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the result of evaluating (1). A multiplexer with early eval-
Abstract uation can yield the result without waiting fgrif s is true
(without waiting forz if s is false).

Early evaluation is a strategy that aims at enhancing
the system performance by executing operations as soon as |produce)| | produce(o] | produce(y| | produce()
enough information is available. A common unit that al-
lows early evaluation is the multiplexer: its output can be
produced as soon as data is available in the selected chan-
nel, without waiting for data in the other channels. Petri
nets can model early evaluation of operations by associat-
ing several guards with each transition. A multi-guarded
transition can fire as soon as the guard selected for the next
firing is satisfied. This paper proposes a linear program-
ming problem to compute throughput bounds for equal con-
flict Petri nets with multi-guarded transitions.

. Figure 1. Both a multiplier (a) and a multiplexer (b)
1 Introduction can operate even if some inputs are not available.

Some common operations of computer systems can be  zn4 1t from some circuit devices (multiplier, multiplexer,
evaluated even if some input data are not available. EarlyAND-gate, OR-gate, ...), early evaluation can be used in a
evaluation takes advantage of this fact by executing operay, mper of software and communication systems.
tions as soon as enough information is available. The early
evaluation of a given operation can trigger the evaluation o Example 1 Consider the parallel program in Figure 2(top)
other operations what might result in an overall enhance-which is executed by two processors with shared mem-
ment of the system performance. ory. Variablesi andj contain the current iteration number

Consider the multiplier device in Figure 1(a) that reads which is reset when it reachesp. Subindices are used to
two numbers from input channetsand b, and produces access the value of the variables produced at a given iter-
the result in channel. A token in a given channel means ation, e.g. b is the value yielded by functiofun_b in the
availability of data in the channel, e.g., a tokeruimeans  k*" iteration (it is assumed thatp is high enough to ensure
that a number in channels available. A multiplier without  that every variabler;, is used before its value is overwritten
early evaluation always waits for both input numbers to be by iterationk + cap).
available, then it would consume both numbers and produce The Petri net in Figure 2(bottom) is a graphical rep-
the result inc. Assume that no number is availablelin  resentation of the parallel program. Transitions, t,

(it has not been produced yet), but a number equél i® tc, tq, ty are associated with tasksead(a;), fun-b(a;),
available ina. Then, a multiplier with early evaluation can  fun_c(b;,e;), read(d;), fun_f(e;), andt. is associated
produce the result without waiting forb. with the conditional statement in processbr Placesp,.

The multiplexer is one of the most common units allow- and p.. act as communication channels (or queues) be-
ing early evaluation. The multiplexer in Figure 1(b) has two tween the processors: wheqn(t.) fires, a token joins queue
input channels: andy, one control channel, and one out-  p,. (p..) and waits to be served hy (¢.) following a first-

put channek with the following behavior: come-first-served discipline.
Let us assume thaivol_cond is a boolean expression
if sthen 2=z else z=y Q) that depends on the environment and not on the particular

values of the program variables. Thergjfis available and
bool_cond is known to betrue the conditional statement
can be evaluated without waiting for a tokendnp to be

This work was supported by the Spanish Ministry of Educatiod available. Similarly, ifbool_cond is false the conditional
Science (Juan de la Cierva fellowship) and project TIN266323. statement can be evaluated without waitingder

A multiplexer without early evaluation waits faf, vy,
ands to be available, consume their values, and yields in




Processor 1

1=0

loop

read(a;)

b = funb(a;)

ci = fun_c(b;, e;)

it =(i+ 1) mod cap
end loop

Processor 2

j=0

loop

read(d;)

if bool_cond
thene; = fun_e(a;)
elsee; = fun_e(d;)
end if

fi = fun_f(e;)

j=(+1)mod cap

end loop

nately, most of them suffer from the state explosion problem
and are non suitable for large systems. An alternative ap-
proach is to intensively simulate the system, but this might
not be appropriate if quick estimations are required.

The main goal of this paper is to obtain an efficient
method to compute steady state throughput bounds of multi-
guarded Petri net systems. The method is based on a linear
programming problem that relates the throughput of each
transition to the average marking of its input places. Wé wil
focus on Equal Conflict systems [9] working under infinite
server semantics. Preliminary results for marked graphs un
der single server semantics can be found in [4].

Processor 1 Processoi

The remainder of the paper is organized as follows: Sec-
tion 2 introduces multi-guarded Petri nets. The evolution
of timed multi-guarded Equal Conflict nets is defined in
Section 3. A linear programming problem to compute up-
per throughput bounds is designed in Section 4. Section 5
shows the bounds obtained for three multi-guarded systems.
The main conclusions are drawn in Section 6.

2 Untimed Multi-guarded Petri Nets
2.1 Basic Definitions

It is assumed that the reader is familiar with Petri nets
(PNSs) (see [7] for instance).

Definition 1 (MPN) A Multi-guarded Petri NefMPN) is a
tupleN = (P, T, Pre, Post, G) where:

e Pis a set of|P| places, andl" is a set of|T'| transi-
Early evaluation has already been used in asynchronous  tions.

design [1]. The primary reason to use early evaluation of ¢ Pre: PxT — NU{0}andPost : P x T — NU {0}
operations is to enhance the system performance. Petri are thepre- and post-incidence functions that spec-
nets [7] represent a well-known formalism for the model- ify the arc weights. The incidence matrix of the net
ing and analysis of a wide variety of discrete event sys- is C = Post — Pre. Thepreseiandpostsebf a node
tems. Conventional Petri nets rely on the AND-causality r € PUT are denoted a&: andz®.
paradigm (often associated witendez-vousynchroniza- e G : T — 22" assigns a set of guards(t) to every

tions). According to AND-causality, every input of a given transitiont. The following two conditions must be ful-
operation must be available to perform the operation. filed: @)V g € G(¢) itholdsg C *t;b) U g = *t.

In contrast to conventional Petri nets, multi-guarded geG(1)
Petri nets [4] associate a set of guards with each transi- In a MPN, a transitiort can also satisfy the condition
tion. If the guard selected for the next firing of a transi- G(t) = {{°t}}. Such transitions are callsimpletransi-
tion is satisfied, it can fire even if some input places are nottions; the rest of transitions are calletlilti-guardedtran-
marked. This way, multi-guarded transitions can be used tositions. Simple transitions are represented graphicaly a
model early evaluation of a number of operations. For in- empty rectangles; multi-guarded transitions are repttesen
stance, early evaluation of the conditional statement in Ex as rectangles with oblique lines inside (¢gén Figure 2).

ample 1 can be modeled by associating two guards#ith  pefinition 2 (MPN system) A Multi-guarded Petri Net
91 = {pac} andgz = {pac}: if bool_condistruethe guard  systemis a tuple (N, M) where N’ is a MPN, and
for . is g; and it indicates thatt. can fire as soonas atoken p7, . p — NU {0} assigns an initial marking to each

in pq. is available; ifbool_cond is falsethe guard isj; and  placep. The initial marking of place is denoted ag/, (p).
thent, just requires a token ipy, to fire.

In_ order to define the tim_e evolutipn of a _multi-guarded_ 2.2 Firing Rule
Petri net system, a delay is associated with each transi- e :
tion, and a real number representing the probability of be-  Each guard of a transitionis a set of places from which
ing selected is associated with each guard, e.g., the probalokeéns are required for a given firing instancetofin the

bility associated withy; is the (estimated) probability that Untimed framework, the guard for a given firing instance
bool .cond is true, and the probability associated wigh is is selected in a non-deterministic way. When the selected

the probability thabool_cond is false Thus, the time evo- ~ guard is satisfied, the transition is enabled and can fire.
lution of a multi-guarded Petri net system becomes a semi-Definition 3 (Enabling condition) Let ¢ € G(t) be the
Markov process. Several techniques exist to compute theguard selected for the next firing of thent is enabled if
steady state behavior of semi-Markov processes. Unfortu-M (p) > Pre(p,t) for everyp € g.

Figure 2. A parallel program and its graphical rep-
resentation as a Petri net.



Thus, a multi-guarded transition is enabled even if
p € *t exists such thad/ (p) < Pre(p,t), p € g. Hence,
the enabling condition of multi-guarded transitions can be

2.3 Equal Conflict Nets

Transitionst andt’ are said to be in Equal Conflict Rela-

seen as a relaxation with respect to the enabling conditiontion [9] (denoted by, ') € ECR) iff ¢ = ¢’ or Pre(P, ) =
of simple transitions.

byt ty
Py ts Po Py ts
I e
D: D:
p="" P
t. t.

Figure 3. (a) A MPN modeling the multiplexer in
Figure 1(b); (b) The firing of produces a negative
token inp,; (c) The firing oft, produces a token that
is cancelled out by the negative token.

Consider the MPN system in Figure 3(a) modeling the
multiplexer in Figure 1(b). If transitionis simple, it would
wait for a token inp,, p, andp, to be enabled. Its firing
removes a token from every input place (in order to evalu-
ate (1)) and produces a tokerpin Notice that if some input
tokens were not consumed, subsequent firings wbuld
use data produced for a previous firing instance.

If ¢ is multi-guarded withG(t) = {{pz,ps}, {py, ps}},
and the guard selected for the next firingis,, ps } thent

is enabled in Figure 3(a). In order to preserve the data flow A/'™

of the original simple transition, its firing should consume
a token from every input place and produce a tokep.in
Given thatp, is not marked in Figure 3(a) the firing of
cannot consume a token ji,. However, it is possible to
consume the first token that will come intg to obtain an
equivalent behavior. A simple way to achieve this is by pro-
ducing a negative token ip,, see Figure 3(b). This way,
when a token is produced hy;, it is automatically can-

celled out by the existing negative token, see Figure 3(c).
Negative tokens or markings are a direct result of removing

tokens from every input place even if they are not marked.

Definition 4 (Firing rule) Lett be enabled ab/, the firing
of t yields a new marking/’ such that\/’ = M + C(P, t),
whereC(P,t) is the column ofS corresponding ta.

Thus, although the firing of a multi-guarded transition

Pre(P,t") # 0. Thisis an equivalence relation on the set of
transitions. Each equivalence class is called Equal Conflic
Set (ECS).

Definition 5 (MEC) A MPN is a Multi-guarded Equal
Conflict net (MEC) if for everyt,t’ € T such that
*‘tn*t #Pitholds(t,¢') € ECR.

From a structural point of view equal conflict nets [9]
subsume several known classes of Petri nets: Weighted
T-Graphs ¥ p |*p| = |p®| = 1) which is the weighted ver-
sion of Marked Graphs, Choice Free netfsp(|p®| = 1),

and ordinary Free Choice netg {, ', if *¢t N *t' # () then

*t = *t’). The rest of the paper focuses on conservative and
consistent MEC systems.

3 Timed Multi-guarded Equal Conflict Nets

3.1 Definition and Time Evolution

The concept of time is introduced in MECs by means of
a time delay associated with each transition [3]. In order to
study the behavior of the timed system, a non-null probabil-
ity is associated with each guard.

Definition 6 (TMEC) A Timed
Equal Conflict net (TMEC) s
(P,T, Pre, Post,G, «, 6, R) where:
e (P, T, Pre, Post,G) is a MEC.
e o : G — (0,1] assigns a probability to each guard
such that for every transitiott > «(g) = 1.
g€G()

e §:T — RT U{0} assigns a delay to every transition.
e R is the routing matrix for transitions in ECR.

Multi-guarded
a tuple

Atransitiont is timedif §(¢) > 0; a transitiort isimmediate
if 6(t) = 0. Immediate simple transitions are represented
graphically as lines (seg,,,; in Figure 9).

We assume that the transitions to fire are selected at net
level, i.e., a preselection execution policy is adoptede Th
preselection policy is introduced by means of immediate
simple transitions. This way, in the timed framework, only
immediate simple transitions can be in conflict with other
transitions, i.e., if¢,t') € ECR andt # t’' thent andt’ are

t can occur as soon as the selected guard is satisfied, isimple and(t) = 6(¢') = 0.

changes the marking in the same way simple transitions do.

This way, the state equatioW = M, + C - ¢ provides a
necessary condition for the reachability bf, whereo is
the firing count vector of the transitions and can contain
negative elements. Then, as in usual PNs, vedtors 0,
Y-C=0(X >0,C-X = 0) represent P-semiflows or

conservative components (T-semiflows or consistent com-

ponents). A semiflow is said to beminimalwhen its sup-
port, ||[V||, is not a proper superset of the support of any

Let {t1,...,t;} be an ECS and; € R™ be the routing
rate associated with, i.e., the probability of firing; when
the ECS is enabled is /S¥_, ;. The matrixR is obtained
in the following way: Foreach EC§;, ..., tx}, k—1rows
are added tR, each row corresponding to paifs;, ¢2},
..o {tk=1,tk}. If histhe row number for paift;,¢;}, then
R(h,t;) = r;, R(h,t;) = —r;, and the rest of elements in
row h are zero.

other, and the greatest common divisor of its elements isDefinition 7 (TMEC system) A Timed Multi-guarded

one. A MPNJ is conservative (consistent) if there exists
Y > 0suchthay - C =0 (X > 0suchthatC- X = 0).

Equal Conflict systenis a tuple(N™, My) where N is a
TMEC, andM, : P — N U {0} is the initial marking.



Figure 4. Semi-Markov process of the TMEC system in Figure 2.

For the firing of transitions, infinite server semantics is  If the embedded Markov chain of the semi-Markov pro-
adopted. According to this semantics, several firing in- cess is irreducible and recurrent then the fraction of time,
stances of the same transition can proceed in parallel. Asy(s), that the process spendsdrtan be computed as [10]:

in simple PN, finite server semantics can be simulated by (s) - TI(s)

adding extra places: An easy way to make a multi-guarded U(s) = P8-S 2)
transitiont work underk-server semantics is by adding a > p(si) - H(si)

self-loop placep, i.e., *p = p* = ¢, with initial marking ) si€S ] )
My(p) = k, that is contained in every guard of whereS is the set of stateg(s;) is the average sojourn time

It will be assumed that all the delays are deterministic. Of states;, andIl is the stationary measure (or distribution)
Thus, the evolution of a TMEC system along time is subject Of the embedded Markov chain [10].

to the following rules: The value ofy for the semi-Markov process in Fig-
ri i it Ure4i5:7/’(51a---7513) = %(171_771_73
e For each firing instance of a transitiera guardg € s ) 4+
G(t) is selected. The probability of selectings a(g). 1y 1oy G20 (=9 o o 11—+, 1—+). From

¢ If a timed transitiont becomes enabled for a given fir- ), several stegldy statz: measures of interest can be obtained.
ing instance at time it will fire at 7 + 4(¢). Several Let us compute, for instance, the steady state throughput of
firing instances of can progress simultaneously. tq, i.e., the average number of timgsfires per time unitin

o Immediate transitions fire as soon as they become en-he steady state. The steady state throughput of a transitio
abled. If an ECS is enable® determines the proba- ¢ T'h(t), can be computed as its average enabling degree,
bility of firing each transition. enab(t), divided by its delay(t):

3.2 Semi-Markov Process 6(t) - Th(t) = enab(t) (3

The evolution of a TMEC system along time depends on Sincet, is enabled ins; andss, the throughput of, is:
the probability of the guards selected for each firing, and -
the routing selected for transitions in conflict. Thus, the Th(t,) = enab(ta) = (s1) + Y(s5) = 1 (4)
marking evolution of a TMEC system can be described as a ¢ d(tq) 7 4+2
semi-Markov process.

Example 2 Consider again the MEC system in Figure
Assume that the delays associated with the transitions The behavior of a multi-guarded transitibnan be mim-
are §(t,) = 1, 6(tp) = 2, 8(t.) = 1, 6(ta) = 3, icked by a multi-guarded transitighwith singleton guards,
d(t.) = 1,6(t;) = 1, and that the probability of each guard i.e.,V g € G(¢') |g| = 1, and immediate transitions. This
is a({psc}) = v anda({pae}) =1 — 7. The states of the property makes the developments in Section 4 easier. A
associated semi-Markov process are depicted in Figure 4.simple way to obtain’ is to add as many immediate transi-
The sojourn time of every statelis The time to fire of en-  tion as|G(¢)|, and duplicate each input plag®f ¢ as many
abled transitions is shown on the right of the transitions. times as the number of guards that contain
The guard selected for the firing 6f is shown on top of. The net in Figure 5(b) shows the result of transform-
(it is not shown if the marking of both input places is zero). ing transitiont in Figure 5(a) which has two guards =

At states;(ss) transition ¢, is enabled, its firing pro-  {p1,p2} andgs = {p2,ps}, into a transitiont’ with sin-

> 3.3 Singleton Guards

duces a token ip,, andp,.. If the guard selected fot, gleton guards. Transitions,,1 andt,.., are immediate
iS pae, the new state is2(sg) at whicht. is enabled and  transitions. The probabilities of the singleton guards are
fires. If the selected guard is;., the new state isg(s12), a(pg1) = a(g1), a(pg2) = algz). Inthe sequel, it is as-

andt. waits for a token iy, to fire. sumed that multi-guarded transitions have singleton guard
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Figure 5. (a) A multi-guarded transition with two
guards; (b) Its transformation to a multi-guarded tran-
sition with singleton guards.

4 Polynomial Throughput Bounds

4.2 Linear Programming Problem

Let us partition the set of transitions in two séts and
Ts: t € T, iff tis a multi-guarded transitiont; € T iff ¢
is a simple transition. We will design a linear programming
problem that includes an inequality for every input place
of a simple transition based on Little’s formula, and an in-
equality for everyt € T, based on the associated semi-
Markov process. Each pafp, ¢} wherep® = t andt € T
can be seen as a simple queuing system for which Little’s
formula [6] can be directly applied [3]:

M(p) = (Pre(p,t) - Th(t)) - R(p) (6)
whereR(p) is the average residence time at placee., the

average time spent by a tokenzin The average residence
time is the sum of the average waiting time due to a possi-

This section presents a linear formulation to compute anpje synchronization and the average service time which in

upper bound for the steady state throughput of a TMEC.
4.1 Throughput and Visit Ratios

The throughput of a transitionis the average number
of times ¢ fires per time unit in the steady state. For a
given TMEC system{N/™, M), the throughput of all tran-
sitions, Th(N'™, My), is given by the following (Cesaro)

limit: Th(NT, M) = lim o(7) wherer represents time

-
ando(7) is the firing count vector at time. The aver-
age marking M (N, My), of a TMEC systemN'™, M)

is: M(N7T,My) = lim = Jo M(&)d¢ whereM () is the
T—00 T
marking at timet.

Both the throughput and the average marking can be ob-
tained from the semi-Markov process associated with the

TMEC system. For clarity, given a TMEC system, the
steady state throughput of transitibis simply denoted as
Th(t) and the average marking of plagasM (p).

The relative throughputs of transitions are often
called visit ratios  The vector of visit ratios nor-
malized, for instance, for transitiom; is defined as
v (j) = Th(t;)/Th(t1). For a live and bounded simple
Equal Conflict nety(V) is the only solution of [3]:

(5) - vW=0; oM(1)=1 (5)

The vectorv!) satisfying (5) is also the vector of visit
ratios of any TMEC system with incidence matfixand
routing matrixR.

Proposition 1 Let (N7, M) be a TMEC system. The only
solution of (5), v(1), is the vector of visit ratios.

Proof: Assume that the vector of visit ratiag?), is differ-

ent from the only solution of (5). NecessariRy/- v(!) = 0,
thenv(® is not a T-semiflow. Since the system is conserva-
tive, the marking of at least one plagewill tend to minus
infinity. This implies that the guards that contaiare never
selected for the firing of its output transitian Contradic-
tion, by definiton U g = *tanda(g) > 0 for every

geG(t)

guardg € G(t), i.e.,p is contained at least in one guard
with strictly positive probability. O

our case i9(t). Therefore the service timgt) is a lower
bound for the average residence time. On the other hand,
the average marking of the input places of simple imme-
diate transitions is clearly non-negative even if they are i
ECR. This leads to the inequality:

M(p) .
Prep. ) vV {p,t} suchthap € *t, t € T,

(7

For eacht € T,, alinear inequality exists that relates the
throughput oft to the average marking of its input places.

5(t)-Th(t) <

Theorem 2 Let (N7, My) be a TMEC. Let be a multi-
guarded transition of the TMEC, then:

- M(p)

Pre(p,t) ®)

5(t)- Th(t) < Y a({p})

pe®t

Proof: See Appendix. O

One can combine constraints (7) and (8) on the through-
put and on the average marking, to build a Linear Program-
ming Problem (LP) that maximizes a variablg,, corre-
sponding to the throughput of transition, ¢; = Th(t1).
One scalar variable suffices since the throughput of alttran
sitions is related by the vector of visit ratio§") (Proposi-
tion 1). The resulting LP is:

max @1 :
i
() 000G < T alle)): s Y € T
pe®l; T
i
36 0n - 0) < s Vi th € "ty €T,

]/VYZJVIO—F(C-U, c>0
9)

whereo represents the firing count vector that drives the
system from the initial markingl{y, to the estimated aver-
age markingM. The LP (9) always has solution since all
its constraints must hold in the steady state. Given that the
throughput variableg, , is maximized, the vectap, - v(!)

is an upper bound for the throughput of transitions.



4.3 Reduction Rule

5 Experimental Results

This subsection presents a rule to merge the input places  Thjs section shows the throughput bounds obtained for

of a multi-guarded transition in order to simplify (9).
Let*t; = {p1,...,pn} foragivent; € T,,. The term

M(p) - -
Z:t.a({p}) Pre(p. 1)) in (9) can be substituted by a sin
JASR
= = M(p)
glevariableM;; suchthat\fy; = > a({p}) Prep ).

pE.tj
This is equivalent to substituting the rows ify, Pre and
Post corresponding tdps, . .., p, } by a single row that is
a linear combination of them (in such a linear combination

a({pi}) )

Pre(piatj) .
Let My,., Pre,, Post, andC, = Post, — Pre, be the
arrays obtained after performing such a substitution on the
set of input places of every multi-guarded transition. Fig-
ure 6(a) shows the graphical interpretation of the reductio

-5 gt

= —

the weight of the row corresponding 1g is

Figure 6. Reduction rule: the multi-guarded transi-
tion has two guards with probabilities andas.

Now the LP (9) can be expressed as:

max{¢l|¢1'D(l)§M0r+Cr'a'aUZO} (10)
whereD™ (p) = §(p*) - vV (p*) - Pre,(p,p°) if [p*] = 1,
DW(p) = 0if [p*| > 1 (recall that if[p*| > 1 thenp is an
input place of a simple immediate transition in ECR). Let

us definep = & ando’ = ¢i, then (10) becomes:
1 1

min{ p| DV < p- My, +C, -0, o' >0}
The dual of (11) is:
maz{Y -DW|Y.C,<0,Y My <1,Y >0} (12)
One theorem of the alternatives [8] states thak > 0
suchthatC, - X > 0iff VY > 0 such thatt” - C,. < 0then
Y - C, = 0. Since we are dealing with consistent systems,
Y - C, < 0 can be replaced by - C,. = 0. Furthermore,
since the objective functiori - D) is maximized, the solu-
tion must satisfyt” - My, = 1 (otherwise a “more optimal”
solution is possible witlt - Y, 8 = 1/(Y - My,.)).
Theorem 3 Let (N7, M) be a TMEC. LetC,, D™ and
M, be the matrices obtained after performing the above
reduction rule. Lef be the solution of:
C=maz{Y - DV |Y.C,=0,Y My, =1,Y >0}
(13)

(11)

1
Then,Th(N7, My) < T v,

This way, the computation of an upper throughput bound
for a TMEC can be achieved in polynomial time by solv-
ing the LP (13), which actually represents a search for the
bottleneck P-semiflow of the reduced net.

three different TMEC systems.
5.1 Parallel Program

Consider again the system in Figure 2 to illustrate
the computation of throughput bounds. Let us rename
ta,...,ty byt:, ... t. Letthe delays bé(t1) = d(t3) =
d(ts) = d(te) = 1, d(t2) = 2, 6(t4) = 3, and the probabil-
ity of the guards be"({pde}) =7 a({pae}) =1-7.

—Real
---Bound

0.24

throughput

0.2 0.4 0.6

Y
(b)

0.8 1

Figure 7. (a) Net obtained after applying the reduc-
tion rule to the net in Figure 2. (b) Real throughput
and throughput bound for € (0, 1).

Figure 7(a) shows the net obtained after apply-
ing the reduction rule to the net in Figure 2. For
the obtained system: M, (1, 0, 0, 1, 0, 0),
oW =(1,1,1,1,1,1), DM =(1,2,1,3,1,1, 1),
and two minimal P-semiflows exist which, normalized to
satisfy Y - My, =1, areY; =(1, 1, 1, 0, 0, 0, 0) and
YVQ = (1 -7, 01 01 v, 17 v, 1_’7) ThUS,Yl : D(l) - 4
andY, - D) = 3 4+ 2.~. Then, according to The-
orem 3, the throughput of the system is bounded by
Th(NT,Mo) < min{1/4,1/(3 +2-~)}. Figure 7(b)
shows the system throughput (see Equation (4)) and the
obtained throughput bound fere (0, 1).

5.2 Multipliers with Early Evaluation

A digital multiplier can yield a zero result as soon as one
of its inputs is known to be zero. The system in Figure 8(a)
models three processe?], P2, P3, that interchange data.
Each processK1, P2, P3) reads a natural number from
an input file ¢'11, F12, F13) at the beginning of each it-
eration. Then, each pair of numbers read fréthl and
FI12(from F12 and F'I3) is multiplied by proces®1(P3).
Afterwards, each process applies a given functifin,f,
fs, to the multiplication results, and writes the resulting
number in the output fileg'O1, FO2, and FO3. In or-
der to model early evaluation of the multipliers with multi-
guarded transitions, one of the inputs is assumed to contain
always strictly positive numbers. It will be assumed that
every natural number i /2 is strictly positive, and that a
number inFI1(F13) is zero with probability3(y).

The early evaluation of the multiplier iR1 can be mod-
eled as follows: 1) Add a transitioty with t§ = p, and



P P3 All the experiments were performed in the Matlab 7.3 en-

vironment running on Linux in .0 GHz processor. The
CPU time required to obtain each bound was less théh
seconds, the average time for each simulation (including al
the necessary replications) wasseconds.

read Fji2 read Al
[readFfe [ readA

5.3 System of Communicating Modules

The TMEC system in Figure 9 represents a “System of
Asynchronously communicating Modules” (SAM) adapted
from [2]. It consists of three modules, A, C, and D, that

furite FO3|  [wiite FO communicate through buffers, b, bs, by, b5, and bg.
We will assume that each firing of (., t4) requires data
@ either fromb; or from by(bs or by, bs or bg). Hence,
ta, te, andty are multi-guarded transitions with (¢,) =
Figure 8. (a) A system with early evaluated multipli- {{a1,b1} {a1,b2}}, G(t.) = {{c1,bs},{c1,b4}}, and
ers. (b) Its associated TMEC system. G(tqa) = {{d1,b5},{d1,b6}}.
delay equal to the time required to perform the multiplica- 0 b
tion if both inputs are positive; 2) Add a transitiofn with &4 v tim1, " tima, 0 d1
. . 1
t5 = p, and delay equal to the time required to test whether tut / A becs) Ny
the input fromF'1 is zero; 3) Add an immediate transition Ty
t4 With two guardsG(ts) = {{pa}, {ps}}. A token inp, ® Q @ Q
means that the result of tlietestis available. Given that = = = =
the result of the test is true with probabilify transitiont O O O O
can fire without waiting for a tokep,, with probability 3, SN cl AR
hence,a({p.}) = B anda({ps}) = 1 — 3. Figure 8(b) 2 O Tt
shows the TMEC system obtained after modeling the early] ¢ QO X, c 7 Q Q
evaluated multipliers i®1 and P3 with the described steps. = ¢ (P = =
The visit ratio of every transition of the obtained TMEC O O = O O
is equal tol, i.e., every transition has the same steady state Lt N
throughput. Let the delays associated with the transiti@ns
§=(1,0.2,45,0,1,1,1.5,1.5,1.5,1.2,5,0.3,0, 1.2, 1.2). Figure 9. Asynchronously communicating modules.
p=02 Let us assume that,(t., tq) requires data frond, (bs,
7 | Real | Bound | error bs) with probability0.3(0.3, 0.3). Let the routing for imme-
0.2 ] 0.1088| 0.1193| 9.69% diate transitions be;,,; = ryn2 = 0.5, and the delays of
05| 0.1145] 0.1276| 11.36% non-immediate transitions be equalitoTable 2 reports the
08101210 0.1276| 5.41% throughput bounds obtained for different initial markings

of ¢p. ColumnMy(cy) is the initial marking ofcy, column
Realis the real throughput of;, columnBoundis the ob-
p=038 tained bound for;, and columrerror is the relative error
7 | Real | Bound | error of the bound with respect to the real throughput.

0.2 | 0.1165| 0.1193| 2.41%
0.5| 0.1388| 0.1493| 7.55%

0.8 | 0.1717| 0.1992| 16.02%

=
—
Q

o) | Real | Bound | error

0.1290| 0.1417| 9.84%
0.2200| 0.2250| 2.25%
0.2833| 0.3083| 8.82%
0.3180| 0.3409| 7.21%

Table 1. Bounds for the multipliers in Figure 8(b).

AWIN|F

The bounds yielded by the LP (13) for several values of
8 and~ of the TMEC system are reported in the column
Boundof Table 1. ColumrRealis the real throughput of o
the TMEC systemerror is the relative error of the bound Table 2. Bounds for the TMEC system in Figure 9.
with respect to the real throughput.

The columnRealwas obtained by simulating the TMEC
system. The simulations were carried out using the indepen-
dent replication method [5]. The precision of the computed
throughput was set td% with a confidence level d§5%.

As in the previous example, the colurRealis obtained
by using the independent replication method with precision
of 1% and confidence level &5%. The average CPU time
for the computation of bounds was less thdtl seconds,
and97 seconds for the simulations.



6 Conclusions 7 Appendix: Proof of Theorem 2

Early evaluation aims at enhancing the system perfor-
mance by executing operations as soon as possible. In Petii |
nets, multi-guarded transitions can be used to model early.,
evaluation of some operations, e.g., multiplexers. In con-
trast to conventional transitions, a multi-guarded tramsi
becomes enabled when a selected subset of input place¥.1 Awuxiliary Definitions
have enough tokens. Thus, multi-guarded transitions can ) ) i

This paper has focused on the class of Equal Conflict S€€n as a queue where token_s are arrangedin cglls, each cell
Petri nets. For such a class, a linear expression relatinghaving capacity’re(p, t). For instance the capacity of the
the throughput of a multi-guarded transition to the aver- c€lls in the queue correspondingipin Figure 10(a) is3,
age marking of its input places has been obtained. Thesee Figure 10(b).

This section presents a proof of Theorem 2. First,
me auxiliary definitions are introduced. Then, a techni-
| lemma is presented. Finally, the linear relationship is
obtained.

4321« cellindex

use of SL_Jch an exprc.essi.on allows one to compute throughput 1 3 P 3
bounds in polynomial time by means of a linear program- I (8) N\ D—» 02133\
ming problem. ) )
12
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Figure 11. Each pair of cells with same index corresponds to a firingaimse.

to thel*” cell is enabled ab/’ iff there existsp; € *t such
that (p;, (M’) A gi) (or simply (p; A g;1) given that the

argument op;’, is clearlyM’).
By prob(statement) we denote the fraction of time

statemenholds in the steady state. This way, as an exam- until Pre(py,t) —

ple,prob(p;fl A ng A gi,1) is the fraction of time at which
the system marking satisfies thaf(p;,l) = Pre(p;,t),
0 < M(pg,1) < Pre(pg,t), andg(t,l) = px

7.2 Preliminary Lemma

fromh;. The statemer(tpj A p?) will hold from Ay, until
Pre(pg,t)— My (pr, 1) tokens are putin cellof p,, where
My (p, 1) is the number of tokens in célbf p, at statehy,.
The statement((p;” A pf) V p;) A g;) will hold from h;
My, (pr, 1) tokens are put in in cell of
Pk, WhereM},; (pk, 1) is the number of tokens in célbf py,
at stateh;. Given that the marking is the samehgtandhy,,
the same amount of tokens makes false both statements.
Statesh;, e.g.,s2, andhy, e.9.,sg, only differ in the
guards, and therefore, in the fact thas enabled im;, and
will fire after §(¢) time units, but it is not enabled ihy,.

This section focuses on cells with the same index, thensince all conflicts are equal, the routing of tokens does not

for clarity p;";, p?, p;;, 9: are shortened tof, p?, p;”, gi.

Lemma 4 Let (N7, M,) be a TMEC system. Létbe a
multi-guarded transition of the TMEC and, p, € °t, then
for each cell it holds that:

pmb(pj ADYA gr)
= prob(((p} Apd) V) Agj)

g

(14)

@

depend on the mentioned firing bfi.e., the same routings
happen fromh; and fromhy. In other words, such firing

of ¢ just makes the system progress faster. Hence, the time
fraction during which(p© A p{ A gi.) holds, e.g.4)(ss) +

¥ (sg), from hy, cannot be less than the time fraction during
which (((p;” A p)) V pi, ) A g;) holds, .9.35(s2) + ¥ (s3),

from h;. O

7.3 Proof of Theorem
Theorem 2:Let (N7, M) be a TMEC system. Letbe

Proof: The proofis based on the semi-Markov process asso-a multi-guarded transition of the TMEC system, then:

ciated with the TMEC system. Without loss of generality,

we assume that the guard for tHé cell is selected when
there exist® € *t such thatM (p,!) = Pre(p,t). Forin-
stance, in Figure 4 a guard for célis selected when leav-
ing s; andss. Let H(t,l) denote the set of states of the
semi-Markov process from which a guard for the cell
is selected, e.g.H(t.,1) = {s1,s5} in Figure 4. Then,
among the successors bfe H(t,l), e.g., states;, there
are|*t| = n stateshyq, ..., h, that only differ on the guard
selected for thé'” cell, e.g., states, andss.

If the statemen([pj ApY) does not hold for any successor

of H(t, 1), then in any success@i’ — p;’, consequently
prob(p, A g;) = 0 and the lemma trivially holds. Assume
there exists € H(t,1), such that a successby of h exists
atwhich(p;” Ap) A g;) holds, e.g.(p/. A pj, A gac) holds
in so. Then, a successay,, e.9.,ss, of A that only differs
from h; in the guard must exists, namelyatthe statement

(p;r A pY A gx) holds. Given that the guard selected for cell

[ does not affect the system evolution neither frbro h;
nor from i to Ay, % is the ratio of visits between states
hi andh;. The Iemjma is true if the time fraction during
which (p;_ A pY A gi) holds fromhy, is not less than the
time fraction during whicr(((pj ADP2)V pi) A gj) holds

50 Th() < Y allp)) - s

(15)
e (p,t)

Proof: Since infinite server semantics is adopted the aver-

age enabling degree ofs: enab(t) = ioj enab(t,l) where
=1

enab(t,l) is the average enabling deg}ee of tecell. As-
sume without loss of generality that= {p1,...,p,}. The

value ofenab(t,l) can be expressed as:

enab(t,l) = > pmb(p;l A gj1)

pie’t

= X (prob(pjl) — prob(p;, A not(gj,z)))

;Dje.t

= 2

(rob(uf)=((1 = az) - prob(p, A not(ga)
Pj G.t

+ o .prob(p;fl A not(gﬂ))))
(16)

The subindex is omitted in the following developments
for clarity. Notice that ifp;r holds, the transition has not



fired yet, thenp{ Vv p; holds for everyk € {1,...,n}.
Hence:

prob(p}) = prob(p} Ap) +prob(pf Apy) (A7)

foreveryk € {1,...,n}, and:
prob(p} Agi) = prob(p] App Agk)+prob(p) Api Agr)

(18)
for every £ € {l1,...,n}. Then, the term

aj - prob(pS A not(g;)) in (16) can be expanded as:

n

2

prob(pf A gi)
k=1 k]

oy - prob(pt A mot(g;)) = aj -
#J

=

n

=a;- Y. (prob(pf Ap} A gk)+prob(pl Apy A gk))
k=1t
- oAt
= > o prob(p] Apy Agr)
h=1 0o

(19)

n
+ X oy -prob(pl AppAgr)
h=1 o

The inequality (14) provided by Lemma 4 can be written
as:

o -prob(p;' ADYA gr) > ak-prob(p;' AP A gj)

+ ay, - prob(p;; A gj)
(20)

The substitution ofy; - prob(p; Apj Agk) in (19) by the
expression on the right of (20) yields:
a; - prob(pf A not(g;)) >
>y -prob(p;r AP A gk)
k=1 k#j
>

ay, - prob(p A pj A gj)
k=1,k#j

>

k=1k#j

(21)

ay, - prob(p;; A gj)

Recall that (21) is an expression resulting from the de-

velopment ofco; -prob(p;r A not(g;)) in (16). For each

pair of expressions (21) resulting from the development

of a; -prob(p;r A not(g;)) anday, - prob(p A not(g))
such thatk # j, we swapa; - prob(p] A p; A gx) With
Qg ~p1"0b(p;r /\pz A g;j), and we swapy;, - prob(p,. A g;)

with «; - prob(p; A gx). Thus, the expression associated

with «; -prob(pj' A not(g;)) becomes:

M=

g ~pr0b(pj A DY A gj)

k=1,k#j

—
=

)

n
121%757'0% ~p7’0b(p;r A pz A g;5)

> aj-prob(p; A gr)
k=1k#j

+
k

(22)

+

Notice that the reasonings used to obtain (18) can also be
used to deduce that:

prob(pf Ag;) = prob(p] Ap} Ag;)+prob(p; Apii Ag;)

for everyk € {1,...,n}. Notice also that ifp; is selected
as guard it cannot become negatively marked after the fir-
ing, i.e.,prob(p; A g;) = 0, therefore:

n

Y. prob(p; Agk) = prob(p;)
k=1 k]

Hence, (22) can be rewritten as:

n
> ag -prob(pj A gj) + -prob(pj_)
k=1,k#j

=(1—a;y) ~p1"0b(p;r A gj) + a; -prob(p;) (23)
After substituting; -prob(p; Anot(g;)) by (23)in (16),
enab(t,l) becomes:
enab(t,l) <
> (pmb(pj) — ((1 = ay) - prob(p} A not(g))
Pj et
+ (1 — o) - prob(p} A g;) +a; -prob(p;)))
= Y ;- (prob(p]) — prob(p;y))
Pj G.t
We are ready to write an expression for the overall aver-
age enabling degree under infinite server semantics:

enab(t) = > enab(t,l)
=1

<> X aj- (prob(p};) — prob(p;,))
=1 ij.t

=z a; - :1 (prob(p},) — prob(p;,))
B pje'taj ' (lipm (% N 1)
— liprob(% < O))
< p]g'taj : (Z:lm - prob(M (p;) = 1)
— i;iim -prob(M(pj) = z))
From (3) the desired expression is obtained:
&wwwz%mwigﬁrﬁﬁ%g



