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Abstract—Time-gated non-line-of-sight (NLOS) imaging meth-
ods reconstruct scenes hidden around a corner by inverting
the optical path of indirect photons measured at visible sur-
faces. These methods are, however, hindered by intricate, time-
consuming calibration processes involving expensive capture
hardware. Simulation of transient light transport in synthetic
3D scenes has become a powerful but computationally-intensive
alternative for analysis and benchmarking of NLOS imaging
methods. NLOS imaging methods also suffer from high com-
putational complexity. In our work, we rely on dimensionality
reduction to provide a real-time simulation framework for NLOS
imaging performance analysis. We extend steady-state light
transport in self-contained 2D worlds to take into account the
propagation of time-resolved illumination by reformulating the
transient path integral in 2D. We couple it with the recent phasor-
field formulation of NLOS imaging to provide an end-to-end sim-
ulation and imaging pipeline that incorporates different NLOS
imaging camera models. Our pipeline yields real-time NLOS
images and progressive refinement of light transport simulations.
We allow comprehensive control on a wide set of scene, rendering,
and NLOS imaging parameters, providing effective real-time
analysis of their impact on reconstruction quality. We illustrate
the effectiveness of our pipeline by validating 2D counterparts of
existing 3D NLOS imaging experiments, and provide an extensive
analysis of imaging performance including a wider set of NLOS
imaging conditions, such as filtering, reflectance, and geometric
features in NLOS imaging setups.

Index Terms—Transient rendering, NLOS imaging, computa-
tional imaging.

I. INTRODUCTION

ON-LINE-OF-SIGHT (NLOS) imaging techniques aim

to retrieve information about scenes that are not directly
observable by a camera [1]-[3[], including motion tracking
[4], position detection [5]], [6], and geometric reconstructions
[7]-[9]]. It has promising applications in diverse fields, such
as cave exploration, rescue planning, medical imaging, and
car navigation, to name a few. Time-gated NLOS imaging
methods, in particular, rely on time-of-flight information to
provide detailed reconstructions of a scene hidden either by tri-
angulation [[7], [8]], [[1O], [11] or relying on wave-propagation
principles [9]], [[12[]—[/19].
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However, the development of new time-gated NLOS imag-
ing methods still suffers from three main problems. First,
capture hardware is expensive, and some setups require hour-
long captures (Liu et al. report 6.5 hours for some of their
experiments [9]]). Second, setting up scenes in a laboratory
and calibrating the system can take hours or even days per
experiment. Third, the high dimensionality and density of the
captured data lead to severe memory constraints. Simulation-
based pipelines, on the other hand, have become a fundamental
tool for analyzing performance of computational imaging sys-
tems [20]], [21] thanks to accurate physically-based rendering.

Existing transient rendering frameworks allow researchers
to prototype and simulate transient light transport in synthetic
3D scene configurations [22]]-[24]. Their flexibility provides
additional insights by storing information that real capture
devices cannot obtain, such as ground truth information of
separate light bounces. However, simulated data in 3D scenes
is still high-dimensional and dense, maintaining the severe
memory constraints akin to captured data. Besides, accurate
transient rendering in 3D scenes is computationally expensive,
requiring render times of several minutes for a single scene
even for a low number of simulation samples. As a conse-
quence, NLOS imaging methods deal with high-dimensional
captured and simulated data, leading to high computational
costs, with high-resolution results taking several minutes or
hours to compute.

Simulation of steady-state 2D light transport has proven
to be a computationally-efficient approach to gain practical
insights of light transport phenomena by relying on dimension-
ality reduction [25]-[29]. Inspired by this, we extend existing
formulations of steady-state light transport in self-contained
2D worlds [28]], [29]] to account for transient light transport,
based on the transient path integral formulation [22]]. We then
couple our 2D transient path integral formulation with our
2D re-formulation of phasor-based NLOS imaging models [9],
[13]-[17]. We implement this combination in a WebGL-based
end-to-end pipeline that simultaneously performs transient
rendering and NLOS imaging at real-time rates, thanks to
computational speedups of up to five orders of magnitude w.r.t.
equivalent 3D counterparts. In our most complex 2D scene—
a hidden Stanford bunny—our experiments perform transient
light transport simulation and NLOS imaging (throughout the
paper, we refer as imaging to the NLOS reconstruction step)
in 17 ms to 19 ms for 16 x 103 simulation samples. In contrast,
simulating and imaging a 3D Stanford bunny takes up to
47 min. In addition, memory consumption is reduced by a
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factor of 280, from 3.4 GB in 3D to 12 MB in 2D. We leverage
our performance gains to progressively refine the simulated
data by iteratively accumulating batches of simulation sam-
ples, showing the reconstruction results in real-time until a
user-specified maximum of samples is reached. This provides
reference reconstructions for analysis and benchmarking, and
allows the user to modify the scene and imaging parameters
and visualize their impact in the reconstruction in real-time as
the simulation is refined. Our system allows much faster and
more precise configuration of scenes than in 3D counterparts,
facilitating exhaustive exploration of the parameter space,
generating lighter data, and providing interactive and easier
visualization of the imaging results.

We observe that NLOS imaging methods in 2D based on
the phasor-field formulation retain the ability to image hidden
geometry and the limited visibility caused by the missing cone
problem [30]. We validate our system by adapting experiments
from previous works to the 2D world, analyzing filtering
functions, object visibility [30], and the mirror-like behavior
of diffuse, planar curves (the 2D equivalent of surfaces) under
NLOS imaging virtual illumination [31]]. The speedup obtained
from dimensionality reduction will allow researchers to do
quick analysis of scene prototypes and help design the final
3D scene with the desired properties, e.g., avoiding known
visibility problems to analyze different aspects, or forcing ill-
posed orientations to test new methods that aim to improve
visibility. Previous works usually assume diffuse materials,
and it is common for hidden objects to present a locally-planar
structure, e.g., when using planes and letters. We demonstrate
the utility of our system by performing new studies on
visibility with varying materials and geometric features.

Besides providing a tool for fast analysis and prototyping,
our system can also become instrumental in introducing the
topic of NLOS imaging to a larger public. It can also be
generalized to other applications, such as visualization of light
in motion.

In particular, we make the following contributions:

« Extending steady-state 2D light transport to transient light
transport based on the transient path integral formulation
(Section [IV).

o Coupling transient 2D light transport with NLOS imaging
algorithms to provide a real-time pipeline for NLOS
imaging with support for the NLOS imaging camera mod-
els introduced with the phasor-field formulation. Our code
and simulation tool are publicly availabl (Section .

« Leveraging our system to perform systematic and efficient
analysis on varying NLOS imaging conditions, including
filtering, reflectance, and geometric features (Section .

II. RELATED WORK

a) NLOS Imaging: We focus on active NLOS imaging
methods, which use controlled light sources to illuminate the
hidden scene. Time-of-flight detectors at picosecond resolu-
tion enable the capture of light at high temporal resolutions
comparable to the speed of light, which nurtured a wide range
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of NLOS imaging methods [8], [10]-[12], [18], [32], [33].
The first methods to obtain high-quality 3D reconstructions
employed filtered backprojection [8]], [10]. They are computa-
tionally expensive but many optimizations have been proposed,
including GPU-based implementations [32]. The phasor-field
formulation [9]], [13]-[[L7] provides wave-based models to
propagate virtual waves into the hidden scene, fostering the
development of more efficient methods [18]], [[19]], [34] and
new analysis, such as the effect of hidden-object reflectance
on the NLOS imaging results [35], [36]. The phasor-field
formulation creates a virtual camera aperture at the relay wall
(a visible surface) and derives different NLOS imaging camera
models. We adapt three different NLOS imaging camera mod-
els to the 2D world. Naive backprojection-based solvers in this
context are fast enough when implemented on a GPU. Still, the
mentioned approaches can potentially be applied to improve
efficiency for more complex methods or big, high-resolution
scenes. Royo et al. [31] have recently shown imaging around
two corners, exploiting the mirror-like properties of diffuse
surfaces under wave-based NLOS imaging methods. Our work
shows that these properties are maintained in the 2D world,
so it can provide a faster prototyping tool for future work
following this line of research.

b) Transient Light Transport: Smith et al. [37] proposed
to extend the rendering equation by incorporating propagation
time delays, which led to transient variations of Monte Carlo
rendering [38]], [39] and simulation of time-of-flight sensors
[40]. Later, Jarabo et al. [22] introduced the transient path
integral, that includes propagation and scattering delays. We
rely on their formulation to develop a formal model of
transient light transport in 2D. These ideas have also been
applied to NLOS imaging to reduce the need for expensive
data capture. However, the high dimensionality of the problem
results in time-consuming and expensive algorithms. Previous
works apply different strategies to alleviate this problem. Some
authors account only for three-bounce paths, simplifying the
transient path integral to perform efficient inverse rendering
[41]], [42]. Longer paths can provide additional information to
tackle more challenging problems, such as seeing around two
corners [31], so we do not limit our method in this way. Other
works focus on noise reduction. Jarabo et al. [22] introduce a
sampling technique to account for the temporal profile of light
transport in participating media. In this work, we limit our
analysis to media-free scenes. Pediredla et al. [23] introduce a
sampling strategy for finding paths of a pre-determined length
in media-free scenes through ellipsoidal connections. Their
technique considerably improves the transient rendering of
narrow temporal regions or dynamic scenes. It increases the
cost of generating each path, so it does not offer a performance
advantage over temporal path reuse when covering a larger
temporal range [22]. Hidden objects in NLOS imaging setups
are usually far from the relay wall and relatively small, while
light sources cannot be sampled directly. This makes transient
rendering especially challenging. Royo et al. [24]] present
geometry and laser sampling strategies specific for NLOS
imaging. In this work, we do not implement these sampling
strategies and leave them as future work.
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Fig. 1. NLOS imaging in the 2D world. A laser at x;( illuminates points x;
in the relay curve, which corresponds to the usual 3D relay wall. A sensor at
Xs0 observes all points X.

¢) Light Transport in 2D: Some previous works on light
transport analysis reduce the problem to two spatial dimen-
sions to perform prior analyses to the full 3D problem [26]-
[28], while various interactive 2D light transport simulators are
available online [29], [43]-[45]. We follow this approach for
NLOS imaging, extending Jarosz et al.’s formal definition of
steady-state light transport in 2D worlds [28]] by incorporating
the temporal dimension. Bitterli’s Tantalum renderer [29]] uses
light tracing to show light transport in 2D scenes in steady-
state. Most renderers compute exiting radiance from curve
(analogous to a surface in 3D) points or media points in the
scene, projected into the image line of the camera (analogous
to the typical image plane in 3D). Instead, Tantalum shows
light transport in the full scene by computing fluence. Fluence
is the average amount of light passing through a point in
space, not limited to curves and media. Bitterli also developed
a 2D transient light transport visualizer based on Tantalum
[46]. However, NLOS imaging requires a device inside the
scene to capture incoming light from a set of points in its
geometry. Therefore, his approach is not directly applicable.
We extend the Tantalum renderer to support propagation time
and a transient capture device placed inside the scene. Fluence
shows which parts of the scene are properly illuminated, which
can help understand some NLOS imaging results, so we keep
the original steady-state fluence visualization.

III. NLOS IMAGING BACKGROUND

This section presents an overview of the capture and com-
putational principles of time-gated NLOS imaging on which
our work is based. We build upon the phasor-field formulation
[9]] to summarize the different NLOS imaging camera models
implemented in our pipeline. We include a table defining the
most relevant symbols in the supplementary material, Table

A. Data Acquisition

Fig. [T] illustrates a conventional time-gated NLOS imaging
setup. During the capture process, an ultra-fast laser (red)
located at x;y illuminates a set of points x; € L on a
relay wall visible to the camera using short illumination

pulses. Light is then scattered by the relay wall towards
points x, € V in the hidden scene and back to the relay
wall. For every illuminated point, an ultra-fast sensor (blue)
located at x4 captures indirect photons arriving at a set of
points x, € S on the relay wall. The resulting time-resolved
radiance measure (commonly called a transient) is typically a
tensor H discretized in N; x N, x N, spatio-temporal bins
on the dimensions of laser targets x;, sensor targets xg, and
time ¢, respectively. Transient light transport simulation in 3D
synthetic NLOS setups mimics the capture process to obtain
H through different transient rendering methods [22[]-[24],
[41], [42], [47], [48]]. H approximates the continuous impulse
response function H(Xx;,Xs,t) of the hidden scene, which
represents global illumination at the relay wall measured by
a sensor with a delta response function after illuminating the
wall with delta illumination pulses. NLOS imaging methods
are commonly formulated in terms of the impulse response
function H, while in practice its discrete counterpart H is used
throughout the reconstruction process. In 2D, light interacts
with 1D boundaries called curves, equivalent to surfaces in
3D. Therefore, the 3D relay wall becomes a relay segment,
and the integration domain of the laser and sensor targets
x; € L,x, € § become curves, too, while the domain of
the hidden scene x,, € V is a plane instead of a volume.

B. NLOS Forward Transport

To provide tractable reconstruction algorithms, most NLOS
imaging methods assume the impulse response function
H(x;,x4,t) represents occlusion-free light transport from
third-bounce-only illumination paths X = x;0 — x; — X, —
Xs — X40 Where x, is an arbitrary point in the hidden scene
(see Fig.[I)), and all objects exhibit diffuse reflectance. Under
these assumptions, H can be defined as:

H(x;,x4,t) =~ /f(xv)G(i)é(t — Aty)dx,, (1)
v

where f(x,) represents the albedo of diffuse surfaces in the
hidden scene; G(X) is the geometric attenuation of three-
bounce paths X; At, is the time of flight of path X; and
the delta term constrains light transport to three-bounce paths.
The laser and sensor devices are fixed at the same location
during the entire capture process, and therefore x;yp and x4
are constant values.

C. Phasor-Based NLOS Imaging

The phasor-field formulation [9] builds upon wave-optics
principles to formulate different NLOS imaging camera mod-
els based on virtual-wave propagation operators. Such for-
mulation encompasses classic NLOS reconstruction methods,
which aim to invert Eq. (I) to estimate f, as well as novel
NLOS imaging camera models [31], [49]. Under this for-
mulation, the illuminated points x; € L define a virtual
illumination aperture, and the sensor points x; € S define
a virtual camera aperture. These two virtual apertures can
be used to 1) implement virtual illumination functions to
computationally emit and/or focus light at specific points of the
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hidden scene; and 2) generate images of the hidden scene that
result from such illumination by computationally focusing the
virtual camera aperture at specific points in the hidden scene.
Given any virtual time-resolved illumination function P(x;, t),
the response P(xs,t) of the hidden scene to such illumination
at x; € S is defined by

P(xsvt) = /P(Xlat) *¢ H(lexsat)dxlv (2)
L

where *; denotes a convolution in time, and P(x;,t) and
P(xs,t) can be complex-valued functions. Their frequency-
domain counterparts P(x.,) = F, {P(x.,t)}—with F, the
Fourier transform—represent virtual illumination phasors at
frequency €2, and the collection of such phasors at apertures
x; € L,xs € S is known as a phasor field. By applying
well-known wave-based lens operators to such phasor fields,
the phasor-field formulation allows to define different NLOS
imaging camera models and efficient solvers [9]], [[18]], [31],
[49]. This imaging step is compactly defined as

f (x4, Q) = ®(x4, P(xs,Q)), 3)
where ® represents an imaging operator for the camera aper-
ture based on Rayleigh-Sommerfeld (RSD) propagation, and
f(x4,9) is a set of phasors that represents the resulting image
of the hidden scene at imaging frequencies (2.

The entire phasor-based NLOS imaging process can be
expressed as

Fox ) = |
S

where H(x;,x5,Q) = F; {H (x1,Xs,)}, dsy = ||Xs — X0
and k = 27Q)/c is the wavenumber, with ¢ the speed of light.
The frequency-domain virtual illumination function P(x;, 2)
can be defined to e.g. constrain the set of imaging frequencies,
introduce temporal offsets to virtual emitters, or implement
virtual illumination lenses in the domain of laser targets
x; € L. Different capture setups lead to specific trade-offs in
both capture and computational efficiency. Confocal setups co-
locate the laser and sensor targets x; = x, and lead to closed-
form formulations that can be efficiently solved [11], [12].
Non-confocal setups do not impose such constraint, enabling
the use of multi-pixel SPAD sensors.

In the remainder of this manuscript, we couple the sim-
ulation of 2D transient light transport with the phasor-field
formulation to define and implement different NLOS imaging
camera models in an efficient 2D end-to-end pipeline. For this,
in Section [[V| we describe transient global illumination in 2D
scenes under the transient path integral formulation and show
how to leverage it to simulate impulse response functions of
synthetic 2D NLOS scenes. In Section[V] we describe how we
efficiently simulate H, how to couple it with the phasor-based
NLOS imaging camera models presented, and the solvers we
implement for such camera models.

dsoy R R
/ Blxs, Q) H(x1, %0, Q)dxidx,, (@)
L

eik
dsv

IV. TRANSIENT LIGHT TRANSPORT IN 2D NLOS SCENES

In the following, we formulate transient light transport in
self-contained 2D worlds based on the transient path integral
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Fig. 2. Spatio-temporal diagram of light propagation for a path of length
m = 2. Light is emitted from x¢ at time ¢o, and reaches x; at to + ||x1 —
xol|/c. After a scattering delay Atsq, light emerges from x; at ¢1 and takes
[[x2 — x1]|/c time to reach x2, where another scattering delay Atss may
occur before light is reflected. The angles between the normal to the curve
and outgoing Ox, and incoming directions fx, affect light attenuation. Figure
after Jarabo et al. [22].

[22] and 2D radiometry [28]], and define the impulse response
function of 2D NLOS imaging setups based on this formula-
tion. We include a table defining the most relevant symbols in
the supplementary material, Table

A. 2D Transient Path Integral

The original transient path integral formulation [22] defines
any spatio-temporal measurement [; as the integral over the
domain of light transport paths between 3D surfaces and
media, and over the domain of temporal delays resulting from
scattering and optical distances of such paths. In Fig. 2] we
illustrate said temporal delays on a path of length m = 2,
where Ats; corresponds to scattering delays. Considering an
intrinsic self-contained 2D world, where all light is generated,
scattered, absorbed, and measured inside it, this integral can
be expressed as

L= [ [ pix BOAu(ED ez ()

&)

where Wy is the space of 2D light transport paths, AT is the
space of temporal delays of all paths, X = xg...X,,m > 1
represents the 2D spatial coordinates of m + 1 vertices of
a light path X € Wy between a light source at xo and a
camera sensor at X,,, with x; ... x,,_1 intermediate scattering
vertices at curves or media; At = Aty ... At, represents a
sequence of time delays resulting from the optical distance
and scattering events of the path X; the differential measure
dpop(X) denotes length integration for vertices at curves and
area integration for vertices at media; and du(At) denotes
temporal integration at each path vertex.
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Fig. 3. Comparison of radiance in 2D (left) and 3D (right). It expresses the
amount of light arriving at or leaving a single point x from a differential
plane angle df (2D) or solid angle dw (3D). Figure adapted from Jarosz et
al. [28].

The measurement contribution function p;(X, At) repre-
sents the time-dependent contribution of a path X as

p; (X, At) = Lc(x0,x1, Ato)Gop (X0, X1)
m—1

: H f(Xio1,Xi, Xiq1, Aty)Gop (X4, Xi1)  (6)
=1

. We(j) (Xm—h Xm, Atm)v

where L.(xq,x1,At) is emitted radiance towards x; at
time Atg, GZD(Xiv X;+1) is the geometric term modeling
attenuation between any pair of points on a curve or in media,
f(xi—1, X4, X1, AL) i the scattering coefficient at x; after
a time delay At;, and W (xm_l, Xy, At,y,) is the temporal
sensor importance at pixel j for a light path ending at x,,
with time of flight At¢,,. In this work, we choose scattering
coefficients according to three BRDFs: perfectly diffuse (f =
1/2), perfectly specular (f = 1 for the specular direction, 0
otherwise), and a logistic- based microfacet model with micro-
facet distribution D(6) = - coth(ZX )sech2( <), where s is a
roughness parameter [29]. An 1mportant con51derat10n in 2D is
that light interacts with 1D boundaries (curves), and scattering
at curves f(x;_1,X;,X;+1, At;) takes place in a semicircular
domain (Fig.[3] left), in contrast to hemispherical scattering at
surfaces in 3D scenes (Fig.[3] right). As a consequence, the 2D
geometric term Gopy(X;,X;11) represents the transformation
between differential planar angle df and differential length dl,
involving inverse falloff instead of the usual inverse-squared
falloff in 3D [28]], as

€08 Oy, cos Ox,

llxi — iyl

GHp(Xi,Xit1) = (7N
where 0y, represents the angle between the normal at x; and
light exiting that point, and 0y, , represents the angle between
the normal at x;,; and incoming light from x;, as illustrated

in Fig. [

B. 2D Impulse Response Function

The spatio-temporal delta emission of an emitter at xy and
the spatio-temporal delta response function of a sensor at x,,,
can be formally expressed as L.(xg, X1, Atg) = 0(xo—xX1,t—
Atp) and We(Xpm—1, Xm, Aty) = 0(Xm — Xim—1,t — Aly,),
respectively. Substituting these two terms in the measurement
contribution function (Eq. (6)) and restricting possible paths
X = XoX1...Xm_1Xy, to a subset \IIZD) of the entire path

space Yoy, where xg = X0, X1 = X[, X1 = X5, X = X0,
results in the following expression for the 2D impulse response

function:
H(x;,%s,1) / J(X)Gap(X)d(x0 — x1,t — Atg)
L) ®)
0(Xm — Xm—1,1 — Aty )dpop (X),
where f(x) = [} 1 f(xim1,xi, Xig1, Aty) and Gap(X) =

| GQD(XszH) In our pipeline, we approximate the
impulse response function under a discrete set of laser and
sensor targets, as well as temporal bins, and use it as input for
different NLOS imaging camera models.

V. 2D NLOS IMAGING PIPELINE

Here we describe how to couple 2D transient light transport
simulation to obtain H with phasor-based NLOS imaging
camera models and solvers. In the supplementary material,
Section we provide additional details on our implemen-
tation.

A. Non-Line-of-Sight Light Tracing

We build upon our 2D transient path integral formulation
(Section to add support for transient light transport sim-
ulation to the Monte-Carlo-based 2D steady-state light tracer
Tantalum [29]. We approximate the impulse response function
Eq. (§) as the discretized tensor H by aiming the laser source
and sensor pixel at different targets x;,x, on a visible relay
segment. We model the ultra-fast laser as a collimated beam
of light perfectly targeted at x;. In 2D, we model the sensor
to integrate outgoing radiance on a finite length surrounding
X4, mimicking the area measured by a real sensor pixel
focused at x4 in 3D. We point the laser at a fixed location
x; while measuring a set of sensor targets xs on the relay
segment, reusing sampled light paths for all sensor pixels;
this mimics the use of SPAD arrays for efficient capture of
indirect photons in real non-confocal setups [31], [34], [49],
[50]. For confocal setups, we co-locate x; and x5, which is
analogous to the use of single-pixel SPADs [[11]], [12]]. Real
confocal setups usually mitigate sensor saturation and low
SNR due to first-bounce photons by introducing a slight offset
between x; and x; [2]. Instead of implementing this offset,
our pipeline allows to selectively discard illumination samples
when computing H based on the number of bounces traversed
by the corresponding light paths.

We incorporate support for several capture parameters rel-
evant to NLOS imaging analysis: The laser and sensor setup
greatly affects the ability of NLOS imaging methods to recon-
struct specific scene features due to the missing cone problem
[30], [31] and due to resolution constraints determined by
the extent and density of captured sensor points [9], [11].
Therefore, the location of both devices x;9,xs9, the laser
target x;, and the spatial extent and number N of target
sensor points X on the relay segment is customizable by
the user. Exhaustive capture setups [49] can be potentially
implemented by simulating non-confocal captures at N; > 1
laser targets x;. Ultra-fast SPAD sensors have limited temporal
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resolution At. and range Ti,.x. The former introduces a
lower bound for reconstruction resolution, while the latter
constrains H (x;, Xs, t) to light paths with a maximum optical
distance Tinaxc. To mimic those limitations, our system permits
modifying the width of temporal bins (At.) and the maximum
temporal range measured (7},,x). Our system contains a set of
predefined scenes and a semi-automated tool to create or load
new ones.

B. NLOS Imaging Camera Models and Solvers

We adapt three different NLOS imaging camera models
derived from the phasor-field formulation [9] (Eq. )) to the
2D domain. We implement solvers for such models based on
backprojection algorithms. Since H is discretized across the
sensor and laser domains, the derived NLOS imaging camera
models can be numerically solved through discrete summa-
tions. We represent the discretized versions of H (x;, X5, t) and
f(xy,t) as H[my, mg, m;] and f[j,, j¢], respectively, where
my = 1..N;,ms = 1..N; and j,, = 1..N,, index the discretized
spatial domains x;[m;| € Ln,,xs[ms] € Sn,,Xu[ju] € VN, »
and my, j; index the discretized temporal domain.

Time-gated camera: This NLOS imaging model esti-
mates transient transport of ultra-short pulses of light emitted
at ¢ 0 by a single virtual light source at x; € £ and
propagating through the hidden scene at ¢ > 0 [9]]. It is the
result of defining virtual illumination as

'P(Xl, t) = 5(5([ — Xl)K(t),

where K (t) represents a pulsed function in the temporal
domain, such as a delta, a short Gaussian pulse, or a car-
rier frequency with a Gaussian envelope. Under this virtual
illumination, the phasor-based imaging operator from Eq. ()
in the temporal domain yields the virtual time-gated camera
model f;. as

ftc(x'uat) - Hl(ihxsat—’—tsv)dxsv (9)
where tg, = dg,/c and
Hl(il,xs,t) :P(Xl,t) *¢ H(Xl,Xs,t). (10)

We implement a backprojection solver for Eq. (9) under the
discretized H; and f. as

Z

ficljo, el = ms, my + jil, (11)

where 7 indexes the laser target X; € L used as a virtual
[[xs[ms] — x| v]-‘ ' (12)

emitter, and
tc
m =
! { cAt,

Confocal camera: This NLOS imaging model estimates
transient light transport in the hidden scene produced by virtual
emitters x; € L focused at voxels x,, [9]]. It is the result of
defining virtual illumination as

P(xi,t) = K(t),

with a pulsed function K (¢). Under this virtual illumination,
the phasor-based imaging operator from Eq. (4)) in the temporal
domain yields the virtual confocal camera model f.. as

1 1
fcc(xmt) = / d dl HK(XI7X97t+tlv +ts1;)dxldx€7

S
13)

where dj, = ||x; =d;,/c, and

Hy (x),%x5,t) = P(xy,t) x¢ H(x;,Xg,1).

(14)

We implement a backprojection solver for Eq. as

N Ny
i il = D 5 g Hiclm me,mi + 5], (15)
me=1 Y my=1 """
where

%1 [mu] — %o [0 ] ||+ ]]xs [ms]

cc _Xv[.v]”
v [l ]

Evaluating the confocal camera at ¢ = 0 (j; = 1) shows an
approximation of the hidden geometry based on third-bounce
illumination [9]], which is the basis of the majority of NLOS
imaging methods.

Steady-state camera: We model the behavior of a conven-
tional steady-state camera fs.(x,) with an exposure time At
much larger than the ultra-fast exposure time of time-gated
cameras At, < Atg.. In practice, fs.(x,) is the result of
integrating the time-gated camera (Eq. (9)) along the temporal
domain

fsc(xv) :/ftc(x'uvt)dta

which we solve numerically as a discrete summation

Z ftc ]vajt

Jr=1

SC j’U

Liu et al. [9] showcased a specific implementation of a steady-
state camera under monochromatic virtual illumination, which
they called a photography camera. Our pipeline supports a
more general steady-state camera not constrained to a single
frequency. Liu et al.’s photography camera can be implemented
in our system by filtering H by a delta function in the
frequency domain.

Applying a virtual illumination function P(x,,t) is equiv-
alent to filtering the impulse response function H of the
scene. A filtering step is necessary to remove artifacts and
see the actual shape of hidden objects. We implement tem-
poral filtering over H (Egs. (I0) and (I4)) following pulsed
virtual illumination functions implemented in the phasor-field
formulation [9], which are defined by a carrier frequency Q.—

corresponding to a central wavelength A\, = 1/Q.—with a
Gaussian envelope with standard deviation o:
K(t) = e2miQet ,—12/(207) (17)

We also implement filtering strategies commonly used in
NLOS imaging spatially over f, based on Laplacian and
Laplacian of Gaussian filters [8]], [10]. We define K (¢) = 6(¢)
and apply discrete 2D convolutions over the spatial domain of
fic, foc, fsc when evaluated at specific time instants.
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The confocal and time-gated camera models (Eqs. (II)
and (T3)) allow us to obtain multiple images of the hidden
scene at different instants. Our system computes a single image
at the j;-th instant, chosen by the user, and allows the user
to visualize a sequence of frames by sequentially increasing
J¢- The resulting image is updated every time a batch of paths
ends its simulation.

VI. RESULTS

2D fast prototyping helps to design scenes and test different
configurations (material, geometry, localization, etc), before
launching their significantly more costly 3D and real counter-
parts. In the following, we validate our system by comparing
its 2D results with an equivalent 3D experiment, and analyze
its performance by exploring hidden object visibility. Unless
stated otherwise, all data is simulated with non-confocal cap-
ture setups with one illumination point at the center of the relay
segment, and images of the hidden scene are obtained with the
camera model described by Egs. and (T3], evaluated at
t=0 (.e., j: = 1).

A. Validation

We present two equivalent scenes showing that results in
2D match 3D observations, allowing the study and analysis of
visibility issues. Laplacian and Laplacian-of-Gaussian func-
tions are commonly used to spatially filter the result, which
removes most artifacts but can create new ones. Temporal
filtering of H with a phasor-based pulsed virtual illumination
function provides cleaner images. These effects are shown in
Fig. @ with matching results for a pair of equivalent 2D and
3D scenes. The 3D scene ROTATED PATCH is composed of a
0.5 x 0.5m patch at 0.75m from the relay wall and rotated
20° in the vertical axis. The 2D scene ROTATED SEGMENT is
composed of a 0.5m segment rotated 20°, facing away from
the relay segment. For equivalent comparison, in the 3D scene
we image a horizontal cross-section of the scene at the center
of the patch. For quantitative analysis, we compute the PSNR
for each image (displayed at the bottom of each result) with
respect to a baseline consisting of a binary image with 1’s
at pixels that intersect the geometry, and 0’s everywhere else.
All imaging results are normalized to the range [0, 1]. We can
observe 3D and 2D yield equivalent results quantitatively and
qualitatively, especially when using pulsed virtual illumina-
tion. Minor differences are caused by dimensionality changes
in light transport propagation. In subsequent experiments, we
always use pulsed virtual illumination.

B. Visibility Analysis

Third-bounce NLOS imaging methods have limited visi-
bility due to the position and orientation of certain objects
with respect to the laser and SPAD baseline on the relay
segment [30]. This is a pathological issue known as the
missing cone problem and it is inherent to several imaging
techniques beyond NLOS imaging [51]], [52]. We illustrate this
behavior in Fig. [5] where we show and replicate Liu et al.’s
experiment [30]. Liu et al. capture real data from a THREE

Scene Baseline LoG Phasor-based

Laplacian

3D

o affes

Fig. 4. We create the 3D scene ROTATED PATCH (top row) and the 2D
scene ROTATED SEGMENT (bottom row), with equivalent composition. In
the bottom-right corner of each image, we show PSNR with respect to the
shown baseline. We compare the effect of different filtering strategies, showing
matching results and similar PSNR values. Spatial filters based on Laplacian
and Laplacian of Gaussian (LoG) functions remove most artifacts but can
create new ones, while temporal filtering with phasor-based pulsed virtual
illumination provides cleaner images.

Scene 3D 2D
real data simulation
S1 S /
S2
S3
I
Occluder
&
Ox

Fig. 5. Scenes THREE PATCHES (3D, top view) and THREE SEGMENTS (2D),
with equivalent composition. Liu et al. [30] illustrate the missing cone problem
in the THREE PATCHES scene, where it prevents S3 from being imaged. We
create the equivalent 2D scene THREE SEGMENTS, with matching results.

PATCHES scene containing three patches S1,.52,53 in differ-
ent locations and orientations, where S2 is parallel to the relay
segment and S1, 53 are not. S1 and S2 can be imaged, while
S3 remains invisible to the imaging process. Our equivalent
2D THREE SEGMENTS scene represents a horizontal slice of
THREE PATCHES that replicates this behavior. Note that some
artifacts can appear in the image due to triangulation errors of
backprojection, such as the vertical edge of energy below S2.

Confocal setups increase angular coverage at the cost of
longer capture and simulation times. This partially alleviates
the effect of the missing cone problem but does not delete it.
For instance, when placing the silhouette of a Stanford bunny
in front of the relay segment, its ear faces away from the
relay segment and will not be imaged with data from a non-
confocal setup. The increased coverage of a confocal setup
obtains more information and the ear appears in the image.
Some positions are ill-posed for both capture setups, e.g.,
the bottom of the bunny remains invisible in both cases. We
illustrate this behavior in Fig. [6]

Recent work by Royo et al. [31] demonstrated that diffuse
surfaces may exhibit mirror-like behavior under specific virtual
illumination functions. Therefore, objects can produce virtual
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Confocal
setup

Non-confocal
setup

Scene

Fig. 6. BUNNY scene using different capture setups. We place the silhouette
of a Stanford bunny at 0.5 m from the relay segment. Data simulated with a
non-confocal setup results in an image with very few details because of its
limited angular coverage. A confocal setup improves visibility, showing the
front and ear of the bunny in great detail. Some features are still affected by
the missing cone problem and remain invisible, such as the bottom of the
bunny. In both images, virtual illumination has A = 6 cm and o = 3 cm.
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Fig. 7. 2D equivalent of the INFINITY MIRROR experiment by Royo et al.
[31]), with a hidden segment M placed parallel to S at a distance d. We
apply virtual illumination with A = 4cm and ¢ = 3cm. The confocal
camera model images the geometry of M at a distance d. The mirror-like
behavior of S and M under the chosen virtual illumination produces multiple
virtual reflections of x;. The time-gated camera model images the first virtual
reflection x; at distance 2d (third-bounce illumination), and the second one
x;/ at distance 4d (fifth-bounce illumination).

reflections of other elements in the scene. This intuition is
shown in Fig. [/| where a hidden segment M at a distance
d from the relay segment reflects x; producing a virtual
reflection x; at a distance 2d. Fifth-bounce paths of the form
x> M — S — M — S produce a second virtual reflection
x; at a distance 4d. Under specific scene configurations,
specular reflections can be used to address the missing cone or
image around a second corner. For further detail, we redirect
the reader to the original publication.

This mirror-like behavior is related to the missing cone
problem: objects cannot be imaged when the specular reflec-
tion of x; does not reach S. According to microfacet theory of
surface reflectance [53]-[55], objects with larger variations of
micrometric surface facets exhibit a more diffuse appearance.
Similarly, objects with variations of larger-size curve facets
should exhibit diffuse-like behavior under virtual illumination
used for NLOS imaging, allowing us to image them. We show
and analyze this behavior in Fig. |8 where we modify the
THREE SEGMENTS scene so that S1, S2 and S3 have facets
of 1.5 cm. Fig.[8h shows success in imaging the three segments

4th-bounce

3rd-bounce

Hidden object All bounces

7

S1

52
sy

Fig. 8. THREE SEGMENTS scene with facets of 1.5cm. We apply virtual
illumination with Ac = 4cm and 0 = 3cm. (a) The presence of facets
changes the virtual behavior of the object to more diffuse-like and we can
image S'3, no longer affected by the missing cone problem. To further analyze
this effect, we limit simulation to three-bounce paths only (b) and four-bounce
paths only (c). Three-bounce paths allow us to image S3 because the virtual
specular reflection of x; with respect to most facets reaches S. Four-bounce
paths are produced by interreflection between facets. Since facets are close,
delays are small in S1 and S2, but these paths do not reach S from S3.

1.5cm

under virtual illumination with A, = 4cm and o = 3 cm. Each
facet acts as a small virtual mirror, and the combination of their
orientations produces the diffuse-like behavior of the object.
Many facets in S3 now face S, making it visible for third-
bounce NLOS imaging methods. On the other hand, the rest of
the facets in S3 face away from S, so interreflection between
facets does not reach it. We illustrate this behavior in Fig.
and c by limiting captured illumination to 3rd- and 4th-bounce
only, respectively. Using 3rd-bounce illumination, we image
all segments, while interreflection in 4th-bounce illumination
allows us to see S1 and S2 but not S3.

Object visibility depends on the relationship between facet
size and the virtual illumination wavelength. In the previous
experiment, these values are close and we obtain a detailed
image. Shorter wavelengths can provide finer detail, up to the
point of showing each facet individually. However, they tend
to enhance high-frequency noise and artifacts. On the other
hand, light does not interact with features much smaller than
its wavelength. Therefore, when using a virtual illumination
wavelength much larger than the facet size, the object will
behave analogous to a non-faceted one. We illustrate this
behavior in Fig. 0] under different virtual illumination func-
tions and facet sizes. We create the PERPENDICULAR scene,
where a hidden segment is placed in a particularly ill-posed
orientation: at 90° with respect to the relay segment S, which
is a pathological case of the missing cone problem. We use
three versions of the scene, where 1) the hidden segment is
planar, 2) it has facets of 1.4 cm, and 3) it has facets of 5 cm.
Gray-marked insets represent cases where the segment remains
invisible because of its mirror-like behavior. Yellow-marked
insets represent cases where it behaves diffuse-like and all
facets blur to show the global shape of the object. Purple-
marked insets represent cases where the virtual illumination
wavelength is shorter than the feature size or very close to it
and allows us to see each facet.

C. Performance

We demonstrate the benefits of our pipeline in terms of
computational speedups and total memory requirements by
evaluating two pairs of equivalent 3D and 2D NLOS setups
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Fig. 9. We analyze object visibility on the PERPENDICULAR scene with facets of different sizes and different virtual illumination functions. A non-faceted
object (first row) exhibits mirror-like behavior and cannot be imaged. We can image an object with centimeter-scale facets (second and third row) at different
levels of detail depending on the chosen virtual illumination. If its wavelength is much larger than the facet size, the mirror-like behavior holds (gray-marked
insets). With virtual illumination wavelengths close to but slightly larger than the facet size, the facets blur together producing a diffuse-like behavior and we
can image the global shape of the object (yellow-marked insets). Shorter wavelengths make facets distinguishable as small virtual mirrors but tend to enhance

noise (purple-marked insets).

simulating non-confocal captures and the NLOS imaging step.
The 3D scene consists of a Stanford bunny facing the relay
wall, and the 2D scene is the flattened version of the bunny
shown in Fig. [ We evaluate the scenes under non-confocal
captures with two different lateral resolutions: 256 x 256 and
512 x 512 sensor points in 3D, which we compare to 256 and
512 sensor points in 2D, respectively. We image an equivalent
number of voxels in 3D and pixels in 2D, resulting in an output
resolution of 512 x 910 in 2D, and 98 x 98 x 49 in 3D.

In Table Ij we provide a quantitative comparison of the time-
and memory-saving benefits of 2D prototyping in our most
complex scene, composed of a hidden Stanford bunny. We
use 16 x 10% simulation samples in 2D and an equivalent
number of samples in 3D. Combining the simulation step to
perform transient rendering, and the NLOS imaging step to
obtain a reconstruction of the hidden scene, a 3D hidden scene
with a Stanford bunny takes a total of 5 minutes at a coarse
resolution (Ax = 256, first row), and 47 minutes at the highest
resolution tested (Ax = 512, second row). In contrast, our 2D
pipeline yields results in real-time (17 ms to 19 ms) regardless
of the tested resolution, achieving speedups from four to five
orders of magnitude w.r.t. the 3D counterparts. The memory
requirements for generated data can reach several gigabytes
for 3D scenes, while removing one spatial dimension reduces
the size to a dozen megabytes, i.e. two orders of magnitude
smaller. NLOS imaging in 2D benefits from this memory-size
reduction and the lower value of N, as for the same lateral
resolution of the capture grid, N, grows quadratically in 3D,
while Ny grows linearly in 2D. Our implementation obtains
overwhelming NLOS imaging speedups of up to five to six
orders of magnitude compared to 3D, obtaining full images
in a few milliseconds. This allows us to couple the NLOS
imaging process with progressive simulation of light transport
samples, showing imaging results in real-time. This allows the
user to modify any parameter and simultaneously visualize
changes in the output while the simulation converges to the
total sample upper bound defined by the user. Note we use
mitransient 56| for transient light transport simulation in 3D,
which performs highly optimized vectorized operations, yet
our 2D simulator takes shorter times, with improved speedups
at higher lateral resolutions.

3D confocal setups require longer simulation times of up to

Diffuse Mid roughness Low roughness Perfect mirror

Fig. 10. LINE scene: a hidden segment is placed parallel to the relay segment.
We decrease the roughness of the hidden segment (left to right). Breaking
the diffuse assumption results in coarser images because each point reflects
emitted light to a narrower region of the relay segment. Top row shows steady-
state fluence in the scene. Bottom row shows the obtained image under virtual
illumination with Ac = ¢ = 3cm.

several hours due to the inability to reuse sampled paths for
all measured points, as both laser and SPAD positions change
synchronously; this time is reduced to just a few minutes in
our 2D system.

D. Variations of Curve Reflectance

Conventional NLOS imaging methods assume a diffuse
relay segment and diffuse hidden objects. We analyze their
performance when one of these assumptions breaks. Our
experiments show that the ability to image hidden objects
strongly depends on the directionality of light scattered by both
the hidden objects and relay segment. Imaging precision drops
when very specular (low-roughness) materials are involved,
but it holds well for intermediate ones.

Curve points with higher specularity (i.e. lower roughness)
reflect light to a narrower region of the relay segment, which
reduces the baseline measuring light from such points. This
will result in coarser images, especially when the hidden
object is very close to a perfect mirror. We illustrate this
behavior in Fig. [I0] with the LINE scene, where we place a
segment parallel to S with decreasing roughness (left to right)
from perfectly diffuse to a perfect mirror. We also show the
steady-state fluence visualization of the scene to illustrate the
directionality of reflected light.
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TABLE I
TIME AND MEMORY REQUIREMENTS COMPARISON BETWEEN EQUIVALENT 2D AND 3D SCENES WITH AN EQUIVALENT NUMBER OF SIMULATED
SAMPLES. WE ACHIEVE IMAGING SPEEDUPS OF UP TO FIVE ORDERS OF MAGNITUDE, ALLOWING US TO COMPUTE AND VISUALIZE THE IMAGING
OUTPUT WHILE WE PROGRESSIVELY ACCUMULATE SIMULATION SAMPLES.

Simulation Imaging Memory
Scene Ax 3D 2D (Ours)  Speedup | 3D 2D (Ours)  Speedup 3D 2D (Ours)  Saving
BUNNY 256 | 11.12s 16ms 694.9 4.8 min 1.6 ms 1.8 x 105 | 871MB  6.56 MB 132.77
BUNNY 512 | 76.27s 16ms 4867.5 46.4min 2.8 ms 9.9 x 10° | 3.4GB 12MB 283.33
2cm 3.3cm 10 cm Diffuse Mid roughness Low roughness Low roughness
== v
2
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Fig. 11. We modify the roughness (rows) and faceted-structure (columns) of
the hidden segment in the LINE scene. We analyze the impact on imaging
performance under virtual illumination with A\c = o = 3cm. The strong
interreflection between facets prevents them from being precisely imaged,
but we can see their endpoints when they are diffuse (purple-marked insets).
As roughness decreases, the impact of interreflection increases and the closest
endpoints become invisible. The object is imaged as a planar segment, similar
to the one with facets smaller than the wavelength (yellow-marked insets).
Perfectly-specular facets in this scene focus light on a narrow region of S,
producing very coarse images (gray-marked insets).

Next, we analyze NLOS imaging performance under joint
changes in curve reflectance and faceted structure by modify-
ing the LINE scene and fixing the virtual illumination function
to A\ = 0 = 3cm. Note that hidden objects have different
properties under emitted light—whether the facets are diffuse,
rough or a mirror—and under virtual illumination used for
NLOS imaging—whether the object exhibits virfual mirror-
like or diffuse-like behavior. We show our analysis in Fig. [T1]
With virtual illumination wavelength close to facet size (first
column), the virtual diffuse-like behavior observed in Figs.
and[9]is maintained (yellow-marked insets) except for perfectly
or almost-perfectly specular facets (gray-marked inset), where
interreflection between the facets focuses all received light
on a narrow relay segment baseline, producing a very coarse
image. Interreflection in this scene has a stronger influence
than in previous scenes. It prevents larger facets from being
precisely imaged with third-bounce methods (second and third
columns) but diffuse facet endpoints remain visible (purple-
marked insets). Imaging resolution decreases with roughness,
yielding images of planar-like objects even for large facet sizes
(yellow-marked insets). Perfectly specular reflectance yields
coarse images in all cases because of the reduced baseline.

The reflectance of the relay segment determines how the
hidden objects are illuminated. Rough segments do not have
a strong specular lobe, and light can reach most points in the
hidden scene. If the relay segment has very low roughness,
most light is reflected towards or around the specular reflection
direction. It will only be possible to image objects placed
near this direction since they are the only ones that receive
and reflect light. We illustrate this behavior in Fig. [I2] using

Fig. 12. We modify the roughness of the relay segment in the LINE scene.
Imaging performance barely changes between using a diffuse and a close-
to-diffuse relay segment (first and second columns). As roughness decreases,
specularity increases and most light is reflected towards the specular direction
(third and fourth columns), and only geometries close to it can be properly
imaged. Top row shows steady-state fluence in the scene. Bottom row shows
the obtained image under virtual illumination with A, = ¢ = 3cm.

the LINE scene with a non-faceted, diffuse hidden segment
and varying the roughness of the relay segment. Imaging
performance is very similar for a diffuse relay segment and
one with intermediate roughness (first and second columns).
As roughness decreases, performance strongly depends on the
relative position and orientation of the laser, sensor, and hidden
objects (third and fourth columns).

E. Additional Experiments

SPAD sensors often suffer from time jitter and Poisson
noise. This impacts imaging quality, making it difficult to
match captured and simulated results. In Fig. we show
the degradation of the signal and imaging result when in-
corporating these factors into the simulation, which may
help researchers estimate optimal capture times to obtain a
reasonable SNR.

Exhaustive capture increases angular coverage, improving
imaging quality as shown in Fig. [[4] It leads to a dramatic
increase of the memory requirements, so our 2D pipeline
becomes fundamental to analyze performance with high lateral
resolutions.

We expand the discussion on these topics in the supplemen-

tary material, Sections [S.11I| and

VII. DISCUSSION

We proposed an efficient framework for coupled NLOS
light transport simulation and imaging in self-contained 2D
worlds that allows us to perform systematic real-time analysis
of NLOS imaging performance in simulated scenes consid-
ering radiometric changes in a lower-dimensional domain.
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Fig. 13. We apply Gaussian time jitter with FWHM = 160 ps, o = 35 ps,
and Poisson noise to a confocal capture on the BUNNY scene. Top row shows
the degradation of the signal at one captured point, and bottom row shows
the result of the NLOS imaging process. Time jitter barely degrades the
result, but Poisson noise significantly hinders NLOS imaging, emphasizing
the importance of long captures to reduce noise.
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Fig. 14. Comparison of the BUNNY scene illuminating a single point x; and
using an exhaustive capture setup, where £ = S and N; = N = 128. From
the exhaustive data, we can see the shape of the object with greater detail
than when illuminating a single point x;.

Such a tool is very useful for quickly prototyping laboratory
experiments. Researchers can see the result of imaging a 2D
version of the experiment in real-time, and see interactively
the result of adjusting the shape and orientation of the objects
and the imaging parameters. This prevents the costly 3D
rendering or data capture of scenes with undesired visibility
problems. Simple 3D scenes with no self-occlusions could be
decomposed into a series of parallel slices conforming 2D
scenes to approximate the final 3D NLOS image as the stack
of all 2D NLOS images. However, this method would lose all
interreflection between slices, so the result on complex objects
may differ greatly. This dimensionality reduction allows us
to implement our formulation in an end-to-end WebGL-based
pipeline that couples physically-based transient rendering in
2D with efficient backprojection solvers for different phasor-
based NLOS imaging camera models. Our system provides
flexible control over multiple scene and NLOS imaging pa-
rameters, which we leverage to validate and analyze NLOS
imaging performance in various scenes thoroughly. We showed
that our results match existing 3D NLOS imaging experiments
[8]I, [9]I, [30], including NLOS imaging of higher-order illumi-
nation bounces [31]], while providing dramatic computational
speedups. Our analysis provides novel insights on NLOS
imaging performance in new scene configurations that diverge

from classic Lambertian scenes with locally-planar objects.
We show the impact of faceted objects to mitigate the missing
cone problem, how decreasing roughness of hidden objects
and the relay segment hinders the imaging process, and how
imaging wavelengths and baselines are strong determiners of
imaging quality.

We constrain our analysis to opaque objects with planar
and regular faceted structures within media-free scenes. An
interesting avenue of future work would be extending our
formulation to incorporate simulation of 2D transient radiative
transfer [47]], [57]], [58]] for efficient analysis of NLOS imaging
in participating media, as well as analyzing more diverse
geometries such as objects with non-regular faceted structures,
or transparent objects with varying refractive indices.

Additional light properties, such as spectral and polarization
information, could be computed by using more intermediate
textures. The limitations of WebGL make it difficult to incor-
porate if the number of wavelengths is large. In particular, it is
interesting to explore adding the polarization of light, as recent
work has shown its benefits for active and passive NLOS
imaging [59]-[61]. Our light transport simulation is based on
Monte Carlo light tracing. The incorporation of participating
media and translucent objects could benefit from rendering
techniques based on density estimation accounting for ra-
diometric considerations in 2D [28[]. Our pipeline is based
on backprojection solvers for the phasor-field formulation for
NLOS imaging, which yield real-time imaging rates in 2D.
Recent wave-based NLOS imaging works provide significant
computational speedups by leveraging efficient operators from
classic optics and seismology [9]], [12], which would be
interesting to migrate and incorporate into our 2D pipeline.

ACKNOWLEDGMENT

We would like to thank Diego Royo for his help generating
the 2D exhaustive capture and Daniel Subias for his help with
figures.

REFERENCES
[1] A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in
transient imaging: A computer graphics and vision perspective,” Visual
Informatics, vol. 1, no. 1, pp. 65-79, 2017.
T. Maeda, G. Satat, T. Swedish, L. Sinha, and R. Raskar, “Recent
advances in imaging around corners,” 2019.
D. Faccio, A. Velten, and G. Wetzstein, “Non-line-of-sight imaging,”
Nature Reviews Physics, vol. 2, no. 6, pp. 318-327, 2020.
J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking
objects outside the line of sight using 2D intensity images,” Scientific
Reports, vol. 6, 2016.
K. L. Bouman, V. Ye, A. B. Yedidia, F. Durand, G. W. Wornell, A. Tor-
ralba, and W. T. Freeman, “Turning corners into cameras: Principles
and methods,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 2270-2278.
C. Saunders, J. Murray-Bruce, and V. K. Goyal, “Computational
periscopy with an ordinary digital camera,” Nature, vol. 565, no. 7740,
pp. 472-475, 2019.
A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around
the corner using transient imaging,” in 2009 IEEE 12th International
Conference on Computer Vision. 1EEE, 2009, pp. 159-166.
A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi,
and R. Raskar, “Recovering three-dimensional shape around a corner
using ultrafast time-of-flight imaging,” Nature Communications, vol. 3,
no. 1, p. 745, Mar 2012.

[2]
[3]
[4]

[5]

[6]

[7]

[8]



IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. XX, NO. XX, 202X

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. A. Reza,
T. Huu Le, A. Jarabo, D. Gutierrez, and A. Velten, ‘“Non-line-
of-sight imaging using phasor-field virtual wave optics,” Nature,
vol. 572, no. 7771, pp. 620-623, Aug 2019. [Online]. Available:
https://doi.org/10.1038/s41586-019-1461-3

M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-
of-sight imaging using a time-gated single photon avalanche diode,”
Optics Express, vol. 23, no. 16, pp. 20997-21011, 2015.

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-
sight imaging based on the light-cone transform,” Nature, vol. 555, no.
7696, pp. 338-341, Mar 2018.

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-
sight imaging using fast f-k migration,” ACM Trans. Graph., vol. 38,
no. 4, jul 2019.

S. A. Reza, M. L. Manna, S. Bauer, and A. Velten, ‘“Phasor field waves:
experimental demonstrations of wave-like properties,” Opt. Express,
vol. 27, no. 22, pp. 32587-32608, Oct 2019.

——, “Phasor field waves: A huygens-like light transport model for
non-line-of-sight imaging applications,” Opt. Express, vol. 27, no. 20,
pp- 29380-29400, Sep 2019.

J. A. Teichman, “Phasor field waves: a mathematical treatment,” Opt.
Express, vol. 27, no. 20, pp. 27 500-27 506, Sep 2019.

J. Dove and J. H. Shapiro, “Paraxial theory of phasor-field imaging,”
Opt. Express, vol. 27, no. 13, pp. 18016-18 037, Jun 2019.

——, “Paraxial phasor-field physical optics,” Opt. Express, vol. 28,
no. 14, pp. 21095-21109, Jul 2020.

X. Liu, S. Bauer, and A. Velten, “Phasor field diffraction based recon-
struction for fast non-line-of-sight imaging systems,” Nature Communi-
cations, vol. 11, no. 1, p. 1645, Apr 2020.

Z. Liao, D. Jiang, X. Liu, A. Velten, Y. Ha, and X. Lou, “Fpga
accelerator for real-time non-line-of-sight imaging,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 69, no. 2, pp. 721-734,
2021.

J. E. Farrell, F. Xiao, P. B. Catrysse, and B. A. Wandell, “A simulation
tool for evaluating digital camera image quality,” in Image Quality and
System Performance, vol. 5294. SPIE, 2003, pp. 124-131.

J. E. Farrell and B. A. Wandell, “Image systems simulation,” Handbook
of Digital Imaging, vol. 1, pp. 373—400, 2015.

A. Jarabo, J. Marco, A. Muiioz, R. Buisan, W. Jarosz, and D. Gutierrez,
“A framework for transient rendering,” ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), vol. 33, no. 6, Nov. 2014.

A. Pediredla, A. Veeraraghavan, and I. Gkioulekas, “Ellipsoidal path
connections for time-gated rendering,” ACM Transactions on Graphics
(TOG), vol. 38, no. 4, pp. 1-12, 2019.

D. Royo, J. Garcia, A. Mufioz, and A. Jarabo, “Non-line-of-sight
transient rendering,” Computers & Graphics, vol. 107, pp. 84-92, 2022.
P. S. Heckhert, “Radiosity in flatland,” in Computer Graphics Forum,
vol. 11, no. 3.  Wiley Online Library, 1992, pp. 181-192.

F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A
frequency analysis of light transport,” ACM Transactions on Graphics,
vol. 24, no. 3, pp. 1115-1126, 2005.

R. Ramamoorthi, D. Mahajan, and P. Belhumeur, “A first-order analysis
of lighting, shading, and shadows,” ACM Trans. Graph., vol. 26, no. 1,
p. 2—es, jan 2007.

W. Jarosz, V. Schonefeld, L. Kobbelt, and H. W. Jensen, “Theory,
analysis and applications of 2d global illumination,” ACM Transactions
on Graphics, vol. 31, no. 5, pp. 125:1—-125:21, Aug. 2012.

B. Bitterli. (2015) The secret life of photons. [Online]. Available:
https://benedikt-bitterli.me/tantalum/

X. Liu, S. Bauer, and A. Velten, “Analysis of feature visibility in non-
line-of-sight measurements,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019.

D. Royo, T. Sultan, A. Mufioz, K. Masumnia-Bisheh, E. Brandt,
D. Gutierrez, A. Velten, and J. Marco, “Virtual mirrors: Non-line-of-
sight imaging beyond the third bounce,” ACM Transactions on Graphics,
vol. 42, no. 4, 2023.

V. Arellano, D. Gutierrez, and A. Jarabo, “Fast back-projection for non-
line of sight reconstruction,” Optics Express, vol. 25, no. 10, pp. 11 574—
11583, 2017.

J. Ye, Y. Hong, X. Su, X. Yuan, and F. Xu, “Plug-and-play algorithms
for dynamic non-line-of-sight imaging,” ACM Transactions on Graphics,
vol. 43, no. 5, Jun. 2024.

J. H. Nam, E. Brandt, S. Bauer, X. Liu, M. Renna, A. Tosi, E. Sifakis,
and A. Velten, “Low-latency time-of-flight non-line-of-sight imaging at
5 frames per second,” Nature Communications, vol. 12, no. 1, p. 6526,
2021.

[35]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

1. Guillén, X. Liu, A. Velten, D. Gutierrez, and A. Jarabo, “On the effect
of reflectance on phasor field non-line-of-sight imaging,” in ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020, pp. 9269-9273.

Y. Yang, K. Yang, and A. Zhang, “Influence of Target Surface BRDF on
Non-Line-of-Sight Imaging,” Journal of Imaging, vol. 10, no. 11, 2024.
A. Smith, J. Skorupski, and J. Davis, “Transient rendering,” School of
Engineering, University of California, Santa Cruz, Tech. Rep. UCSC-
SOE-08-26, 2008.

A. Jarabo, “Femto-photography: Visualizing light in motion,” Master’s
thesis, Universidad de Zaragoza, 2012.

A. Adam, C. Dann, O. Yair, S. Mazor, and S. Nowozin, “Bayesian time-
of-flight for realtime shape, illumination and albedo,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2016.

M. Keller and A. Kolb, “Real-time simulation of time-of-flight sensors,”
Simulation Modelling Practice and Theory, vol. 17, no. 5, 2009.

J. Iseringhausen and M. B. Hullin, “Non-line-of-sight reconstruction
using efficient transient rendering,” ACM Transactions on Graphics,
vol. 39, no. 1, jan 2020.

C.-Y. Tsai, A. C. Sankaranarayanan, and I. Gkioulekas, “Beyond vol-
umetric albedo — a surface optimization framework for non-line-of-
sight imaging,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2019, pp. 1545-1555.
M. E. Scott, “Zen photon garden,” 2013.
https://zenphoton.com/

Y.-T. Tu and W.-F. Sun, “Ray optics simulation,” 2 2016. [Online].
Available: https://phydemo.app/ray-optics/.

S. Hilton, “Refractorium,” 2017. [Online]. Available: https://samreay.
github.io/Refractorium/

B. Bitterli. (2016) Virtual femto photography. [Online]. Available:
https://benedikt-bitterli.me/femto.html

J. Marco, “Transient light transport in participating media,” Master’s
thesis, Universidad de Zaragoza, 2013.

Y. Liu, S. Jiao, and W. Jarosz, “Temporally sliced photon primitives for
time-of-flight rendering,” in Computer Graphics Forum, vol. 41, no. 4.
Wiley Online Library, 2022, pp. 29-40.

J. Marco, A. Jarabo, J. H. Nam, X. Liu, M. A. Cosculluela, A. Velten,
and D. Gutierrez, “Virtual light transport matrices for non-line-of-sight
imaging,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2021, pp. 2440-2449.

M. Renna, J. H. Nam, M. Buttafava, F. Villa, A. Velten, and A. Tosi,
“Fast-gated 16 x 1 spad array for non-line-of-sight imaging applications,”
Instruments, vol. 4, no. 2, p. 14, 2020.

A. H. Delaney and Y. Bresler, “Globally convergent edge-preserving
regularized reconstruction: an application to limited-angle tomography,”
IEEE Transactions on Image Processing, vol. 7, no. 2, pp. 204221,
1998.

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Com-
parative study of iterative reconstruction algorithms for missing cone
problems in optical diffraction tomography,” Optics Express, vol. 23,
no. 13, pp. 16933-16948, jun 2015.

K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection
from roughened surfaces,” Josa, vol. 57, no. 9, pp. 1105-1114, 1967.
P. Beckmann and A. Spizzichino, “The scattering of electromagnetic
waves from rough surfaces,” Norwood, 1987.

M. Oren and S. K. Nayar, “Generalization of lambert’s reflectance
model,” in Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, 1994, pp. 239-246.

D. Royo, M. Crespo, and J. Garcia-Pueyo, “mitransient,” https://github.
com/diegoroyo/mitransient, 2023.

A. Liemert and A. Kienle, ‘“Radiative transfer in two-dimensional in-
finitely extended scattering media,” Journal of Physics A: Mathematical
and Theoretical, vol. 44, no. 50, p. 505206, 2011.

M. Machida, “The radiative transport equation in flatland with separation
of variables,” Journal of Mathematical Physics, vol. 57, no. 7, 2016.
0. Pueyo-Ciutad, J. Marco, S. Schertzer, F. Christnacher, M. Laurenzis,
D. Gutierrez, and A. Redo-Sanchez, “Time-Gated Polarization for Active
Non-Line-of-Sight Imaging,” in Proceedings of ACM SIGGRAPH Asia
2024, 2024.

K. Tanaka, Y. Mukaigawa, and A. Kadambi, “Polarized non-line-of-
sight imaging,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

Z. Wang, X. Li, M. Pu, L. Chen, F. Zhang, Q. Zhang, Z. Zhao, L. Yang,
Y. Guo, and X. Luo, “Vectorial-optics-enabled multi-view non-line-
of-sight imaging with high signal-to-noise ratio,” Laser & Photonics
Reviews, p. 2300909, 2024.

[Online]. Available:


https://doi.org/10.1038/s41586-019-1461-3
https://benedikt-bitterli.me/tantalum/
https://zenphoton.com/
https://phydemo.app/ray-optics/
https://samreay.github.io/Refractorium/
https://samreay.github.io/Refractorium/
https://benedikt-bitterli.me/femto.html
https://github.com/diegoroyo/mitransient
https://github.com/diegoroyo/mitransient

	Introduction
	Related Work
	NLOS Imaging Background
	Data Acquisition
	NLOS Forward Transport
	Phasor-Based NLOS Imaging

	Transient Light Transport in 2D NLOS Scenes
	2D Transient Path Integral
	2D Impulse Response Function

	2D NLOS Imaging Pipeline
	Non-Line-of-Sight Light Tracing
	NLOS Imaging Camera Models and Solvers

	Results
	Validation
	Visibility Analysis
	Performance
	Variations of Curve Reflectance
	Additional Experiments

	Discussion
	References

