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Retrieval query: A lightweight, tightly
woven blue fabric with deeper navy
blue and white lines

Generated caption: The fabric is white,
gray and light brown tightly woven together
to create a flannel pattern it has slightly
fuzzy texture like so woolen yarn

Input photographsOur text2fabric dataset
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Fig. 1. Our text2fabric dataset links high-quality renderings of a large variety of fabric materials to natural language descriptions of their appearance. We
conduct a thorough analysis of this dataset, and leverage it to fine-tune large-scale vision-language models for a variety of tasks. We show here examples of
such tasks: (i) image-based search, even using real photographs as input, yields relevant results from our dataset (the magenta square in the photographs
marks the input crop, and the corresponding search results can be found in each row); (ii) text-based queries (green) result in successful fine-grained retrieval
within the dataset; and, (iii) given an input image, we can generate detailed and rich descriptions of appearance (blue). Our work not only derives interesting
insights regarding how people describe (fabric) appearance, but also demonstrates that a relatively small amount of high-quality data enables successful
application of large vision-language models to specialized domains.

We introduce text2fabric, a novel dataset that links free-text descriptions
to various fabric materials. The dataset comprises 15,000 natural language
descriptions associated to 3,000 corresponding images of fabric materials.
Traditionally, material descriptions come in the form of tags/keywords,
which limits their expressivity, induces pre-existing knowledge of the ap-
propriate vocabulary, and ultimately leads to a chopped description system.
Therefore, we study the use of free-text as a more appropriate way to de-
scribe material appearance, taking the use case of fabrics as a common item
that non-experts may often deal with. Based on the analysis of the dataset,
we identify a compact lexicon, set of attributes and key structure that emerge
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from the descriptions. This allows us to accurately understand how people
describe fabrics and draw directions for generalization to other types of
materials. We also show that our dataset enables specializing large vision-
language models such as CLIP, creating a meaningful latent space for fabric
appearance, and significantly improving applications such as fine-grained
material retrieval and automatic captioning.
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tions

ACM Reference Format:
ValentinDeschaintre*, Julia Guerrero-Viu*, DiegoGutierrez, TamyBoubekeur,
and Belen Masia. 2023. The Visual Language of Fabrics. ACM Trans. Graph.
42, 4, Article 1 (August 2023), 15 pages. https://doi.org/10.1145/3592391

1 INTRODUCTION
The recent quality surge in multimodal natural language processing
(NLP) and vision-language models has enabled new interaction
possibilities between images and text [Chen et al. 2022; Li et al. 2022;
Poole et al. 2022; Radford et al. 2021; Ramesh et al. 2022; Saharia et al.
2022]. However, the underlying text-to-image models are trained
on hundreds of millions of data points collected online, with a bias
towards natural images and pictures typically found on the internet,
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and with general descriptions that do not capture the fine details
and rich subtleties that domain-specific applications may require.
In this paper we explore the use of natural language to convey

fine-grained material appearance. We pose three open key questions:
(i) Is there an underlying common lexicon and structurewhen people
describe material appearance using natural language? (ii) Can we
communicate material appearance precisely enough with natural
language only? (iii) Are language concepts relevant to material
appearance well understood by large foundational models [Li et al.
2022; Radford et al. 2021]?
Although these questions are relevant for any type of vision-

language model dealing with material appearance, to make the task
tractable we focus on the particular class of fabrics. We choose
this class since fabrics exhibit a wide variety of looks, patterns and
reflectivity properties at different scales, are familiar to everyone,
and are ubiquitous, widely present in many daily scenarios.
We first build a large dataset, text2fabric, relating photorealistic

renderings of digital fabrics covering a wide range of appearance to
natural language descriptions provided through crowdsourcing. We
then perform a thorough analysis of our data, aimed at improving
our understanding of how fabric appearance is described, and find
that: (i) there is a common lexicon (ca. 500 words are enough to
cover 95% of the 15,461 valid descriptions gathered); (ii) common
properties (attributes) of appearance emerge from the descriptions;
(iii) users do follow a certain structure when describing fabric ap-
pearance; and (iv) despite the infinite description space provided by
natural language, there is a high similarity between descriptions of
the same fabric. All these findings suggest that we have a shared un-
derstanding of language as it relates to material (fabric) appearance,
which is key to communicating appearance precisely.

In addition, we leverage two successful and widely used vision-
language models —CLIP [Radford et al. 2021] and BLIP [Li et al.
2022]— and show how their performance improves significantly
when fine-tuned on our dataset. Last, we demonstrate applications
of our model for various tasks (see Figure 1), including fine-grained
text-based retrieval, image-based search, and automatic description
or captioning of fabrics, all of them robust in the presence of light
and geometry variations.
In summary, we present the following contributions:

• A text2fabric dataset including 15,000+ descriptions asso-
ciated with 3,000 different fabric materials. The dataset is
further augmented with 42,000 additional images featuring
different geometries and lighting.

• A general methodology to collect and analyze natural lan-
guage data describing images of fabrics, which is applicable
to other domains.

• The identification of a common lexicon, structure and curated
set of attributes that are relevant when describing fabrics.

• Fine-tuned models demonstrating the benefit of our dataset
on several tasks.

Our full text2fabric dataset, as well as the fine-tuned models, are
made publicly available to facilitate future research1.

1Project website: https://valentin.deschaintre.fr/text2fabric

2 RELATED WORK
Description of visual attributes. Describing the appearance of ob-

jects, scenes or situations through language is a common task for
humans. It allows to transmit richer information than simpler label-
ing and categorization approaches. Descriptions are not only more
natural, but they also allow to focus on key or unusual aspects, or to
add comparisons or semantics [Farhadi et al. 2009]. This information
would then be leveraged by means of natural language processing
(NLP) to enable new, more user-friendly computer graphics and
vision algorithms. While providing a complete, general method for
any object is still a daunting task, several methods have been pro-
posed for people [Bourdev et al. 2011], faces [Kumar et al. 2011], or
scenes [Patterson and Hays 2012]. Other authors have focused on
the particular problem of texture description. Bhushan et al. [1997]
came up with a limited 98-word lexicon which could describe 82%
of their experimental data, formed by textures; instead of using
text descriptions, participants had to cluster words based on per-
ceived similarity. Inspired by this work, Cipoi and colleagues [2014]
introduced the Describable Textures Dataset (DTD), composed of
more 5,000 images labeled with one or more adjectives in a simple
lexicon of 47 texture terms. The work was later extended into the
Describable Textures in Detail Dataset (DTD2) [Wu et al. 2020],
including natural language descriptions. Recently, Xu et al. [2022]
presented Texture BERT, a learning-based architecture that mini-
mizes distances between texture and text features, optimized for
image retrieval. While the domain of texture descriptions is rich
and varied, our notion of appearance goes beyond 2D RGB maps,
including aspects like reflectance, glossiness, touch, use, weight, etc.
Our methodology further has the potential to generalize to other
material classes.

Perceptually-meaningful material spaces. The role of perception
in computer graphics has been extensively researched [Bartz et al.
2008; Fleming et al. 2015; McNamara et al. 2011; Thompson et al.
2011]. In particular, finding perceptually-meaningful material spaces
has many applications in graphics, including editing [Serrano et al.
2016; Shi et al. 2021], gamut mapping [Sun et al. 2017], image-space
manipulations [Boyadzhiev et al. 2015; Delanoy et al. 2022; Khan
et al. 2006] or material similarity [Lagunas et al. 2019].

Pellacini et al. [2000] derived a two-dimensional perceptually uni-
form space for gloss, correlated with the parameteres of the Ward
BRDF model [Ward 1992]; the concept was later extended by Wills
and colleagues [2009] to include different reflectance models. Fo-
cusing on the problem of optimal reflectance acquisition, Nielsen et
al. presented a perceptual scaling and decomposition of BRDF data,
which allowed to reduce PCA dimensionality; the authors further
showed how the first few dimensions roughly correlate with the
specular and diffuse components of appearance [Nielsen et al. 2015].
In computer graphics, the joint effect of geometry and illumination
on appearance has also been thoroughly studied [Bousseau et al.
2011; Dror et al. 2001; Lagunas et al. 2021; Storrs et al. 2021; Vangorp
et al. 2007]. Recently, Serrano and colleagues [2021] trained a deep
learning architecture using over 40,000 combinations or shape, ma-
terial and illumination, to predict perceptual attributes of materials
that correlate with human judgements.
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Distilling human-centered knowledge. Understanding how peo-
ple perform certain tasks and interact with different concepts is
an important aspect of many human-centered computer graphics
applications. Gathering rich, annotated datasets allows to distill
this knowledge and apply it to the design of intuitive interfaces
and workflows, help the development of novel algorithms, and au-
tomate time-consuming tasks. For instance, Cole et al. [2008] and
Gryaditskaya et al. [2019] gathered a dataset of sketches and care-
fully analysed the practices of artists in terms of line types and
how they are used. Garces et al. [2014] provided a measure of style
similarity for clip art by gathering and analyzing human responses
in a dataset of a thousand elements. The OpenSurfaces dataset [Li
and Snavely 2018] contains crowdsourced pairwise comparisons of
material properties, to improve the performance on difficult tasks
such as intrinsic image decomposition. Jarabo and colleagues [2014]
tackled the problem of navigating the four-dimensional structure of
light fields to provide an intuitive interface for editing them. Last,
data from over 800 participants exploring VR scenes has been used
to devise novel compression or video synopsis algorithms [Sitzmann
et al. 2018].

We frame our data gathering and analysis in a similar fashion to
these works. Our goal is to distill important knowledge about how
people describe fabrics, show applications like automatic captioning
and retrieval, and suggest a generalization of our methodology to a
larger set of material classes.

3 OUR TEXT2FABRIC DATASET
This section describes how we designed and created our large-scale
text2fabric dataset. It consists of 45,000 rendered images depicting
samples of 3,000 different fabrics, together with 15,461 associated
descriptions in natural language. The full dataset, with a web-based
browser to explore it, can be downloaded from the project website:
https://valentin.deschaintre.fr/text2fabric.

3.1 Rendered Images
The 45,000 images of our dataset are generated using the Substance
Stager renderer, and span 3,000 different fabric materials with a
wide range of appearance. These fabric models can be found on the
Substance 3D website2, and consist of both procedural materials
generated by artists, as well as high-quality scans. Procedural mate-
rials come in the form of directed acyclic graphs, made of nodes of
three different types: generators, which typically define the global
bidimensional structure of the material (e.g., tiles); filters, which
alter their input (e.g., colorization); and data stores, which point
to external resources (e.g., raster content). Once executed by a ma-
terial graph engine, these procedural models provide the material
channels in the form of 2D maps, at a chosen resolution. A few
parameters of the nodes of a graph are exposed as hyperparam-
eters, so that changing them yields meaningful variations of the
so-defined material. In the case of fabrics, these hyperparameters are
carefully chosen so that the bounded variation they produce maps
realistically to patterns and textile types encountered in the fabric
industry. In addition, each procedural material originally includes a

2 https://substance3d.adobe.com/assets/allassets?assetType=substanceMaterial&
category=Fabric

title and some tags describing its main appearance (e.g., sportswear,
upholstery, mesh). We choose not to rely on these, as they describe
what the artist wanted to represent rather than how people perceive
it, do not follow any particular convention, and may introduce bias
in the descriptions. Nonetheless, this information may be used to
complement our collected descriptions.
For our task, we first rendered images of all 3,000 different ma-

terials at 4K resolution on a baseline geometry, carefully chosen
to faithfully convey the appearance of the fabric: it contains both
draped and flat areas, covering a wide range of orientations. We
then selected a baseline indoor illumination, featuring soft lighting
through multiple windows. A representative sample of the resulting
fabrics can be seen in Figure 2 (top row).
Additionally, to ensure robustness and help future applications

(see Section 5), we rendered the same materials using four other
geometries—a sphere and a plane, in both draped and non-draped
versions—, and two other illuminations—outdoor, with direct out-
door illumination, and studio, with strong studio indoor lighting,
yielding 42,000 more images. Figure 2 (bottom row) shows some
examples.
Different from other existing general-purpose datasets like Im-

ageNet or LAION3, our fabrics dataset constitutes a quite specific
subset of images. This is illustrated, e.g., by the GLCM entropy [Har-
alick et al. 1973], a measure of randomness of the images, as shown
in Figure 3a; our data yields a narrower histogram (narrower range
of entropy), compared to the same number of randomly selected
images from LAION (other image statistics can be found in the sup-
plemental material). The specific characteristics of our image data
are relevant to its use in learning-based models, such as the ones
employed in Section 5.

3.2 Natural Language Descriptions
In the garment manufacturing industry, the description of fabrics
involves specialized concepts and words such as permeability (how
much air or water it allows through), absorbency (the ability of a
fabric to take in moisture), or colorfastness (the ability of a fabric
to maintain its color and resist fading), to name a few [glo 2001].
This specialized vocabulary is different from the one used by digital
artists and practitioners in general. We thus gather our own text
data to describe fabrics.
We collected 15,461 valid descriptions of fabric appearance as

free text using natural language, through a carefully controlled
crowdsourcing framework (Section 3.2.1), followed by a process
of data verification and auditing (Section 3.2.2). Finally, we post-
processed the resulting data (Section 3.2.3) in preparation for the
analysis described in Section 4.

3.2.1 Annotation Procedure and Participants. We conducted a crowd-
sourced user study in which participants (which we term describers)
had to provide free-text descriptions for our high-quality fabric
renderings. Specifically, describers were shown one image at a time,
along with three zoomed-in areas (highlighted in green in the top-
left image of Figure 2), and were asked to describe the appearance

3 LAION [Schuhmann et al. 2021] is the large-scale dataset onwhich the vision-language
model CLIP [Radford et al. 2021] is trained.
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Fig. 2. Representative images from our text2fabric dataset. Top row: Five sample fabric materials, rendered with our baseline geometry and illumination.
Highlighted areas in the first image mark zoomed-in regions shown to describers. Bottom row: Dataset images featuring three of our additional geometries
and the two additional illuminations, all with the same fabric material (top row, leftmost material); from left to right: sphere, sphere-draped and plane-draped
geometries, and outdoor and studio illuminations.

of the material as precisely as possible using their own words in nat-
ural language. Describers were free to use one or several sentences
for the descriptions (1-3 was recommended), and word count was
limited to the range [20..100] words, to prevent excessively short or
long descriptions. To keep the task tractable, we gathered descrip-
tions for our baseline set of 3,000 images of different materials. This
also encouraged describers to focus on the only changing aspect
between images –the material–, familiarizing themselves with the
geometry and illumination. This decision is further justified by the
nature of the task, the goal of our study, and the ability of the human
visual system to achieve perceptual stability and extract constant
properties of materials from varying viewing conditions [Fleming
2017; Fleming et al. 2015; Tsuda et al. 2020]. Describers were re-
quired to do a minimum of ten descriptions, and we ensured that
no describer contributed more than 9% of the whole text data. We
also ensured that, for each image, we gathered at least five valid
descriptions from different participants.

Given the specifics of the task, we required that the describers be
native English speakers, had normal color vision, and were familiar
with fashion or design. While we are aware that this may introduce
some bias in the responses, it allows to gather a rich and accurate
vocabulary. Prior to taking part in the study, participants underwent
a short training and a qualification test. The training consisted of a
set of instructions along with example descriptions gathered from a
smaller pilot study. For the qualification test, each participant had
to describe ten test fabric renderings; participants offering overly
simple, poor descriptions, such as “this is a nice fabric”, were dis-
carded. Approximately one in four did not pass this qualification
test. After this process, a total of 122 describers (ages 18 through
65) went on to provide descriptions for our dataset: 45% identified
as female, 12.3% as male, none as other gender identities, and 42.7%
preferred not to reply.

3.2.2 Data Verification. We gathered a total of 19,167 descriptions
from the 122 qualified describers. However, ensuring quality in
free text description is a difficult task. We therefore established
an additional continuous data verification protocol in which we
manually audited descriptions. For each description, we first labeled
themmanually as one of four options: accepted, or rejected due to the
description being too generic, being wrong, or using poor grammar
to the point of hindering understandability. In addition, we also
rated each description using a 5-point scale (1=totally unacceptable,
2=unacceptable, 3=acceptable, 4=very good, 5=excellent).

Manual auditing of the full set of almost 20,000 descriptions is an
arduous task. However, we found that the quality of the descriptions
was highly dependent on the describer, and data quality (as given
by the ratings) was fairly uniform within a describer. Therefore,
auditing a randomly-selected subset of the descriptions of a partici-
pant provided a good estimate for the rest of their descriptions; for
example, for participants with a rejection rate > 35%, we rejected all
their remaining, non-audited descriptions. More details of this pro-
cess can be found in the supplemental material. The data gathering
process was iterative, to ensure that we had at least five descriptions
for each fabric. After this process we ended up with 15,461 valid
descriptions and 3,706 invalid ones (a 19.3% rejection rate).

3.2.3 Post-processing. Following standard natural language pro-
cessing techniques, we post-process our text data by removing non-
alphabetic characters, applying a spell checker, and filtering stop
words. Moreover, to carry out a proper analysis we extract tokens,
types, and lemmas from the descriptions [Brezina 2018]. A token
is each occurrence of a word in a text, while a type is each unique
occurrence of a word in a text. A lexeme corresponds to the set
of alternating forms from a common root word (such as “colors”,
“colored” or “coloring”), while a lemma refers to the particular form
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Fig. 3. Statistics of our text2fabric dataset. (a) GLCM entropy distribution of our image data, and of a randomly-selected subset of the LAION dataset [Schuh-
mann et al. 2021] of the same size as ours, for comparison. (b) Statistics of our textual data. (c) Histogram of the length, in tokens, of our descriptions before
and after post-processing the text. (d) Violin plots showing part-of-speech (POS) tagging for our descriptions (black lines show the IQR, and the median is
indicated by a black dot).

Fig. 4. Lexicon of fabric descriptions. Left: Histogram of average reduced
frequency (𝑎𝑟 𝑓 (𝑤)) of lemmas found in our descriptions; note that the
x-axis is log-scale. Right: Mean coverage of descriptions (𝑐𝑜𝑣𝑘 ) for different
levels of𝑘 : a description coverage of 75% is achievedwith themost prominent
84 lemmas, and up to 95% with the most prominent 524 lemmas.

chosen to represent a lexeme (such as “color” in our previous exam-
ple). Further details, including the spell checker and the lemmatizer
we use, can be found in the supplemental material.

The statistics of our textual data after this post-processing can
be found in Figure 3b. When looking at values per description, we
can see that the mean and median are close, indicating that the
distributions are not too skewed; we show this distribution for the
case of tokens in Figure 3c, both before and after post-processing.
The table in Figure 3b (bottom) further shows that the difference
between the number of tokens, types and lemmas per description
is not large, suggesting that our descriptions are diverse in the
sense that there are not many repeated words in them. Finally, we
also perform part-of-speech tagging and classify tokens into nouns,
adjectives, verbs, etc. (see Figure 3d). Our data contains mainly
nouns and adjectives, as expected in texts of a descriptive nature.

4 UNDERSTANDING THE VISUAL LANGUAGE OF
FABRICS

We conduct a comprehensive analysis of our dataset to understand
how people describe fabrics, and explore relevant questions about
its characteristics. From these questions, around which this section
is structured, we gather insights which help the design of tools to
describe, retrieve, classify, label or edit fabrics, among others.

4.1 Is there a common lexicon when describing fabrics?
The existence of a common vocabulary when describing fabrics is a
necessary condition for any text-to-fabric application to be practical
and successful. Ideally, we would like to identify a reduced set of
lemmas or root words (see Section 3.2.3) which would be sufficient
for the majority of fabric descriptions.

We begin by computing the absolute frequency per lemma 𝑓 (𝑤) in
the full corpus of descriptions, where, for each lemma𝑤 , the count
includes occurrences of all the single words or types belonging to it.
Prominence of lemmas, however, is not only determined by their
absolute frequency, but also by their distribution; for instance, if a de-
scriber uses words belonging to a lemma often, but other describers
do not, the lemma may not be prominent. We therefore comple-
ment absolute frequency with a measure of dispersion, indicating
how evenly the occurrences of the lemma are distributed within
the corpus. We measure this with the average reduced frequency
(𝑎𝑟 𝑓 (𝑤)) [Brezina 2018; Savickỳ and Hlavácová 2002], which modu-
lates 𝑓 (𝑤) with the dispersion of𝑤 (details on the computation can
be found in the supplemental material). The histogram of 𝑎𝑟 𝑓 (𝑤)
(Figure 4 (left)) shows how over one third of the lemmas have an
𝑎𝑟 𝑓 value below 2, meaning that they are seldom used, or used by a
single describer. This confirms the intuition that a reduced subset
of lemmas should suffice for fabric description.

We next examine how small this reduced lexicon can be. We first
use 𝑎𝑟 𝑓 (𝑤) as ranking criterion to find the subsetW𝑘 of the most
prominent 𝑘 lemmas, for increasing values of 𝑘 ∈ [1..𝑁𝑤], with
𝑁𝑤 = 2, 762 the number of lemmas in our corpus. For each W𝑘 , we
then compute the coverage of a description 𝑑 as

𝑐𝑜𝑣𝑘 (𝑑) =
𝑛𝑘 (𝑑)
𝑛𝑡𝑜𝑡 (𝑑)

,

where 𝑛𝑘 is the number of lemmas from subset W𝑘 present in
description 𝑑 , and 𝑛𝑡𝑜𝑡 (𝑑) is the total number of lemmas of such
description. As the plot in Figure 4 (right) shows, a common lexicon
of 84 lemmas is enough to cover 75% of the fabric descriptions,
while to cover 95% we only need 524 lemmas, which we define as
our fabric-specific lexicon (examples of these lemmas can be found
in the supplemental material).
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Fig. 5. Attributes present in fabric descriptions. Left: Visualization of the lemma embeddings space and its clustering into attributes. We show all lemmas from
our lexicon (524) as points in 2D space using t-SNE dimensionality reduction (300D to 2D); the color of every point indicates its associated attribute; we show a
line from every non-outlier point to its attribute centroid (marked with a black star). Center: Probability of occurrence of each attribute 𝑝 (𝑎𝑖 ) , i.e., probability
of having at least one occurrence of a lemma belonging to attribute 𝑎𝑖 in a description. Right: Matrix displaying 𝑝 (𝑎𝑖 |𝑎 𝑗 ) , with 𝑎𝑖 in the columns and 𝑎 𝑗 in the
rows. Note that it is not symmetric because 𝑝 (𝑎𝑖 |𝑎 𝑗 ) ≠ 𝑝 (𝑎 𝑗 |𝑎𝑖 ) . We observe how the probability of an attribute appearing is largely independent of the
occurrence of other attributes.

4.2 Are there key attributes in the descriptions?
Finding common attributes is useful to understand how we inter-
nally represent and think about fabrics. From our reduced 524-
lemma lexicon, we seek now to identify common attributes that
these lemmas may relate to. We approach this as a clustering prob-
lem, and develop a methodology based on affinity propagation and
similarity between lemmas. In particular, we leverage embeddings
of the lemmas provided by ConceptNet Numberbatch [Speer et al.
2017], which combines both distributional semantics and relational
knowledge4. This leads to the identification of the main attributes
that people focus on when describing fabrics, as well as a distribu-
tion of our lexicon into those attributes (we provide a description
of this process in the supplemental material). This results in eleven
key attributes describing fabrics: color, lightness, metallic, pattern,
fabric_type, sewing, touch, weight, use, weathering, and military5,
and are shown in Figure 5 (left) using t-SNE dimensionality reduc-
tion [Van der Maaten and Hinton 2008].

In Figure 5 (center), we show the probability of occurrence𝑝 (𝑎𝑖 ), 𝑖 ∈
[1..𝑁𝑎] of each attribute 𝑎𝑖 , where 𝑁𝑎 = 11 is the number of at-
tributes. It expresses the probability that there is at least one occur-
rence of a lemma belonging to the attribute in any given description.
This illustrates the relative importance of each attribute: for instance,
it reveals that color, pattern, touch and fabric_type are present in
more than 70% of the descriptions.

Moreover, we look into whether certain attributes tend to appear
together in the descriptions; to that end we compute 𝑝 (𝑎𝑖 |𝑎 𝑗 ), 𝑖, 𝑗 ∈
[1..𝑁𝑎], 𝑖 ≠ 𝑗 , i.e., the probability of attribute 𝑎𝑖 being present in a
4 We use the implementation from https://github.com/commonsense/conceptnet-
numberbatch. We refer the reader to the original ConceptNet paper [Liu and Singh
2004], as well the ConceptNet Numberbatch extension [Speer et al. 2017] for more
details.
5 This last attribute reflects the significant amount of samples of a military nature in
our dataset and may not generalize to others, see also Section 6.

description that contains attribute 𝑎 𝑗 . Figure 5 (right) plots these
probabilities for all attributes (note that the resulting matrix is non-
symmetric, since 𝑝 (𝑎𝑖 |𝑎 𝑗 ) ≠ 𝑝 (𝑎 𝑗 |𝑎𝑖 )). We observe that, in general,
the presence of a given attribute in a description is not heavily
dependent on the presence of any other attribute. This is indicated
by the relatively uniform values along each column, and is a result
of the large variety of appearances present in our dataset, exhibiting
many different combinations of attributes.

4.3 Do descriptions follow a common structure?
We next look at the structure of descriptions by analyzing the order
of appearance of the different attributes. Specifically, we compute a
rank product for each attribute as

Ψ(𝑎) = (
𝐷∏
𝑖=1

𝑟𝑎,𝑖 )1/𝐷 ,

where 𝑟𝑎,𝑖 is the rank of attribute 𝑎 in description 𝑑𝑖 , 𝑖 ∈ [1..𝐷] [Ru-
binstein et al. 2010]. The rank is given by the first appearance of a
lemma belonging to an attribute in a description; thus, lower rank
products indicate that the attribute tends to appear earlier in the
descriptions.
Table 1 shows the resulting ranking of attributes. To evaluate

whether the differences in ordering are significant, we perform a
Kruskal-Wallis test (a non-parametric extension of ANOVA, since
rankings are an ordinal value and typically cannot be assumed to
follow a normal distribution), which shows that there is a signifi-
cant difference between attributes (𝐻 (10) = 8235.53, 𝑝 < .0001). A
subsequent pairwise comparisons test allows us to identify groups
of attributes where there is no significant difference between their
mean ranks (also shown in Table 1). The rank histograms per at-
tribute can be found in the supplemental material.
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Table 1. Attributes sorted by rank product, indicative of their order of appearance within a description. Lower rank products indicate that the attribute tends
to appear earlier in the descriptions. Attributes grouped together in the table yield no significant difference between their mean ranks.

Attribute 𝑎 color lightness sewing metallic pattern weight military fabric_type weathering touch use
Rank product Ψ(𝑎) 2.25 2.39 2.75 2.77 2.86 2.95 3.06 3.17 3.46 3.73 4.25

Table 2. Similarity between descriptions of the same image (intra-image)
and descriptions of different images (inter-image). We report, for two state-
of-the-art sentence embeddings (sentence-T5 and MPNet): average intra-
image and inter-image similarities (and associated standard deviations),
test statistics for ANOSIM, and associated p-value (we use a p-value of 0.05
to indicate significance). The descriptions in our dataset exhibit high intra-
image similarity, and the statistical test shows that intra-image similarities
are significantly larger than the inter-image ones.

Similarity
Intra-image Inter-image Test Statistic p-value

sentence-T5 0.874 (0.037) 0.822 (0.037) 0.694 0.001
MPNet 0.704 (0.087) 0.627 (0.083) 0.497 0.001

4.4 Does the same fabric elicit similar descriptions?
We measure similarity between descriptions using two state-of-the-
art NLP models that have been shown to work well on Semantic
Textual Similarity (STS): sentence-T5 [Ni et al. 2021], designed to
provide sentence embeddings from text-to-text transformers, and
MPNet [Song et al. 2020], shown to work well for semantic search
using sentence embeddings [Reimers and Gurevych 2019]. Specifi-
cally, we compute cosine similarity between the embeddings of our
full descriptions, as in the original publications.

To compute the intra-image description similarity (similarity be-
tween descriptions of the same fabric), we average over all pairwise
comparisons in our whole corpus, provided that the two members
of a pair belong to the same image. To compute the inter-image
description similarity (similarity between descriptions of different
fabrics), we average over all pairwise comparisons in our whole
corpus, provided that the two members of a pair belong to different
images.

The results, shown in Table 2, yield a high intra-image similarity
(cosine similarities are bounded between -1 and 1), suggesting that
the same fabric does indeed elicit similar descriptions by different
people. Compared to the inter-image similarity (which one may
treat as a baseline), the average intra-image similarity is larger for
both models. To test whether these differences are statistically sig-
nificant, we resort to ANOSIM (analysis of similarities) [Clarke 1993;
Warton et al. 2012]. ANOSIM works on all pairwise similarities (or
distances) between points (descriptions), and is designed to test the
null hypothesis that the similarity between groups (inter-image) is
greater than or equal to the similarity within groups (intra-image).
We use a p-value of 0.05 to indicate significance and the test statistic
as the measure of effect size [Somerfield et al. 2021]. This value is
constrained to [−1, 1], with 1 indicating very high intra-image simi-
larity with respect to inter-image similarity, and negative values in-
dicating higher inter-image similarity. Results of this analysis show
reasonably high intra-image similarity with respect to inter-image
similarity, confirming that the difference is statistically significant
(see Table 2).

5 LARGE VISION-LANGUAGE MODEL COUPLING
Our dataset links the appearance of fabrics with natural language,
helping to better understand how people describe such materials
despite their semantic proximity. Besides, it provides high quality
image and associated text data, in large albeit lower amounts than
those present in very large-scale datasets used to train recent, very
successful vision-language models (see Section 5.1). In this section,
we explore applications of our dataset with suchmodels, and to what
extent a relatively low amount of high-quality, specialized data im-
proves over their native versions for specific areas such as material
appearance. Specifically, we demonstrate text-based fine-grained
retrieval, image-based search, and description generation, as well as
an improvement of invariance of the image latent representations
to light and geometry changes, contributing to, e.g., a more robust
notion of appearance similarity. While we show here varied results
and evaluations, please also refer to the supplemental material for
additional examples.

5.1 Large Vision-Language Models
Recent progress in joint text and image encoding has been enabled
by large vision-language models. In this section in particular, we
fine-tune and compare to two of the most widely-used models:
CLIP [Radford et al. 2021] and BLIP [Li et al. 2022].
CLIP is a neural model composed of two encoders, one for each

modality (text and image), which are trained using pairs of text
and images. The method relies on contrastive learning [Chen et al.
2020] to encourage encodings of texts and images to lie close to
one another in latent space. This has been shown to draw very
interesting connections based on the data it is trained on [Goh
et al. 2021]. CLIP is particularly powerful thanks to the vast LAION
dataset on which it is trained, containing 400 million image-text
pairs gathered from the internet. Different encoder architectures
have been published, but in this paper we use the ViT-B/16 version,
which relies on a visual transformer [Dosovitskiy et al. 2021] with
a patch size of 16 × 16.
BLIP is a combination of networks trained jointly, including a

pair of encoders, similar to CLIP. Moreover, BLIP also contains
a generative head, trained jointly with the rest of the network,
enabling it to generate captions corresponding to an image. It is
also trained on hundreds of millions of images, including a self-
supervised augmentation mechanism called “CapFilt”. Similarly to
CLIP, we use the ViT-B version of the network.

While both CLIP and BLIP are trained on very large-scale datasets,
the text data to which they are exposed is limited to low quality
online captions of images. We will show, in the remainder of this
section, that a small amount of high quality data is sufficient to
significantly improve the networks’ sensitivities to specialised con-
cepts. In the following experiments, we use the models published
by SalesForce and OpenAI.
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5.2 Text-Based Fine-Grained Retrieval
Given a query in the form of a text description, the goal of this first
application is to retrieve fabric samples that match the query. Im-
proving search performance in large datasets is increasingly impor-
tant as the number and size of libraries and datasets increase [Quixel
Megascans 2023; Substance 3D Assets 2023]. Different from generic
text-based retrieval, which aims at finding images of objects in dif-
ferent classes such as “chairs”, “cars”, or “people”, we target the more
difficult case of fine-grained retrieval [Qi et al. 2021], i.e., finding
the right instance despite significant semantic similarities within
the dataset.

5.2.1 Implementation. We fine-tune CLIP [Radford et al. 2021],
starting from the VIT-B/16 pre-trained model (we term this pre-
trained model native CLIP). Our dataset is split in 12,334 training
and 3,129 test descriptions, ensuring that no procedural variation
of a given material in the training data is used for testing. During
training we split the descriptions by sentence, resulting in 45,871
(36,565 train/9,306 test) individual sentence descriptions for 3,000
(2,393/607) materials. We train the network for 12 epochs (at which
point the performance levels off, with small gains until epoch 19), us-
ing renderings of the training materials on four geometries (baseline,
sphere, sphere_draped, plane) and a single illumination (baseline). We
use a learning rate of 1𝑒−6 with a linear schedule with 200 warm-up
steps for the Adam optimizer, with 𝛽1 = 0.9, 𝛽2 = 0.99 and batch
size 128. This takes five hours to train on a single Nvidia RTX3090
GPU. For inference, execution time is 0.46 seconds for a batch of 64
images.

5.2.2 Results. Since we have ground-truth data (image-description
pairs in our test dataset), we can evaluate retrieval of the correct ma-
terial given an input description. Additionally, for any given generic
query, the retrieval application should return relevant results. The
search operation presented in this section is made over the entire
3,000 materials on our baseline geometry and illumination unless
specified otherwise; in all cases, neither the descriptions used as
queries nor the correct images or materials have been seen during
training.

Quantitative analysis. Given our test set descriptions, we evaluate
retrieval in the complete material database and report the top-K
recall results of our fine-tuned CLIP, with 𝐾 ∈ {1, 5, 10, 20, 100}, in
Table 3. We also include results for native CLIP, native BLIP6, and
BLIP trained on our data only (BLIP no pretrain). Compared to native
CLIP/BLIP, we achieve 4.8/4 times better top-1 retrieval rate and
maintain at least 2.12 times better results for all top-K results, show-
ing that our dataset makes CLIP more sensitive to fabric-specific
concepts. This also shows that our fine-tuned model is capable of
retrieving a fabric sample from its description alone, which requires
strong feature discrimination in a semantically similar dataset. The
comparison to BLIP trained on our data only (no pretrain) shows that
our model significantly benefits from the original model training,
leveraging the priors provided by its large corpus of text.

To evaluate the ability of our model to generalize to other geome-
tries, Table 4 reports retrieval recall results on a geometry unseen

6 For details on the implementation of native BLIP please refer to Section 5.4.1.

Table 3. Top-K retrieval results on the baseline geometry for native CLIP,
native BLIP, BLIP trained on our data only (BLIP no pretrain) and our fine-
tuned model.

Native CLIP Native BLIP BLIP no pretrain Ours
Top-1 2.94% 3.42% 1.60% 13.81%
Top-5 8.31% 9.94% 5.98% 33.91%
Top-10 12.59% 14.60% 10.64% 46.76%
Top-20 18.37% 20.17% 17.00% 59.76%
Top-100 41.29% 34.26% 34.36% 87.63%

Table 4. Top-K retrieval results on the plane_draped geometry, unseen dur-
ing training, for native CLIP, native BLIP, our model fine-tuned on only one
geometry (baseline), and our model (which is fine-tuned on four geometries,
not including plane_draped).

Native CLIP Native BLIP Ours (1 gm.) Ours (4 gm.)
Top-1 1.34% 2.27% 5.98% 7.38%
Top-5 5.02% 7.03% 16.55% 22.95%
Top-10 7.93% 10.9% 23.94% 31.77%
Top-20 12.66% 15.05% 34.16% 43.72%
Top-100 32.18% 29.05% 64.59% 75.93%

Fig. 6. Evolution of text-based retrieval results (top-1, top-5 and top-10 recall
performance) with the number of descriptions available for fine-tuning. Na-
tive CLIP performance corresponds to the case of zero descriptions available
for fine-tuning.

during training (plane_draped). We see that, despite the unseen ge-
ometry being challenging (all methods have lower retrieval results
than with the baseline geometry), our fine-tuned model still signif-
icantly benefits from our dataset. Furthermore, we also include a
comparison to our model fine-tuned on images from just one geom-
etry (baseline), showing that the training on different geometries
improves the generalization of the method.
We also assess the required size of a specialized dataset such as

ours for fine-tuning general purpose models. To do so, we plot the
top-K retrieval results as we vary the number of descriptions used in
the training in Figure 6. We see how the model significantly benefits
from the first 2,000 descriptions, and how themarginal improvement
rate then starts diminishing. At constant number of descriptions, we
also evaluate whether more images with fewer descriptions is prefer-
able to fewer images with more descriptions. We find that using
1,500 images with 5 descriptions per image is equivalent in retrieval
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A dirty fabric

An Asian looking fabric

A gingham fabric

A checker fabric with blue 
and yellow

A damaged fabric

A faux leather fabric with
circle indented holes

Input query Input queryTop-3 retrieval results Top-3 retrieval results (unseen geometry)

A fabric with a hound- 
stooth pa�ern on it

A fabric so� to the touch 
made of silk with warm 

colors

Fig. 7. Text-based fine-grained retrieval, evaluating the sensitivity of our fine-tuned representation to varied domain-specific concepts on two different
geometries. We show input text queries, and the top-3 retrieval results using our fine-tuned model. Left: Retrieval results on the baseline geometry, seen during
fine-tuning. Right: Retrieval results on the plane_draped geometry, unseen during fine-tuning. Our model retrieves relevant results for aspects related to
different attributes, and for both high-level and more specific queries.

Top-10 retrieval results

Fig. 8. Top-10 results of text-based fine-grained retrieval with our fine-tuned model for the query “An Asian looking fabric”. Although the closest samples
(top-3, also shown in Figure 7) have similar appearance, we observe more diverse results (while still relevant) when increasing the number of images returned.

recall to using 2,500 images with 3 descriptions per image: Results in
both cases are close, indicating a similar impact between image and
description diversity. More precisely, 1,500 images with 5 descrip-
tions each yield top-1/5/10 retrieval results of 12.56/31.38/44.1%; in
comparison, 2,500 images with 3 descriptions each yield top-1/5/10
retrieval results of 12.66/31.16/43.69%. In addition, we also include
a quantitative evaluation on negative queries in the supplemental
material.

Qualitative analysis. To qualitatively evaluate the performance
of our fine-tuned model, we provide results retrieved from natural
language queries in Figure 7, showing that the retrieved materials
exhibit the desired properties, not only in a geometry seen during
training7 (baseline), but also in unseen geometry (plane_draped). As
expected, diversity increases as we look at more returned samples.
This can be seen in our “Asian looking” prompt; while the top-3
results in Figure 7 contain similar results due to our space being
partly organized with respect to visual features, more diverse results
appear when visualizing the top-10 results, as shown in Figure 8.
7 Note that the geometry has been seen during training, but the materials and queries
have not.

In Figure 9, we show a more systematic evaluation with positive
and negative queries, corresponding to prominent fabrics concepts
extracted from the dataset (see Section 4), and include a comparison
to native CLIP. Results confirm that our fine-tuned model is effective
in the retrieval, and more sensitive to fine-grained descriptions,
while native CLIP struggles with specialized concepts (e.g., stitching)
and negative wording. Interestingly, despite the relatively small
amount of data used in our fine-tuning (compared to the hundreds
of millions of image-text pairs required to train CLIP and BLIP), we
observe significant improvement in material retrieval for the class
of interest (fabrics). Furthermore, these experiments highlight the
limitations existing in the representations of Large Vision-Language
Models for fine-grained appearance concepts.
Finally, we evaluate the limits of modeling out-of-distribution

queries, containing concepts that do not appear in our dataset de-
scriptions. As shown in Figure 10, our model finds reasonable results
for these queries (e.g., for the case of “Thanksgiving-themed” we
obtain a variety of autumnal brown and orange fabrics), suggesting
that our model preserves its broader priors without overfitting to
our dataset.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Top-4Ours Native CLIPInput queryTop-1 Top-1Top-4

A fabric with
visible stitching

An unprinted
fabric

A fabric with
shine

A fabric with
no shine

Fig. 9. Text-based fine-grained retrieval. We evaluate the sensitivity of our fine-tuned model to different text queries, including negative ones, and compare it
with native CLIP. Our model is more sensitive to domain-specific concepts and can better handle negative queries.

Top-4OursInput query

A fabric with
vampire style

A fabric with
savannah style

A anksgiving-
themed fabric

Top-1

Fig. 10. Text-based fine-grained retrieval with out-of-distribution queries
that contain concepts not included in our dataset descriptions (marked in
bold). We show top-4 retrieval results using our fine-tuned model.

5.3 Image-Based Search
We continue our evaluation by studying image-based search using
real images as input. We do it by leveraging our fine-tuned CLIP
model (see Section 5.2), as well as native CLIP for comparison. Specif-
ically, we compute the normalized embedding—using either native
CLIP or our fine-tuned model—of the input image, and compute
its cosine distance to the normalized embeddings of the candidates
from our dataset. These candidates are the 3,000 materials in our
dataset, rendered on a certain geometry (or set of geometries in
Section 5.5). Figure 11 shows results on the plane_draped geometry
(unseen during training) for both our fine-tuned model and native
CLIP. We can observe that native CLIP is strongly influenced by the
geometrical macrostructure present in the input image, and fails at
guiding the retrieval process by the material mesostructure, patterns

and reflectivity properties expressed in the input. On the contrary,
our fine-tuned model succeeds at fetching results with similarities
existing at material scale, bypassing the strong features stemming
from the supporting 3D shape.

5.4 Caption Generation
Caption generation aims at creating accurate descriptions of a fabric
material given an image of it. Similarly to the retrieval application,
we target fine-grained description, with precise properties described,
which are not limited to high-level semantics. This further allows us
to explicitly observe the ingestion of the concepts stemming from
our dataset by Large Language Models.

5.4.1 Implementation. We leverage and fine-tune BLIP [Li et al.
2022] for caption generation, and process our data as described in
Section 5.2.1; however, in this case we do not split the sentences,
ensuring full descriptions are seen by the model. We fine-tune the
generative head of BLIP, starting from what we term native BLIP:
the VIT-B/16 model pre-trained on 129M images from LAION +
CapFilt-L (model_base_capfilt_large). We train the network for 12
epochs using the Adam optimizer with weight decay regularization
using a decay parameter of 0.05, an initial learning rate of 1𝑒−5 and a
batch size of 24. The minimum number of generated tokens is set to
5, and the maximum to 80. This takes approximately 9 hours to train
on a single RTX3090. Once fine-tuned, we use nucleus sampling for
tokens [Holtzman et al. 2020], letting us generate varied descriptions
for each image.

5.4.2 Keyword Extraction. While we mainly focus on generating
natural language descriptions (using the model described in Sec-
tion 5.4.1), simple keywords can also be convenient in several search
or classification scenarios. Therefore, using our understanding of
fabric descriptions in terms of common lexicon, main attributes
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Ours Native CLIPInput imageTop-1 Top-1Top-4 Top-4

Fig. 11. Image-based search with real photographs as input (middle column), using our fine-tuned model (left) and using native CLIP (right). The search is
performed on image data from a single geometry (plane_draped), unseen during the fine-tuning. Our model, unlike native CLIP, is capable of retrieving results
that are in close correspondence with the input, while circumventing the prominent characteristics arising from the macroscopic geometric structure.

and structure (Section 4), we automatically extract keywords for
an image based on the generated descriptions. For that, we use the
first five descriptions of an image, post-process the text as explained
in Section 3.2.3, extract a set of keywords per attribute from our
lexicon, and order them by importance (number of descriptions in
which they appear) and the rank product of their attribute. Resulting
keywords for real images are shown in Figure 13, and we include
automatically extracted keywords for all material samples as part
of our text2fabric dataset.

5.4.3 Results. We show here description results from our fine-
tuned BLIP model, together with comparisons to native BLIP.
Figure 12 shows captioning results on synthetic images, with

two different geometries, and materials from the test set (unseen
during training). For each fabric sample, we include: descriptions
from our dataset, provided by humans; descriptions generated by
our fine-tuned model; and descriptions generated by native BLIP.
We observe how our fine-tuned model generates descriptions that
better convey fine-grained material appearance, are more accurate
and with more attention to detail, and match more closely the style
of human descriptions.

We further demonstrate our results on real images containing fab-
rics in Figure 13. We crop the fabric area of interest (marked by a red
square), and generate descriptions for it. The descriptions generated
using our fine-tuned model contain significantly richer information
than the native BLIP results, trained only on general internet images
and high-level descriptions. Additionally, our keyword extraction
method is capable of automatically extracting relevant keywords
from our generated sentences, which can be useful for, e.g., auto-
matic tagging. These results further show that the fine-tuning on
our high quality renderings generalizes well to real photographs.

Table 5. Average cosine similarity (and associated standard deviation) be-
tween pairs of images exhibiting: the samematerial (and lighting conditions)
and different geometries (varying geometry); and the same material (and ge-
ometry) and different lighting conditions (varying lighting). Our fine-tuned
representation (first row) finds images of the same material to be more sim-
ilar, despite geometry or lighting variation, than native CLIP space (second
row). We include results of the Wilcoxon signed-rank test showing effect
size | p-value (bottom row). Differences are statistically significant and with
large effect sizes for both experiments.

Varying Geometry Varying Lighting
Ours 0.951 ± 0.012 0.973 ± 0.007

Native CLIP 0.835 ± 0.042 0.945 ± 0.011
Wilcoxon signed-rank 0.866 | <0.0001 0.846 | <0.0001

5.5 Invariance of the Latent Space to Geometry and
Illumination

Our dataset significantly helps to improve the invariance to lighting
and geometry of large vision-language models representations. We
illustrate this by fine-tuning CLIP (as described in Section 5.2.1) us-
ing all the renderings of our materials, with five different geometries
and three environment illuminations (baseline, outdoor, studio) asso-
ciated to our 15,461 descriptions. While we could use contrastive
learning to try to learn an invariant representation instead, the only
available supervision would be whether or not two images show the
same material, making the creation of a perceptually smooth repre-
sentation challenging. Using our descriptions as anchor contributes
to a smooth representation space, allowing the model to learn a
more robust notion of material appearance than that of native CLIP,
as shown by our evaluation, described next.
In Table 5 (first column, varying geometry) we evaluate the av-

erage cosine similarity between pairs of images rendered with the
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Input Native BLIPHuman description
�is fabric resembles canvas and is woven with black 
and blue yarn giving it a dull gray appearance from 
afar. It has a slightly rough texture and no sheen. 
�ere are golden sunbursts that appear to made with 
fabric paint.
�is is blue co�on fabric. It is made up of yellow 
colored sunlight pa�erns. it appears to be so� and is 
mostly used for cushions and table linen.

�is is a medium weight fabric. �e base color is a 
co�ee brown. �e overall pa�ern is continual broken 
zigzag lines of copper orange throughout.

�is fabric is dark gray with zigzag designs through-
out the fabric in orange. Its texture is so� and 
smooth. �e material seems most likely to be 
polyester. �e orange zigzag features a li�le sparkle.

�is is a print of gold �owers in an ocean blue 
background, and placed over the black 

�e cover is made out of blue and yellow �owers 

�e navy blue chey print on this tie is made of silk 
and has a thin pa�ern 

A blue scarf with orange pa�ern on it 

Ours
�is fabric has a blue background with small yellow 
suns all over it the sun is designed in repeating lines 
of �ve - point stars the linen thread could be used to 
make curtains or upholster 

�is fabric is a muted gold / pale yellow on a slate 
blue it has an appearance of being woven, like a sun 
with �ve - point star pa�erns similar to the stars 
themselves 

�is fabric is black in color, with a pa�ern of metallic 
gold zigzags these are arranged diagonally through-
out the material it looks tightly knit and so� to the 
touch

�is fabric is dark gray with a pa�ern consisting of 
many jagged triangles throughout these triangular 
shapes are gold the material appears shiny and 
smooth, even satin it would make an elegant dress 

Fig. 12. Description generation results for synthetic materials from the test set. We show results on two different geometries: baseline (top), seen during
fine-tuning, and plane_draped (bottom), unseen during fine-tuning. The descriptions included are, from left to right : from our gathered dataset, provided by
humans; generated by our fine-tuned model; and generated by native BLIP. Our descriptions not only are closer in style to human descriptions, but are also
better at conveying fine-grained appearance and details.

Input Native BLIPOurs (keywords)
Yellow, Bold, Stitch, Shiny, Gold, Horizontal, 
Lightweight, Silk, Smooth

Brown, White, Stitch, Weave, Lightweight, �ick, 
Wool, Polyester, Rough, Texture

�e front of a gold and black gown, which is made 
from silk 

Mustard fabric, satin satine poly span nylon 

Linen fabric closeup texture white 

Natural linen fabric - co�on & cashmere 

Ours
�is fabric has a lot of shine to it and could be silk 
with a slick looking feel to it the color is all gold 
shiny and looks lightweight 

�e fabric is a shiny solid yellow that has no obvious 
shading or pa�erns in it the material is probably 
made out of a polyester or similar and would be 
lightweight 

�is fabric looks like a co�on or linen material with 
stitching on the surface and colors of grey and white 
all mixed together this looks smooth and lightweight 

�e fabric is a twill weave with brown and cream 
yarns it is fairly thick and appears rough to the touch 
the �bre content could be wool, co�on or polyester 

Fig. 13. Description generation results on real images (the input is marked by a red square) for both our fine-tuned model and native BLIP. We also include
results of our automatic keyword extraction. We can see that our fine-tuned model for caption generation generalizes well to real photographs.

same material and lighting but different geometries, computed both
in native CLIP space and in the latent space of our fine-tuned
model. Our representation is, on average, more invariant to ge-
ometry than the original CLIP features. The same evaluation for
pairs of images rendered with the same material and geometry but
different lighting conditions (Table 5, varying lighting), shows a
similar trend, although less pronounced. In both cases, the lower
standard deviation between pairwise similarities using our repre-
sentation suggests a greater stability across variations. A Wilcoxon
signed-rank test shows that these differences are statistically signif-
icant (p-value<0.0001), with effect sizes considered large for both
geometry and lighting variations [Rosenthal et al. 1994].
We qualitatively evaluate this property in Figure 14: we assess

whether, given a real photograph as input to an image-based search
(see Section 5.3), the results change depending on the geometry
present in the database we search in (for this test, each database
we search in has all materials rendered with a single geometry).
The figure shows results for the search in the sphere_draped and
plane geometries databases, and we display all results rendered on

sphere_draped for easier comparison. We can see that our represen-
tation is significantly more consistent than native CLIP on varying
geometries, and better at learning features at material scale.

We further pursue this evaluation in Figure 15. Here, we seek at
retrieving a given test (i.e., unseen during training)material rendered
on a given geometry, performing image-based search in a database
containing renderings of all 3,000 materials and five geometries.
As expected, with both native CLIP and our fine-tuned model, the
first result is the same material and geometry. However, it is clearly
apparent that the native CLIP representation is heavily biased by
the geometry in the input image, while our representation better
identifies the same material across geometries.

6 DISCUSSION AND FUTURE WORK
We have presented text2fabric, a comprehensive, large-scale pub-
lic dataset relating the visual appearance of fabrics to natural lan-
guage. We have analyzed and curated a rich lexicon, classifying it
into eleven attributes and highlighting key concepts used by hu-
mans when describing fabrics. We have further proposed several
applications including fine-grained retrieval, image-based search,
and caption generation, and shown how foundational, state-of-the-
art vision-language models such as CLIP [Radford et al. 2021] or
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Fig. 14. Latent space invariance to geometry. Top-4 results of image-
based search in databases rendered on different geometries (geom 1:
sphere_draped ; geom 2: plane; see text for details). We display all results
rendered on sphere_draped for easier comparison. Our representation is
significantly less affected by the geometry than the latent space of native
CLIP, learning a more precise notion of material appearance.
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Fig. 15. Top-4 results of image-based search in a database containing all our
geometries: We see that native CLIP is heavily biased by the geometry of the
input image, while our fine-tuned model focuses on the material appearance
and is capable of recovering the same material across geometries.

BLIP [Li et al. 2022] struggle to represent fine-grained concepts of
appearance, unless fine-tuned on our dataset.
Our work is not free of limitations. First, as in all studies, our

results are only strictly valid for our particular set of stimuli; for
example, in the fabric samples used to generate our data, military
characteristics and some weathering features are highly correlated,
such as camouflage and dirt, as shown in Figure 5 (right). This leaves

Ours

Ours

�

Input query

Input image

Top-1

A fabric that is
not red

Here the leopard caption generation 

Top-4

�e fabric is shiny and smooth, probably silk or satin it features an 
elegant design of raised �oral - like shapes throughout using a dark red as 
backing and various small metallic gold fan designs placed horizontally.

�is is a satin woven silk brocade fabric the background is red - orange 
and there are raised double violet lines running horizontally 4 apart with 
medium blue areas between each striping there is an ornate.

Fig. 16. Limitations. Top row: The text-based fine-grained retrieval does
not always work well for negative queries that people do not use when
describing (e.g., one would not say “this is a non-red fabric” or “this fabric
is not red”). Bottom row: While our generated descriptions capture many
relevant details, the intricacy of the pattern image results in the model
missing some features that are salient to humans, such as the leopards.

the door open for future extensions of our dataset to explore these
correlations further. Second, we decided to choose non-expert de-
scribers (albeit familiar with fashion or design), to target a wider au-
dience for our applications, given that experts usually rely on highly
specialized concepts, difficult to understand by the general public.
This might lead to the descriptions including some inaccuracies
(e.g., due to uncertainty in the fabric type), or common misunder-
standings about cloth (e.g., confusing “stitching” with “weaving”).
While these are a reflection of assumptions and biases from common
users, it could be a limitation in certain scenarios, e.g., involving
experts. Additionally, as expected, some text-based queries are not
fully understood by our models, as shown in Figure 16 (top row).
Fabric samples are typically not described in terms of not having a
certain characteristic (people do not say “this is not a red fabric” or
“this fabric is not red”); as a result, our fine-tuned models (and their
native counterparts) struggle with such queries. Another limitation
regarding caption generation occurs in the presence of very com-
plex, intricate designs, where the descriptions produced may fail to
capture certain aspects that would be prominent for a human. An
example can be seen in Figure 16 (bottom row), where despite the
richness of the generated caption, it fails to mention the presence
of leopards in the fabric.
Our work opens up exciting avenues for future research, which

we describe in the following paragraphs.

Generalization. An interesting question from our work is the
exploration of howwell ourmethodology generalizes beyond fabrics,
maintaining a similar intra-class variation description quality. We
argue that our methodology can be readily applied to other material
datasets and classes, including both data gathering and analysis,
which could in turn enable similar applications to the ones described
in Section 5. As a proof-of-concept, and without incurring in the
cost of gathering a whole new corpus of descriptions, we resort to
Adobe Stock [2023], a popular service where assets can be searched
by class, and are tagged with keywords provided by artists. We
gather the keywords corresponding to four material classes (“wood”,
“stone”, “brick” and “metal”), quite different in nature from fabrics;
while Adobe Stock does not provide free text descriptions, we aim
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Table 6. Precision (ratio between true positives and predicted positives) of
the automatic classification of keywords from other material categories into
our generic attributes.

color lightness metallic pattern touch use weath. mat_type
wood 0.71 1.00 1.00 0.68 0.75 0.84 1.00 0.89
brick 0.72 0.80 0.67 0.59 0.68 0.83 1.00 0.75
stone 0.52 0.95 0.65 0.52 0.75 0.85 0.83 0.95
metal 0.53 0.47 0.70 0.68 0.75 0.88 1.00 0.67
avg 0.62 0.80 0.76 0.62 0.73 0.85 0.96 0.82

to assess to what extent the keywords are well represented by our
attributes found in Section 4.2.
We remove the attributes that are specific to fabrics, namely:

sewing, weight and military, and rename fabric_type with the corre-
sponding material category (e.g., wood_type). We then automatically
classify keywords from all four classes into the attributes (see Sec-
tion 4.2). Table 6 shows precision values for each attribute and class,
i.e., how many keywords assigned to the attribute truly belong to
it (we obtain the ground truth by manual classification). We see
how precision values are reasonably high, suggesting generality of
our attributes. The exceptions are color, whose low precision is due
to the presence in our lexicon of common objects used as colors
(e.g., olive), and pattern, probably due to the very general nature of
this attribute. While this is a very preliminary analysis, we believe
it hints at the generalization capabilities of our methodology and
derived attributes, and may inspire future work in this direction.
Another interesting avenue of research is exploring generaliza-

tion beyond material categories, such as video or meshes. Besides,
since our methodology lets us relate synthetic graphics primitives
to natural language, we are then free to use our primitives under
arbitrary conditions, for example adapting them to a specialized
context such as garments, or specific environments. An interesting
line of future work would be to exponentially augment datasets
by combining geometries and materials descriptions into new com-
plete descriptions of the combination, enabling virtually infinite
geometry, environment and material combinations for downstream
natural language and visual tasks.

Dataset extension. Weused rendered images instead of photographs
due to the large size of our dataset, since capturing 45,000 samples
of different fabrics under controlled, professional conditions would
impose non-negligible costs. On the other hand, using existing pho-
tographs would introduce uncontrolled variations in geometry and
lighting, which may hamper the task of describing material ap-
pearance. Nevertheless, carefully augmenting our dataset with real
images could enhance the performance of some applications. Ad-
ditionally, our dataset could be further extended by adding expert
terminology to the textual data, and used for instance to investi-
gate social associations typically derived from clothing, such as
occupation, personality, or socioeconomic status.

Generative models. While the challenging task of material gener-
ation is out of the scope of this study, recent material generation
models have used different images as conditions [Guo et al. 2020;
Zhou et al. 2022]. As shown, our dataset enables better visual corre-
spondence between appearance and natural language. Combined
with the strong prior of a fabric material generation model, our

dataset could significantly improve text-conditioned material gen-
eration and editing.

Physical properties. Our dataset consists only of static stimuli.
Although it has been shown that visual appearance dominates over
dynamics when describing most fabrics, certain characteristics may
be better conveyed by simulating the physics of such fabrics in
motion [Aliaga et al. 2015]. Exploring the relative weights of ap-
pearance and dynamics on the perception of fabrics is an interesting
research topic, although requiring a significant amount of work to
model and simulate the physics of the fabrics.
We hope that text2fabric helps enable these and other studies,

which in turn may lead to the creation of novel applications.
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