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Deadlock-Freeness Analysis of Continuous
Mono-T-Semiflow Petri Nets

Jorge Júlvez, Laura Recalde, and Manuel Silva

Abstract—Most verification techniques for highly populated dis-
crete systems suffer from the state explosion problem. The “fluidi-
fication” of discrete systems is a classical relaxation technique that
aims to avoid the state explosion problem. Continuous Petri nets
are the result of fluidifying traditional discrete Petri nets. In con-
tinuous Petri nets the firing of a transition is not constrained to the
naturals but to the non-negative reals. Unfortunately, some impor-
tant properties, as liveness, may not be preserved when the discrete
net model is fluidified. Therefore, a thorough study of the proper-
ties of continuous Petri nets is required. This paper focuses on the
study of deadlock-freeness in the framework of mono-T-semiflow
continuous Petri nets, i.e., conservative nets with a single repeti-
tive sequence (T-semiflow). The study is developed both on untimed
and timed systems. Topological necessary conditions are extracted
for this property. Moreover, a bridge relating deadlock-freeness
conditions for untimed and timed systems is established.

Index Terms—Continuous Petri nets, deadlock-freeness.

I. INTRODUCTION

STATE explosion problem is a crucial drawback in the anal-
ysis of discrete event systems. A way to try to overcome

this difficulty is to make the system continuous (total or par-
tially) and apply different analysis techniques that may provide
an approximation to the original behavior.

Transforming a discrete model into a continuous one is, in
general, a classical relaxation aiming at computationally more
efficient analysis techniques, at the price of losing some preci-
sion. Nevertheless, it should be pointed out that the transforma-
tion from discrete to continuous of some systems may yield a
non appropriate continuous model: some qualitative properties
as deadlock-freeness may not be preserved [3]. Therefore, it be-
comes interesting to analyze continuous Petri nets in order to
establish when they offer a reasonable relaxation of their dis-
crete counterparts, i.e., when they preserve the properties to be
analyzed. In the manufacturing systems domain, and using Petri
net models, this idea has been applied, for instance, in [1]–[4].

This paper focuses on the analysis of deadlock-freeness in
the framework of continuous mono-T-semiflow (MTS) Petri nets
(PNs) (see [5] for an introduction to MTS nets in the classical
discrete setting). Deadlock-freeness is an essential qualitative
property that applies to those systems fulfilling that at any reach-
able marking there is at least one enabled transition. Quantita-
tive properties can also be studied in the continuous Petri nets
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setting. For example, in [6] an approach to compute throughput
bounds for MTS was developed. However, when analyzing a
system, it is reasonable to carry out a qualitative study first (it
usually requires less effort), and then a quantitative one. For in-
stance, it makes no sense to compute the throughput bounds of
a system that is known to be nondeadlock-free.

The main properties of MTS nets are purely structural: Con-
sistency with a single T-semiflow (i.e., all transitions are covered
by the unique minimal T-semiflow) and conservativeness (i.e., all
places are covered by P-semiflows). Therefore the membership
problem for MTS can be decided in polynomial time. The mod-
elling power of MTS nets is considerable since they represent a
generalization of choice-free nets [7]. Notice that a subclass of
choice free nets are weighted-T-systems [8], a weighted gener-
alization of the well-known subclass of marked graphs.

The study of deadlock-freeness will be developed for both
untimed and timed continuous MTS Petri nets. For the untimed
nets there exists an indeterminism in the firing of the transi-
tions. For the time interpretation infinite servers semantics, that
is introduced in Section II, will be used. The results obtained
for timed MTS systems apply to any system that under infi-
nite servers semantics evolves through a transient and eventu-
ally reaches a steady state in which the marking of the places
and the flow through transitions remain constant. It is impor-
tant to notice that most of the liveness conditions presented in
this paper are structural, i.e., they are independent of the initial
marking of the system.

The paper is structured as follows. In Section II, untimed and
timed continuous Petri nets are introduced. It is shown that the
property of deadlock-freeness is not always preserved when the
model is made continuous. In Section III, some necessary dead-
lock-freeness conditions for untimed nets are obtained. Sec-
tion IV is devoted to the study of the same property in timed
systems. Special attention is paid to the influence that the firing
speed of transitions has on deadlock-freeness. In Section V, the
conclusions of the work are presented.

II. UNTIMED AND TIMED CONTINUOUS PETRI NETS

A. Basic Definitions

The reader is assumed to be familiar with PNs (see, for ex-
ample, [9] and [10]). The usual PN system,

, will be said to be discrete so as to distin-
guish it from the continuous relaxation [1], [2]. A first difference
between continuous and discrete PNs is in the marking, which in
a discrete PNs is restricted to be in the naturals, while in contin-
uous PNs is released into the non-negative real numbers. This
is a consequence of the firing, which is modified in the same
way. In a continuous system, a transition is enabled iff every
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input place is marked, i.e., for every . As in
discrete systems, the enabling degree at of a transition mea-
sures the maximal amount in which the transition can be fired
in one go, i.e., . The
firing of in a certain amount leads to a new
marking , where is
the token flow matrix. Hence, as in discrete systems, the state
(or fundamental) equation summarizes the
marking evolution. Notice that for a continuous transition, the
fact of being enabled or not does not depend on the arc weights,
although they are important to compute the enabling degree and
to obtain the new marking after the firing.

Every concept based on the representation of the net as a
graph can be directly applied to continuous nets, in particular,
the conflict relationships. Two transitions, and , are said to
be in structural conflict relation if . The coupled
conflict relation is defined as the transitive closure of the struc-
tural conflict relation. Each equivalence class is called a cou-
pled conflict set denoted, for a given . The set of all
the equivalence classes is denoted as SCCS. When

and are in equal conflict (EQ) relation.
Right and left natural annullers of the token flow matrix are

called T- and P-semiflows, respectively. A semiflow will be
said to be minimal when its support, , is not a proper superset
of the support of any other, and the g.c.d. of its elements is one.
When the net is said to be conservative, and
when the net is said to be consistent. In a
consistent net, a vector such that represents
a repetitive sequence, or in other words, a potential steady-state
behavior of the system in which all transitions are fired.

In a continuous PNs, the marking evolution along time can
be expressed by the state equation
where represents time. Taking the derivative with respect to
time, is obtained. Let us denote , since
it represents the flow through the transitions, i.e., the number of
times transitions are fired per time unit.

The firing semantics defines how the flow of transitions is
computed. For continuous PNs several semantics have been pro-
posed, the most important being infinite servers (or variable
speed) and finite servers (or constant speed) [1], [2]. Both rep-
resent a first order (or deterministic) approximation of the dis-
crete case [2]. Infinite servers semantics will be considered here.
Under infinite servers semantics, the flow through a transition
is the product of the firing speed, , and the enabling
degree of the transition, i.e.,

, leading to nonlinear ordinary dif-
ferential and deterministic systems. A continuous timed system
will be represented as .

For example, for the net system in Fig. 1:
, ,

and .
Observe that in this case, the net system can be seen as a

piecewise linear system [11]: At a given moment, the evolution
of the net system is ruled by a linear differential system that de-
pends on the net structure and the current marking. If the net
is join free (i.e., each transition has at most one input place) a
single set of linear differential equations represents the evolu-
tion of the marking: where

Fig. 1. Continuous PN system.

if , and 0, otherwise. If the
net system is conservative, has redundant rows. Hence, some
variables can be expressed in terms of the rest of the variables
and the initial marking values.

The results reported in this paper refer to continuous MTS
systems. The subclass of MTS nets is defined as follows:

Definition 1: A PN is a mono-T-semiflow (MTS) net iff it
is conservative and has a unique minimal T-semiflow whose
support contains all the transitions.

Since in PNs minimal T-semiflows represent all “basic”
repetitive behaviors of the system, in MTS nets at most one
repetitive behavior exists. Moreover, similarly to discrete sys-
tems, the unique T-semiflow stores the ratios of the flows of all
transitions in such a repetitive behavior, i.e., in the steady state.

One important property of discrete (and continuous) MTS
systems is that deadlock-freeness is equivalent to liveness [5],
because all the infinite behaviors are “essentially conformed” by
infinite repetition of sequences having (multiples of) the min-
imal T-semiflow as the firing count vector. Even more, for MTS
systems, deadlock-freeness of the untimed model leads, for an
arbitrary transition-time semantics (deterministic, exponential,
coxian, ), to non null throughput of the timed system. Thus
there exists an interesting one-way bridge from logical or qual-
itative properties to performance or quantitative properties.

A classical concept in queueing network theory is the visit
ratio. The visit ratio of transition with respect to , ,
is the average number of times is visited (fired) for each
visit to (firing of) the reference transition (thus )
[12]. Observe that is a “normalization” of the flow vector
in the steady state, i.e., .
Let denote the flow (or throughput) of
the system in the steady state. Then, for any , it holds

. Clearly, the flow vector in the steady state is a right
annuler of the incidence matrix , and therefore, in MTS sys-
tems, proportional to the unique T-semiflow.

B. No Deadlock-Freeness Preservation

This subsection shows that deadlock-freeness of the discrete
net model is neither a necessary nor a sufficient condition for
deadlock-freeness of the relaxed continuous approximation. In
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Fig. 2. Two untimed MTS systems which behave in very different ways if seen
as discrete or as continuous.

Fig. 3. Deadlock-freeness may also not be preserved by timed continuous sys-
tems.

other words, the transformation of a discrete system to a con-
tinuous one does not preserve in general the property of dead-
lock-freeness. This phenomenon, that may be surprising at first
glance, can be easily accepted if one thinks, for instance, on the
existence of non-linearizable differential equations systems (for
example, due to the existence of a chaotic behavior).

Let us first consider the untimed case. Fig. 2(a) shows an
untimed MTS system that is not live as discrete: A deadlock
marking is reached if is fired. However, the net system never
gets completely blocked as continuous unless an infinitely
long sequence is considered. On the other hand, the system in
Fig. 2(b) is live as discrete but reaches a deadlock as continuous
if is fired in an amount of 0.5.

With respect to timed systems, the addition of the infinite
servers semantics time interpretation may allow the timed
continuous model to have infinite behavior (deadlock-free-
ness), while a “similar” timing in the discrete system leads to a
deadlock. Let us consider the system in Fig. 3(a) as continuous
under infinite servers semantics with . It can be
checked that it is live and the flow through transitions and

is always the same. However, if the system is considered
as discrete with a classical markovian time interpretation [13],
i.e., all transitions are provided with an exponential probability
distribution function law, the stochastic system will arrive to a
deadlock marking with probability “1” (this is a particular case
of the classical “gambler’s ruin problem”). If the
mean time for deadlock is a quadratic function of
(see [2] for more details). The system in Fig. 2(b) never dead-
locks as discrete under a markovian time interpretation with any

. However, if the system is considered as continuous

under infinite servers semantics with , it
reaches a deadlock.

Liveness of a single transition can also be affected when con-
sidering a system as discrete or as continuous. Fig. 3(b) shows
a non-MTS system (it has two T-semiflows), that considered
as discrete is live (thus deadlock-free). However, for a
deterministic timing of transitions with faster than (i.e.,

where and are the deterministic delays of and
) makes nonfireable, thus nonlive (in fact, it starves). Nev-

ertheless, considering the model as continuous, it is live both for
the untimed and the timed interpretations.

III. DEADLOCK-FREENESS IN UNTIMED SYSTEMS

In continuous systems, it may happen that a marking cannot
be reached with a finite firing sequence, but there exists an in-
finite firing sequence that converges to that marking. As an ex-
ample of this phenomenon, let us consider the system in Fig.
2(a). The marking , cannot be reached
with a finite firing sequence. However, if transition could
be fired indefinitely in an amount equal to its enabling degree,
the marking of and would converge to 0 and 4 respec-
tively. Hence, it becomes reasonable to consider markings like

, as reachable markings in the limit. They
are defined as follows:

Definition 2: [3] Let be a continuous system. A
marking is said to be lim-reachable iff
a sequence of reachable markings exists verifying

and .
The set of lim-reachable markings is denoted

. Liveness and deadlock-freeness def-
initions can immediately be obtained following the pattern of
discrete systems.

Definition 3: [3] Let be a continuous PN system.
• lim-deadlocks iff a marking

exists such that
for every transition .

• is lim–live iff for every transition and for any
marking a successor exists
such that .

• is structurally lim-live iff such that is
lim-live.

Although lim-deadlocks may only be reached in the limit,
they represent an important system weakness: They enable the
system to reach a marking in which all transitions have infin-
itely small enabling degrees. Furthermore, it must be pointed
out that the concept of lim-reachability in continuous nets pro-
vides a better approximation to discrete nets, in the sense that
lim-liveness of the continuous system is a sufficient condition
for liveness of the discrete one [3].

In MTS systems any subset of transitions, , can be
disabled just by firing (indefinitely) every transition in .

Lemma 4: Let be a MTS net. For every and every
a marking exists such that

for all . Moreover, this marking can be
reached firing only transitions in .

Proof: Let . Let us pick a
transition in whose enabling degree is strictly positive (if
such a transition does not exist the lemma trivially holds). Let
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Fig. 4. Non-lim-live system according to Theorem 6.

us fire in an amount equal to its enabling degree (maximum
firing amount). This action yields a new marking . Let us
recompute . Let us pick another
transition in with strictly positive enabling degree and let us
repeat the described procedure. If after repeating these steps a
finite number of times, , it is obtained that every is dis-
abled, i.e., , then the result is proved. Otherwise the pro-
cedure can be repeated indefinitely. Then, the enabling degree of
every transition in must tend to zero, i.e., .
Otherwise there would exist a repetitive sequence different from
the T-semiflow. Contradiction.

Notice that disabling a subset of transitions is not equiva-
lent to killing them: They could be enabled if the transitions not
contained in were fired properly.

Lemma 4 leads to the equivalence between -deadlock-
freeness and lim-liveness for continuous systems, a well-known
result for the discrete case [5].

Property 5: A continuous MTS system is lim-live iff it is
lim-deadlock-free.

Proof: Assume is not lim-live. There is a transi-
tion that cannot be fired from any successor of a certain reach-
able marking. The application of Lemma 4 on transitions
leads to a deadlock.

Suppose that in a given system, , there is a transition,
, such that for any reachable marking is never the only enabled

transition. This means that if the rest of transitions, , are
disabled at a given marking , then is also disabled at .
Since every transition of the set can be disabled in the
limit (Lemma 4), it can be inferred that is not lim-live.

Theorem 6: Let be a lim-live MTS system. For
every transition , such that is the
only enabled transition at .

Theorem 6 establishes a necessary lim-liveness condition
that is illustrated in Fig. 4. In that system, for every reachable
marking in which is enabled either or is enabled. Hence,

is never unavoidably “forced” to fire. Firing several times
and a deadlock is reached.

Although the condition given by Theorem 6 is in general not
easy to check, a simple structural condition (i.e., applicable in-
dependently of the initial marking) necessary for liveness can
be extracted at net level.

Corollary 7: Let be a MTS net. If is structurally lim-live
then for every (i.e., preconditions of transitions
are non comparable)

Fig. 5. System for which Corollary 7 detects non-lim-liveness.

Proof: If there exist such that , for every
marking in which is enabled, is also enabled. Thus, The-
orem 6 can be directly applied and non lim-liveness for an arbi-
trary initial marking is deduced.

Hence, topological conflicts in which the set of input places
of one transition is contained in the set of input places of other
transition must be forbidden if the system is wanted to be lim-
live. For example, in the system in Fig. 5, for any reachable
marking if is enabled then is also enabled. Thus is never
the only enabled transition and therefore its firing can be always
deliberately avoided. By firing successively and in amounts
equal to their enabling degrees a deadlock is reached for any
initial marking. (Notice however that this system is live if seen
as discrete.)

In other words, Corollary 7 detects a kind of “structural con-
tradiction” in the MTS net: On the one hand, all the transitions
are included in the only repetitive sequence (the T-semiflow),
and on the other hand there exist such that , thus,
the net gives the possibility of never firing transition . The re-
sult of this contradiction entails a deadlock.

IV. DEADLOCK-FREENESS IN TIMED SYSTEMS

Deadlock-freeness and liveness definitions of untimed sys-
tems can be extended to timed systems:

Definition 8: Let be a timed continuous PN
system.

• is timed-deadlock-free iff ;
• is timed-live iff ;
• is structurally timed-live iff there exists such

that .
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Fig. 6. Relationships among liveness definitions for continuous MTS models.

As in untimed nets structurally timed-liveness is a necessary
condition for timed-liveness.

If a timed MTS system is not timed-live (timed-deadlock-
free), it can be concluded that, seen as untimed, the system
is non-lim-live (lim-deadlock-free) since the evolution of the
timed system just gives a particular trajectory, i.e., a firing se-
quence, that can be fired in the untimed system. Therefore lim-
liveness (lim-deadlock-freeness) is a sufficient condition for
timed-liveness (timed-deadlock-freeness). The reverse is not
true (Fig. 3(a) for ). Analogously, structurally lim-
liveness is a sufficient condition for structurally timed-liveness.
Relationships among liveness definitions are depicted in Fig. 6.

Recall that in the steady state the flow through transitions,
, is proportional to the vector of visit ratios, . Hence, the

marking in the steady state, that will be denoted as , verifies

(1)

A MTS system, , verifies for every , and
hence it is timed-live iff .

A. Structural Timed-Liveness

The vector of firing speeds plays a crucial role in the evo-
lution to the steady state. As the system in Fig. 3(a) shows,
even structurally non-lim-live systems can be saved from dead-
locking by choosing an adequate . It can be seen that for any
strictly positive initial marking it is always possible to find a
that makes the system timed-live. One way to achieve this is to
choose a that avoids any transient state, thus making the initial
marking equal to the marking in the steady state and, therefore,
avoiding a deadlock.

Proposition 9: Given a MTS net, , for every initial marking
, there exists such that is timed-live.

Proof: Let us define
where is the vector of visit ratios normalized for . Since

it is immediate to verify that

For example, the continuous system in Fig. 7 is not lim-live
as untimed. However, defining where is an
arbitrary positive value, the timed version never deadlocks.

Another interesting problem consists in determining which
continuous timed-nets are structurally timed-live (i.e., given

such that ?).
Proposition 10: is structurally timed-live iff de-

fined as

is a steady state marking for .
Proof: ( ) Let us assume that is a steady-state marking.

Given that , its associated flow in the steady state fulfils
and therefore is structurally timed-live.

( ) There exists such that .
Let be the steady state marking associated to . Let
us define . Clearly .
Then, .
Those components of being strictly greater,

, can be made equal (they
are tokens stacked in synchronizations). This manipulation of

does not modify and results in the marking
defined in the statement.

Let us apply Proposition 10 to the net in Fig. 5 with
. The vector of visit ratios of the net is ,

and so the marking defined by the statement of Proposition 10 is
. This marking is not a steady state marking since

it does not verify (1). Therefore, the timed net with
is not structurally timed-live.

B. Characterization of the Set

Given , an interesting problem lies in determining the set of
firing speed vectors for which is structurally timed-live.
In other words, the goal is to compute a set defined as follows.

Definition 11: is structurally timed-live .
It has been seen that if is structurally lim-live then for any

, is structurally timed-live (recall Fig. 6). Hence for
structurally lim-live nets will be equal to all positive real
vectors .

Let us show that the computation of can be simplified by
considering separately each coupled conflict set.

Let us suppose that has coupled conflict sets,
with

, and that transitions
and places are sorted according to the coupled conflict they
belong to: and

. Let us define as a set of vectors
associated to the coupled conflict set in the following
way:

Difinition 12: and
such that

From the previous definition it is obtained that for
any there exists a marking
such that for every it holds

. Thus, by defining
the set can be expressed in a more direct

way.
Proposition 13: and

such that

The following theorem states that can be computed as
the cartesian product of all the of the net.

Theorem 14:
.

Proof:
• If

, there exists such that
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. Let be its associated steady state marking.
Then , with

.
•

If
with the marking

, then using this marking as , one
has . Therefore .

Let us consider the net depicted in Fig. 5. Its vector of visit ra-
tios is and it has two CCSs: and .
Applying Proposition 13 the following sets are computed:

and
. A direct application

of Theorem 14 on these sets allows one to obtain the set
, i.e., the set of firing

speeds that allows the system to reach a nondead steady state.

C. Restrictive Places

The expression in Proposition 13 describes the set of internal
speeds of the transitions in a CCS that have to be considered
in order to avoid the system to deadlock. That is, if the internal
speeds of the transitions are in , there exists a marking
at which the transitions are fired proportionally to the vector
of visit ratios. In other words, at that marking transitions are
enabled in such a way that the flow vector is proportional to the
vector of visit ratios.

Difinition 15: Given a steady state marking, , a place is
said to be a restrictive place for , one of its output transitions,
if the enabling degree of at is defined by the marking of ,
i.e., .

For a given , it turns out that in the steady state a
place may be restrictive only for some of its output transitions.
The set of transitions for which a place can be restrictive
depends on the structure of the net and on the internal speeds
of the transitions. This fact can be interpreted in the following
way: in the steady state every transition is “demanding” a
minimum quantity of marking to their input places in order to
have a positive throughput. From another point of view, this
means that places have to supply enough fluid to their output
transitions. Hence, in the steady state, a place can be restrictive
only for the output transition(s) that is (are) demanding the
greatest amount of fluid.

Let us assume that the system reaches a steady
state at which the throughput is . Thus, the marking of a given
place has to be big enough to allow its output transitions to fire
according to . Considering all the output transitions of a place

, its marking in the steady state, , has to fulfill

(2)

This equation can be directly obtained from (1). Given a place
, (2) allows one to compute which of its output transitions is

demanding the greatest marking in the steady state. And so, it is
possible to deduce the transition(s) for which the place can be
restrictive. Since MTS are being considered, is proportional

to the only T-semiflow of the system. Therefore, taking into
account (2), the computation of the transition(s) for which a
place can be restrictive only depends on the T-semiflow of
the system and on the vector of internal speeds , i.e., it does
not depend on the initial marking.

Proposition 16: The set of transitions for which a place can
be restrictive is given by

(3)

where is the vector of visit ratios normalized for transi-
tion .

According to Proposition 16, a place can be restrictive for
more than one transition only in the case that several of its output
transitions are demanding exactly the same marking to place .
Notice that every transition has an input restrictive place. How-
ever, not every place has to be a restrictive place for one of its
output transitions.

Let us assume that given a the only possible restric-
tive place for a transition is the place . Thus, in a nondead
steady state, place has the responsibility of enabling transition

according to its visit ratio. The task of enabling transition
will be impossible for place if it is an implicit place [14] (a
place is said to be implicit iff for any reachable marking
and for any transition there exists such that

, in other words is never the
only restrictive place of its output transitions). Therefore, if the
system is desired to reach a non dead steady state, it must be
avoided that the set of places that must enable transitions ac-
cording to the vector of visit ratios is implicit.

In order to illustrate these reasonings, let us consider a CCS
composed of two places and two transitions whose normalized
visit ratios are and ; see Fig. 8. According to Proposition
13, the associated to that CCS is

. Through some algebraic operations it can be seen that
the region in the two dimensional plane associated to this
can be written as:

(see Appendix I
for an sketch of this equivalence). That is, the set can be
seen as a two dimensional cone. Let us assume, without loss of
generality, that . Then, the slopes of the upper and
lower edges of the cone are and , respectively. Fig. 9
depicts the region associated to .

Only those speeds, , in the cone allow the system to
reach a nondead steady state. Assuming that this CCS is part of
a MTS, , and that a non dead steady state is reached,
the following results based on (3) hold.

• If is not a border point of the cone , then
is the restrictive place of and is the restrictive place
of . Therefore, if any of the places is implicit the system
will deadlock.

• If is a point in the upper edge of the cone then
is restrictive for and is restrictive for both transitions.
If the system is wanted to reach a nondead steady state it
is necessary that place is not implicit.
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Fig. 7. Non-lim-live untimed system that never deadlocks as timed with ��� =
(1 1 � ) for any � > 0. Every transition owns a CF place but the timed system
deadlocks with ��� = (211).

Fig. 8. Simple CCS.

Fig. 9. � set associated to the CCS in Fig. 8 assuming that d=c � b=a.

Fig. 10. CCS with four places and two transitions.

• If is a point in the lower edge of the cone then
is restrictive for both transitions and is restrictive for .
In this case if is implicit the system will deadlock.

It is not difficult to extend the previous results to a more complex
CCS consisting of several input places and two transitions. The
CCS in Fig. 10 has four input places and two transitions. The
region containing the set has the shape of a cone. See
Fig. 11 for the representation of assuming that

.
Three cones can be distinguished in the interior of . The

set of restrictive places depends on the cone to which

Fig. 11. � set associated to the CCS in Fig. 10 assuming that q =q �

q =q � q =q � q =q .

belongs. If belongs to the cone A, the possible restric-
tive places for are , and for the only possible
restrictive place is . Hence, in this case if is implicit the
system will deadlock. A deadlock will also be reached if all
three places and are implicit simultaneously. For a

in the cone B, the restrictive places for transition are
and , and for transition are restrictive places and .

If is cone C, the only restrictive place for transition
is and the possible restrictive places for transition are

and . Finally, notice that in the edges of the cones it turns
out that a single place can be restrictive for both transitions. For
example for a in the upper edge of the cone, place
is restrictive for both transitions.

D. Critical Timed-Liveness

It has been seen that those vectors not included in
do not allow the MTS system to reach a steady state with
throughput greater than zero. Although is never an empty
set (for every positive initial marking there exists ), its
“size” can be much smaller than desired. For example it is not
desirable to use a vector of such that a minimum change
in one of its components puts the vector out of . It would
mean that a small variation in the firing speed of one transition
can kill the system. Hence, a new concept is needed to define
wether a system can be “robust enough” to bear irregularities
and variations happening in the real world.

Definition 17: is critically structurally timed-live iff
is a border point of
In some cases, the net structure can reduce dramatically the

dimension of . For every coupled conflict with n transitions
is contained in . Therefore the maximum dimen-

sion that a given region of the set can have is n. Apart from
this constraint, the effective dimension of is also limited
by the number of input places of the coupled conflict set, since

is generated by as many independent variables as input
places (see Proposition 13). Therefore, the following Proposition
holds:

Proposition 18: Given a coupled conflict set CCS, the max-
imum dimension of any region of is bounded by the
number of transitions in the CCS, , and the number of
input places of the CCS, .

Since is the cartesian product of all the of the net
(Theorem 14), if the net has a coupled conflict set CCS with
less input places, , than transitions, , every region
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in will have a smaller dimension than the number of tran-
sitions of the net. That is, every point in will be a border
point. From this reasoning, Proposition 19 is derived.

Proposition 19: Given a net , if there exists a CCS such that
then for every is critically

structurally timed-live.
For example, the CCS composed of in Fig. 3(a) has

only one input place, . Hence, if then for every initial
marking the system will eventually deadlock, and if
then is critically structurally timed-live.

This means that in practice, all the coupled conflicts sets
should have at least as many input places as transitions, other-
wise the system will die or will remain in a critical timed-live
state.

E. Robust Timed-Liveness

Going on with critical structurally timed-liveness, one could
ask which features should be required to a system in order to be
“safe,” i.e., arbitrary variations in do not cause to be
out of . In other words, the interest lies in looking for those
net structures that allow the system to reach a nondead steady
state for any .

A place is said to be choice-free (CF) iff , i.e., has
a single output transition. It will be said that a transition owns
its (input) CF places.

Theorem 20: Let be a MTS net, is struc-
turally timed-live iff every transition owns at least one CF place.

Proof: ( ) Let . Let be a
minimal set of CF places such that . For every
let , and define if

, and
otherwise. Then, it is obtained that for every

. Therefore,
is a steady-state marking.
( ) Let and let us assume that there
exists a transition without CF places. Then, it holds
that . Let us define as

. According to Theorem 14,
is the product of , so .

We will reach a contradiction to our initial assumption
by finding an upper bound of , what clearly implies

. From Proposition 13, it is known that for
any , a certain exists
verifying
for every . Therefore, it holds that

for a certain .
According to our assumption , and thus
another transition must exist such that

and . Hence,
it is obtained that

.
Therefore, it holds that

. That is,
is bounded by a value that depends on .

Contradiction.
From a different point of view, Theorem 20 states that the

transitions can be enabled independently iff every transition

Fig. 12. Transitions t ; t and t do not own CF places. For ��� = (112 1 1 1)
no steady state with positive throughput is possible.

owns a CF place. Observe that this condition does not guarantee
that the system will always reach a non-dead steady state for
every initial marking. For example in Fig. 7, every transition
owns a CF place (and it is not a CF net). However, with that
initial marking, choosing the system cannot reach a
live steady state. This happens because the enabling degree of

and is always the same, since and are implicit places
[14], so they can be removed without changing the possible
behaviors (trajectories for the timed case) of the system. From
Theorem 20 it can be inferred that for those nets that have
a transition without CF places there exists a for which the
timed system deadlocks independently of the initial marking.
Transitions in Fig. 12 do not own CF places. For

, the system will evolve to a dead-
lock, no matter which the initial marking is.

F. Coming Back to Structural Liveness in Untimed Systems

According to Theorem 20, if has a transition without CF
places, a exists such that is not structurally timed-live.
Therefore is not structurally lim-live, since structurally
timed-liveness is a necessary condition for structurally lim-
liveness (see Fig. 6).

Theorem 21: Let be a MTS net. If is structurally lim-
live then every transition owns at least one CF place.

The system shown in Fig. 12 is not lim-live according to
Theorem 21, since there are three transitions, and that
do not own a CF place. In this case, the firing of a sequence
that corresponds to vector leads to marking

, where the system lim-deadlocks. Notice that
in consistent continuous systems in which every transition can
be fired at least once, there do not exist spurious solutions of the
state equation [3], hence a sequence can be fired that reaches
marking .

Transition does not own a CF place iff all the input places of
are contained in the set of input places of the rest of the transi-

tions. Thus, Theorem 21 can be rewritten as: If is structurally
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lim-live then for every , . Notice the similarity
of this statement to that of Corollary 7. In fact, Theorem 21 and
Corollary 7 express exactly the same condition if all the coupled
conflict sets of the net have at most two transitions, but in gen-
eral Theorem 21 has a greater decision power.

V. CONCLUSION

Continuous PNs may be used to overcome the state explo-
sion problem of highly populated discrete systems. In contin-
uous nets the firing of transitions is not discrete, but continuous.
In this paper, the attention is focused on the study of continuous
MTS systems, that is, systems that are consistent, conservative
and have only one T-semiflow. Such systems are easy to char-
acterize and offer an interesting modelling power.

Since MTS systems have only one repetitive sequence, -
deadlock-freeness becomes equivalent to lim-liveness. From an
untimed point of view, that is, without time interpretation, nec-
essary structural lim-liveness conditions have been obtained.
For MTS systems these conditions provide a better character-
ization than the one established by the rank Theorem [14]. For
example, Theorem 21 allows one to decide on lim-liveness of
the system in Fig. 12 while the rank Theorem does not. It is re-
markable that all those conditions (Theorem 6, Corollary 7, and
Theorem 21) are stated on topological features of the net, hence
disregarding the arc weights. This is a logical consequence of
the continuous firing of transitions: the arc weights have an in-
fluence on the amount in which one transition is enabled (en-
abling degree) but deciding whether a transition is enabled or
not does not depend on the value of its input arc weights.

Lim-liveness and structural lim-liveness have been defined
for timed systems [3]. For such systems a necessary and suf-
ficient condition for structural timed liveness has been derived
(Proposition 10). A a new concept, critical timed-liveness, has
been introduced. A critical timed-live system can reach a live
steady state, however any small variation in one of its firing
speeds will cause the system to deadlock. The set of speeds
that allow the system to reach non-dead steady states has been
characterized. The existing relationships between lim-liveness
of untimed systems and liveness of timed systems offers the
possibility of applying some results obtained for timed systems
(Theorem 20) to untimed systems (Theorem 21). This way, pre-
vious results for untimed systems (Corollary 7) are improved.

APPENDIX I

Outline of the equivalence of the expressions for in
Subsection IV-C:

and

. It will be assumed, without loss of generality,
that .

“ ” Given , define and
.

“ ” Given .
• If and then de-

fine and
.

• If and then define
and .

• If and then define
and .

• If and then it holds
, then . Thus, this

case is not possible because it was assumed .
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