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Abstract—We describe a method for automatically generat-
ing accurate piecewise planar models of indoor scenes using a
combination of a 2D laser scanner and a camera on a mobile
platform.

The method exploits the complementarity of the sensors.
Mapping techniques applied to 2D laser scans simultaneously
compute a map and the location of the sensor in the unknown
environment. This provides an initial estimate for the vision
algorithms by compensating for rotation, foreshortening and
scale change between images. The vision algorithms are then
able to compute a very accurate registration (via a plane to
plane homography) which is used to segment the model into
planar facets, and to improve the estimate of the model and
sensor position.

Results are demonstrated on a man made scene using a 2D
laser scanner and a calibrated camera mounted on a trolley.

I. I NTRODUCTION

We focus on two approaches to the problem of simulta-
neous estimation of a sensor motion and the observed scene
structure from sensor input. The first is multisensor SLAM
(Simultaneous sensor Location And Map building). The sec-
ond is uncalibrated computer vision reconstruction. Our goal
is the cross-fertilization between these two approaches in or-
der to model and detect facades of indoor scenes.

The robustness of computer vision algorithms is improved
if an initial estimation of the solution is available. We pro-
pose to use SLAM, with non-vision sensors, to provide it.
On the other hand, vision can provide quite accurate angu-
lar measurements and additional redundancy, and SLAM can
benefit from them. This cooperation in terms of robustness
and accuracy is demonstrated in this paper.

In detail we aim to detect planar elements (facades) in in-
door man made environments using sensors mounted on a
trolley (actually a wheelchair). The trolley (see fig. 1) has a
calibrated semimetric camera and a 2D laser, but no odome-
try is used. A hand-held tour is done around a room, gather-
ing continuously laser scans (at 1 per second rate), and taking
manually several pictures at some key locations. The goal is
to automatically process all the gathered data.

First, a 2D map of the area and the location of the trol-
ley in it is computed using SLAM, and then the map is used
as an initial guess for computer vision processing, upgrad-
ing 2D lines to 3D planes. Automatic matches for points on
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Fig. 1. Sensorized trolley. In the experiments we use the SICK 2D laser
scanner and the vision camera. The camera is a1280 × 1024 photogram-
metric calibrated camera.

the planes and a homography mapping are computed by the
vision algorithms and used to delineate the planes. Finally,
a photogrammetric reconstruction of both scene and robot
locations is produced. An alignment for the images of one
pixel accuracy is achieved. The outcome is a 3D reconstruc-
tion, with photogrammetry used to improve on the initial
SLAM estimates.

A. Background

A review of uncalibrated computer vision can be found
in [5] and [8]. We are interested in robust matching, a com-
bination of projective geometry, image processing and ro-
bust statistics that has produced algorithms able to cope with
real images under non-lab conditions; a review of these tech-
niques can be found also in [8].

SLAM, developed mainly in the robotics community, ex-
ploits the complementarity of the information provided by
different sensors mainly: dead reckoning, laser range finder,
sonar and calibrated vision detecting discrete features. The
information provided by all the sensors is reduced to a com-
mon Euclidean geometric framework in order to be com-
bined. The feature locations are represented using a stochas-
tic map. The stochastic map, proposed initially by Smith
and Cheeseman in [13] is the central concept in SLAM.
Since then several implementations have been successfully
reported, especially relevant for us are [3], [2] and [6] for
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Fig. 2. Top shows 2 sample laser scans. The corresponding images below were acquired from the same trolley location, illustrating the structure of the
environment. These images are also used for plane detection. Notice the different scale and foreshortening for the brick wall and for the lockers.

multisensor fusion using discrete features, and [4] for real
time active vision. The correlation among all the features in
the map has proven to be an essential factor to deal with error
drift, produce accurate error estimates, and manage realistic
size maps. In this work the use of joint compatibility data as-
sociation [10] allows a laser SLAM to be computed without
any odometric information.

Geometrically, the computer vision task dealt with in this
work is similar to mosaicing images from a rotating camera
or a planar surface [1], [9]. Both cases are modelled by a ho-
mography. In the rotation case, the (image of) the entire rigid
scene may be mapped by the same homography, while in the
case that the camera translates (as well as rotates) only the
image of points on a scene plane are mapped by a homogra-
phy, and thus segmentation of the image into planar regions
is necessary. In our work, pre-segmentation is aided by non
visual information about the scene and camera motion.

The present work is also related to wide baseline match-
ing [11] where feature matches are used to determine initial
homographies between image pairs. Image synthesis (by ho-
mography warping or more elaborate methods) has also been
used by [7] to improve the correlation based matching per-
formance in the field of video processing for accurate video
insertion and video annotation.

In the literature a number of devices are described for
automated man-made model acquisition [12],[14],[15],[16].
Sequeiraet. al [12] use a 3D range finder to detect the scene
structure and a color video camera to add the texture. In our
work we use a 2D laser scanner, but the cameras are used not
only to detect the texture but also to infer the scene structure.
Teller, in [14] proposes a system based on omnidirectional

images to recover urban scenes. The omnidirectional images
are synthesized from a rotating camera, and their wide angle
improves the conditioning of the computer vision problem.
The system can deal with huge scene sizes, using mainly vi-
sual information. Taylor [15] uses also an omnidirectional
camera to locate a robot with respect to known landmarks.

II. L ASER 2D MAP

We will only give a sketch here of the SLAM laser pro-
cessing, a detailed description can be found in [3]. The
trolley gathers a laser scan per second continuously. Fig. 2
shows two sample scans. The laser points are segmented into
a set of straight segments.

The laser scans are processed sequentially in a prediction-
match-update loop. In every step there is a data associa-
tion stage to match the new laser segments with the avail-
able map, non matched segments are included as new map
features; then the map is reestimated considering the new
matches. Classical data association matches every segment
as an isolated entity, however in this work we have used
a joint compatibility data association [10] that considers
jointly all the matches; this makes the data association ro-
bust and the map can be built without using any odometric
information. Fig. 3 shows the final 2D map.

III. T WO VIEW PLANE GEOMETRY

The geometry of a plane observed by two cameras (see
fig. 4), plays a central role in this work, and we now review
the inter-image relations induced by a scene plane.

Camera location is defined by a frame attached to its op-
tical centre. LetX = (X, Y, Z, 1)> be the homogeneous
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Fig. 3. The 2D map computed from the laser range finder data without the
use of any odometry. The trolley trajectory is shown as well. The locations
where an image was acquired are shown as triangles. The two trolley loca-
tions (see the corresponding images in fig 2) and the two planes (brick wall
and lockers) used in the example are marked.

coordinates of a 3D point with respect to the cameraC. Let
elements with′ denote elements in the second camera. The
second camera location is represented by the change of co-
ordinatesR andt from C ′ to C.

If the location of an image point(u, v) is represented by
its homogeneous coordinates:x = λ(u, v, 1)> ∀λ 6= 0,
then the two images of the same pointX on the plane are
related by3× 3 homographyH (see [8]):

x = Hx′

H = λK

(
R− tn>

d

)
K ′−1 ∀λ 6= 0 (1)

whereK is the camera calibration matrix [8]. The plane
equation in theC frame is(n d)>X = 0.

IV. SCENE PLANE INSTANTIATION AND MAPPING

This section describes the algorithm for facade mapping
starting from the 2D laser SLAM map and two images of the
facade.

An initial guess for both camera location and polyhedral
structure is derived from the laser map. A 2D laser scan
segment instantiates a vertical wall plane (a facade) of the
same width as the segment, and with a nominal height for
the room.

Given two views, each rectangular facade projects onto
the images as two areas of interest. Corresponding points in
those areas are related by the mapping of (1). The images are
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Fig. 4. Two view geometry of a plane.

prealigned according to this homography using the SLAM
estimates of rotation and translation.

Improved alignments are then used to correct the relative
camera-planes location. Although these homographies can
be found using point correspondences the automatic compu-
tation between different views is prone to error as different
features may be computed in each image. Therefore, a ro-
bust fitting method able to deal with spurious matches must
be used. A detailed description of the classical robust estima-
tion of an homography can be found in [8]. The algorithm is
sketched in fig. 5. We include the additional step (1) to ex-
ploit the initial guess for the homography derived from the
SLAM map.

The algorithm has a random nature and has a proba-
bility of succeedingp, related to the number of attempts
at step (3) according to:N = log(1−p)

log(1−(1−ε)4) where ε =

number of spurious matches
number of putative matchesis the spurious (outlier) rate.

N can be adaptively computed. A high spurious rate is
initially assumed. When step (4,ii) computes the number of
inliers, it sets an upper bound on the number of outliers and
therefore onN .

The previous algorithm works well provided steps (2) and
(3) produce a set of mostly correct putative matches. This
can be done using correlation if the plane is detected in both
images with a similar scale, rotation and foreshortening. We
are dealing with images that do not fulfill these conditions:
for example, the two images of the lockers in fig. 2. How-
ever, the prealignment of the images using the motion and
scene initial guess corrects for these significant perspective
deformations.

The algorithm is illustrated for the images of Fig. 2. Fig. 6
shows the various steps in the processing.



Input data :
2 images of the plane
Estimated location for camera and plane

Output data:
Final Homography H

Point Matches{xi, x
′
i} i = 1 . . . n

Algorithm
(1) Initial image alignment : from SLAM
(2) Interest point detection:Harris detector
(3) Putative correspondences:compute point

matches based on image proximity and
similarity of their intensity neighbourhood.
Similarity is measured with correlation

(4) RANSAC H estimation:
Repeat forN attempts:

(i) Select randomly 4 point matches.
ComputeH
(ii) Calculate how many putative matches
are inliers, i.e are consistent withH

Select theH with most inliers.
(5) Nonlinear H estimation: from the inliers
(6) Guided matching: Further matches

are determined usingH to define
the search region.

Steps (5) and (6) are iterated until the correspondences
are stable

Fig. 5. Planar homography computation algorithm.

V. PLANE SEGMENTATION

Having computed the homography for the plane we now
have a point to point map available between the images. The
goal then is to determine which image pixels are image of
a facade. The idea is to segment the plane by identifying
which pixels are consistent with the supplied homography
mapping. The input data consists of two views of a scene
plane and the plane induced homography.

If the surfaces were Lambertian and the illumination con-
stant, two images of the same facade aligned according to
the computed homography should be coincident for every
pixel. To increase the robustness with respect to illumination
changes, a window around every pixel is used to determine
the similarity between the pixels, and thereby if the pixel is
an image of the considered plane.

The score used is the normalized correlation over the win-
dow around each pixel after having aligned the images ac-
cording the computed homography.

NCC =

∑
i,j (wij − w̄)

(
w′

ij − w̄′)
√∑

i,j (wij − w̄)2
∑

i,j

(
w′

ij − w̄′)2

wherewij andw′
ij are the intensities for two windows cen-

Fig. 6. Top row shows the images in fig. 2 aligned according to the SLAM
map for the lockers plane. The considered region of interest is highlighted.
Top left image shows the putative matches. Top right the inliers, all of them
in the plane of the lockers. The bottom row shows a detail of the initial
SLAM image alignment (left) and the alignment with the computed ho-
mography (right); the final alignment for the plane of the lockers is accurate
up to the pixel level.

tred respectively around the corresponding aligned pixels.
Isolated plane regions smaller than0.5% of the image sur-
face are removed. Fig. 7 shows the segmented plane for the
lockers’ facade.

VI. BUNDLE ADJUSTMENT FROM POINT MATCHES

Once the point matches have been computed, a conven-
tional bundle adjustment can be applied to recover both the
3D scene and the cameras’ location. It consists of a non lin-
ear optimization to reduce the re-projection error in the im-
age.

Let Xj be the scene points, andP i the calibrated cam-
eras (whose only free parameters are their location). Then
P iXj is the theoretical image of pointXj seen by camera
P i actually detected as pointxi

j .
We want to compute the camera motionP i and 3D point

locationsXj such that:
∑

i,j

d
(
P iXj , x

i
j

)2

is minimized, whered
(
P iXj ,x

i
j

)
is the geometric dis-

tance between the predicted and the actual image of a 3D
point. See [8] for further details.



Fig. 7. Segmented image area as belonging to the plane of the lockers.

TABLE I

RANSAC RESULTS FOR ALL THE CORRECTPVPS

mean min max

inliers fraction 39% 18% 68%
RANSAC iterationsN 524 34 4479
SLAM alignment error (px) 31.7 2.8 70.7
final alignment error (px) 1.0 0.5 1.7

Fig. 8 shows the points and the cameras after the bun-
dle adjustment, for the brick wall and lockers facade in two
views. Fig. 9 shows the results of these two planes in 4 views.

VII. E XPERIMENTAL RESULTS

To test the performance of the proposed algorithm in de-
tecting planes, it has been applied to the four planes marked
in the map shown in fig. 3. The goal was to compute auto-
matically all the pairwise matches and from them to compute
a bundle adjustment.

We call PVP (Plane View Pair) a plane detected in two dif-
ferent views. Considering the four planes over all the views,
there were 39 feasible PVPs. The goal was to automatically
detect two view point matches belonging to the plane. After
manual verification the results were:
• 3 PVPs were not detected because less than 8 putative

matches were found. They corresponded to planes with
small overlap between the views.

• 1 PVP was detected erroneously. However only 10 in-
lier matches were detected, so if only PVPs with a high
number of matches were accepted the system could au-
tomatically detect only correct PVPs.

• 35 PVPs were correctly detected.
Table I summarizes the results of the robust RANSAC

plane estimates. Due to the high spurious rate it is absolutely

Fig. 8. 3D reconstruction after bundle adjustment. The 3D location for the
matched points in the two views. The detected points are a very good fit to
the two planes corresponding to the corner.

necessary to use robust statistics. It can be seen how the num-
ber of inliers is sometimes under 50%; the algorithm copes
with this because the outliers error is uncorrelated and there
is not a model consistent with all of them.

The outliers fraction cannot be anticipated so it is efficient
to estimate it adaptively, as detailed in section IV.

The computed homography was able to reduce the mis-
alignment of the SLAM initial guess, whose initial align-
ment errors were unacceptable for computer vision applica-
tions.

VIII. D ISCUSSION AND FUTURE WORK

The automatic acquisition of indoor man-made polyhedral
models using a sensorized trolley has been shown to be pos-
sible. The key idea has been the combination of a laser 2D
range finder and a calibrated camera. An accuracy in image
alignment of about one pixel has been achieved.

The results show the feasibility of this technique with real
data, however more work is needed for reliable detection and
mosaicing of plane textures. For example, although the plane
delineation works well in textured areas, it is ambiguous in
untextured areas.

Future work is aimed at integrating the visual information
into the SLAM formalism for the joint consideration of the
vision and laser constraints.
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Fig. 9. 3D reconstruction from point matches. Left shows a top view and right a general one.
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