of pk, where
Mhk(pk, l) is the number of tokens in celll of pk at statehk.
The statement(((p+

j ∧ p0
k) ∨ p−k) ∧ gj) will hold from hj

until Pre(pk, t) −Mhj(pk, l) tokens are put in in celll of
pk, whereMhj(pk, l) is the number of tokens in celll of pk

at statehj. Given that the marking is the same athj andhk,
the same amount of tokens makes false both statements.

Stateshj, e.g.,s2, andhk, e.g.,s8, only differ in the
guards, and therefore, in the fact thatt is enabled inhj , and
will fire after δ(t) time units, but it is not enabled inhk.
Since all conflicts are equal, the routing of tokens does not
depend on the mentioned firing oft, i.e., the same routings
happen fromhj and fromhk. In other words, such firing
of t just makes the system progress faster. Hence, the time
fraction during which(p+

j ∧ p0
k ∧ gk) holds, e.g.,ψ(s8) +

ψ(s9), fromhk cannot be less than the time fraction during
which (((p+

j ∧ p0
k) ∨ p−k) ∧ gj) holds, e.g.,ψ(s2) + ψ(s3),

from hj . �

7.3 Proof of Theorem

Theorem 2:Let 〈N τ ,M0〉 be a TMEC system. Lett be
a multi-guarded transition of the TMEC system, then:

δ(t) · Th(t) ≤
∑

p∈
•t

α({p}) ·
M(p)

Pre(p, t)
(15)

Proof: Since infinite server semantics is adopted the aver-

age enabling degree oft is: enab(t) =
∞∑

l=1

enab(t, l) where

enab(t, l) is the average enabling degree of thelth cell. As-
sume without loss of generality that•t = {p1, . . . , pn}. The
value ofenab(t, l) can be expressed as:

enab(t, l) =
∑

pj∈
•t
prob(p+

j,l ∧ gj,l)

=
∑

pj∈
•t

(
prob(p+

j,l) − prob(p+
j,l ∧ not(gj,l))

)

=
∑

pj∈
•t

(
prob(p+

j,l)−
(
(1 − αj) · prob(p

+
j,l ∧ not(gj,l))

+ αj · prob(p
+
j,l ∧ not(gj,l))

))

(16)

The subindexl is omitted in the following developments
for clarity. Notice that ifp+

j holds, the transition has not

fired yet, thenp0
k ∨ p+

k holds for everyk ∈ {1, . . . , n}.
Hence:

prob(p+
j) = prob(p+

j ∧ p0
k) + prob(p+

j ∧ p+
k) (17)

for everyk ∈ {1, . . . , n}, and:

prob(p+
j ∧gk) = prob(p+

j ∧p0
k ∧gk)+prob(p+

j ∧p+
k ∧gk)

(18)
for every k ∈ {1, . . . , n}. Then, the term
αj · prob(p

+
j ∧ not(gj)) in (16) can be expanded as:

αj · prob(p
+
j ∧ not(gj)) = αj ·

n∑
k=1,k 6=j

prob(p+
j ∧ gk)

= αj ·
n∑

k=1,k 6=j

(
prob(p+

j ∧ p0
k ∧ gk) + prob(p+

j ∧ p+
k ∧ gk)

)

=
n∑

k=1,k 6=j

αj · prob(p
+
j ∧ p+

k ∧ gk)

+
n∑

k=1,k 6=j

αj · prob(p
+
j ∧ p0

k ∧ gk)

(19)

The inequality (14) provided by Lemma 4 can be written
as:

αj · prob(p
+
j ∧ p0

k ∧ gk) ≥ αk·prob(p
+
j ∧ p0

k ∧ gj)

+ αk · prob(p−k ∧ gj)
(20)

The substitution ofαj ·prob(p
+
j ∧p0

k ∧gk) in (19) by the
expression on the right of (20) yields:

αj · prob(p
+
j ∧ not(gj)) ≥

n∑
k=1,k 6=j

αj · prob(p
+
j ∧ p+

k ∧ gk)

+
n∑

k=1,k 6=j

αk · prob(p+
j ∧ p0

k ∧ gj)

+
n∑

k=1,k 6=j

αk · prob(p−k ∧ gj)

(21)

Recall that (21) is an expression resulting from the de-
velopment ofαj · prob(p

+
j ∧ not(gj)) in (16). For each

pair of expressions (21) resulting from the development
of αj · prob(p

+
j ∧ not(gj)) andαk · prob(p+

k ∧ not(gk))

such thatk 6= j, we swapαj · prob(p
+
j ∧ p+

k ∧ gk) with
αk · prob(p+

j ∧ p+
k ∧ gj), and we swapαk · prob(p−k ∧ gj)

with αj · prob(p
−
j ∧ gk). Thus, the expression associated

with αj · prob(p
+
j ∧ not(gj)) becomes:

n∑
k=1,k 6=j

αk · prob(p+
j ∧ p0

k ∧ gj)

+
n∑

k=1,k 6=j

αk · prob(p+
j ∧ p+

k ∧ gj)

+
n∑

k=1,k 6=j

αj · prob(p
−
j ∧ gk)

(22)

Notice that the reasonings used to obtain (18) can also be
used to deduce that:

prob(p+
j ∧ gj) = prob(p+

j ∧ p0
k ∧ gj)+ prob(p+

j ∧ p+
k ∧ gj)

for everyk ∈ {1, . . . , n}. Notice also that ifpj is selected
as guard it cannot become negatively marked after the fir-
ing, i.e.,prob(p−j ∧ gj) = 0, therefore:

n∑
k=1,k 6=j

prob(p−j ∧ gk) = prob(p−j)

Hence, (22) can be rewritten as:

=
n∑

k=1,k 6=j

αk · prob(p+
j ∧ gj) + αj · prob(p

−
j)

= (1 − αj) · prob(p
+
j ∧ gj) + αj · prob(p

−
j) (23)

After substitutingαj ·prob(p
+
j ∧not(gj)) by (23) in (16),

enab(t, l) becomes:

enab(t, l) ≤
∑

pj∈
•t

(
prob(p+

j) −
(
(1 − αj) · prob(p

+
j ∧ not(gj))

+ (1 − αj) · prob(p
+
j ∧ gj) + αj · prob(p

−
j)

))

=
∑

pj∈
•t
αj ·

(
prob(p+

j) − prob(p−j)
)

We are ready to write an expression for the overall aver-
age enabling degree under infinite server semantics:

enab(t) =
∞∑

l=1

enab(t, l)

≤
∞∑

l=1

∑

pj∈
•t
αj ·

(
prob(p+

j,l) − prob(p−j,l)
)

=
∑

pj∈
•t
αj ·

∞∑
l=1

(
prob(p+

j,l) − prob(p−j,l)
)

=
∑

pj∈
•t
αj ·

(
∞∑
l=1

prob
(M(pj, l)

Pre(pj , t)
= 1

)

−
∞∑
l=1

prob
(M(pj, l)

Pre(pj , t)
< 0

))

≤
∑

pj∈
•t
αj ·

(∞∑
i=1

i

Pre(pj , t)
· prob

(
M(pj) = i

)

−
−∞∑

i=−1

i

Pre(pj , t)
· prob

(
M(pj) = i

))

=
∑

pj∈
•t
αj ·

M(pj)

Pre(pj , t)

From (3) the desired expression is obtained:

δ(t) · Th(t) = enab(t) ≤
∑

pj∈
•t
αj ·

M(pj)

Pre(pj , t)

�

