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Abstract

The validation of matching hypotheses using Mahalanobis distance is extensively
utilized in robotic applications� and in general data�association techniques� The Ma�
halanobis distance� de�ned by the innovation and its covariance� is compared with a
threshold de�ned by the chi�square distribution to validate a matching hypothesis�
the validation test is a time�consuming operation� This paper presents an e�cient
computation for this test�

The validation test implies a computational overhead for two reasons� �rst� be�
cause of covariance matrix inversion� and second because the computation of the
covariance and innovation terms are also expensive operations� in fact� more expen�
sive than the inversion itself�

The method described here can be summarized as an incremental� non�decreasing
computation for the Mahalanobis distance� if the incrementally computed value
exceeds the threshold then the computation is stopped� The elements of covariance
and innovation� and the matrix inversion itself� are only computed if they are used�
progressivity is the major advantage of the method� The method is based upon the
square�root�free Cholesky	s factorization�

In addition� a lower bound for the Mahalanobis distance is proposed� This lower
bound has two advantages� it can be progressively computed� and it is greater than
the classical trace lower bound�
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� Introduction

In robotic applications� real�time aspects are important� and e�cient algo�
rithms are needed to implement both recognition and robot reactivity from
recognition� Focusing the attention on the issue dealt with in this paper� in
many robotic applications a combination and fusion of error�prone or im�
precise information obtained from multiple sensors is achieved� Many current
works use a probabilistic representation of the uncertainty and a Kalman Filter
formulation to fuse and validate sensor information� and to estimate geomet�
ric parameters describing the environment� In �Ayache and Faugeras� ��	
�
Tard�os ����
� nonlinear implicit equations are used to represent the relation�
ships between sensor measurements� and the geometric parameters represent�
ing the geometric features and calibration parameters involved� or to represent
geometric constraints such as perpendicularity� intersection� and parallelism�
A chi�square test is proposed here so as to accept new measurements before
integrating them� Durrant�White ���		
 also uses implicit equations to repre�
sent geometric features� and the Mahalanobis distance test is carried out for
clustering di�erent measurements in a general multisensor system� In �Crowley
����
� a general formulation for linear and nonlinear measurement equations
is presented� and applied to navigation and perception for autonomous mo�
bile robots� The Mahalanobis distance is used for matching observations and
state prediction� Castellanos et al �����
 also use this matching framework to
pair and fuse laser and vision observations of a �D segment for mobile robot
navigation�

The matching between the estimated features and the observations detected
after a sensing operation is determined using data�association techniques�
The use of data association for matching allows one to bene�t from using
a well�founded theory �Bar�Shalom and Fortmann ��		
� Data�association al�
gorithms include a hypothesis�validation step� based on Mahalanobis distance�
this step is one of the most time�consuming operation of the matching process
�Cox ����
� This validation step is known also as �gate validation��

After a sensing operation�M feature location estimates� and N measurements�
are available� The problem is how to associate each measurement with a fea�
ture estimate� spurious measurements and target initiation should be also
considered� Initially� there are MN pairing hypotheses� however most of the
data�association techniques perform a validation test for each pairing hypoth�
esis in order to work with only a reduced set of validated hypotheses� The
validation is performed using a statistical test based on the Mahalanobis dis�
tance �left�hand term in the inequality
�

vTC��v � ��� ��


�



The validation procedure is time�consuming because�

� Matrix inversion is a time�consuming operation�
� The computation of matrix C and vector v is in itself time�consuming due�
to linearizations�

� The test should theoretically be computed for MN hypotheses�

This paper presents a progressive method of computing the Mahalanobis dis�
tance� By progressive is meant that the Mahalanobis distance is computed
incrementally as a non�decreasing quantity� If the incrementally computed
value exceeds the �� threshold� the computation is stopped� The elements of
C� and v� and the matrix inversion itself� are computed only if they are used
before the computation is stopped� The progressivity is the core idea of the
proposal� because the rejected hypotheses can be detected at early stages� and
hence the computational load is reduced�

From the progressive computation� a lower bound for the Mahalanobis distance
can be deduced� allowing some hypotheses to be rejected without Mahalanobis
distance computation� Orr �����
 proposed a lower bound based on trace of the
matrix C� The lower bound presented in this paper has two main advantages
over the trace bound�

� It can be computed progressively� using the C elements progressively� so
if the hypothesis is rejected at an early stage only the elements actually
utilized are computed�

� It is greater than the trace lower bound� implying a bigger rejection ratio�

In fact� in the experimental results below� a comparison between the two
techniques is presented�

Several solutions have been proposed to reduce the computational load due to
hypothesis validation� The proposed techniques are focused on the reduction
of the number of hypotheses to be validated� Zhang and Faugeras �����
 pro�
posed the use of �bucketing� to reduce the number of hypotheses when the es�
timated feature and the measurement are �D segments� Collins and Uhlmann
�����
 proposed a technique which signi�cantly reduces the problem com�
plexity� using multidimensional search trees� In any case� after the reduction
of the hypotheses� the hypotheses should �nally be validated� and the progres�
sive test proposed in this paper will perform more e�ciently than computing
the Mahalanobis distance �rst and testing the threshold afterwards� Besides�
the reduction of hypotheses is not easily performed when the observations are
partial observations of the estimated feature� because they are related by a
nonlinear implicit measurement equation�

The next section is devoted to presenting the notation and computation of
the Mahalanobis distance using the LDLT factorization �Bierman ��


� it is
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a square�root�free Cholesky�s factorization� Section � presents a description of
how to perform the validation test progressively� Section � is devoted to com�
puting a lower bound for the Mahalanobis distance� Next� Section � presents
a geometrical interpretation for the lower bound� and Section � summarizes
the computational cost for the proposed test� the non�progressive test and
two lower bounds for the Mahalanobis distance� Section 
 shows the compu�
tation reduction on real sensor information� Finally in section 	 conclusions
are drawn�

� Problem statement

��� Notation

Lower�case letters will be used� v� y� � � �� for vectors� their components are
represented by the corresponding lower�case letter with a simple subindex� vi�
xi� yi� � � �� Bold upper�case lettersC�G�H� � � � represent matrices� components
of these matrices are represented by the corresponding lower�case letter and
a double subscript� cij� gij� hij� � � �� �LD
ij represents the element ij for the
matrix product LD� Where necessary� the matrix dimension is expressed in a
parenthesized subindex� H�m�n�� The superscript T represents the transpose
operation� The superscript �T stands for the transpose of the inverse of a
matrix�

��� Computation of the Mahalanobis distance

The goal is to determine whether the following inequality is ful�lled�

vTC��v � ��

provided that the matrix C�n�n� is symmetric positive de�nite because it is
a non�singular covariance matrix� This section is devoted to presenting an
e�cient method of Mahalanobis distance computation� This method is the
basis for the de�nitive proposal presented in Section �� The proposed method
is based on LDLT factorization� This factorization is closely related with the
UDUT factorization� in fact both of them were presented by Bierman ���


�
The unique di�erence between them is that the former uses a lower triangular
matrix L� while the latter uses� U� an upper triangular matrix� The UDUT

factorization has been widely used for square�root �ltering� an implementation
of the Kalman �lter which is computationally e�cient and robust to numerical
errors�
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FUNCTION LDLT factorization�C

� INPUT� C symmetric positive de�nite matrix
� RETURN VALUE�
� L lower triangular matrix
� D�� inverse of the diagonal matrix D
BEGIN

FOR i � � TO n DO
FOR j � � TO i� � DO

�LD
ij �

�
�cij �

k�jX
k��

lik�LD
jk

�
A

lij � �LD
ijd
��
jj

END FOR

d��ii �

�
cii �

k�iX
k��

lik�LD
ik

���

END FOR
RETURN L� D��

END

Fig� 
� LDLT factorization algorithm�

It is a well�known fact from numerical analysis �Burden et al ��	�
� that
the product� C��v � y is more e�ciently computed solving the linear sys�
tem Cy � v� Besides� using a factorization method to determine the Maha�
lanobis distance is even more e�cient that solving the previous linear system�
The usual factorization method for symmetric positive de�nite matrices is
Cholesky�s factorization� However� the factorization LDLT �and UDUT 
 is
more suitable for the computation of Mahalanobis distances because� unlike
Cholesky�s factorization� it does not need n square roots �n is the dimension
of matrix C
�

Let C�n�n� be a positive de�nite matrix� then it can be factorized as�

C � LDLT ��


where�

L is a lower triangular matrix� whose main diagonal elements are ��s�
D is a diagonal positive de�nite matrix�

Figure � presents the factorization algorithm� The algorithm computes L and
D��� D�� is computed instead of D because only the inverse of the diagonal
elements are used in the algorithm and subsequent computations� The matrix
product LD is stored as an intermediate value�
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ops� iteration i total ops� dimension n

step ��� � � ��� � �

factor� i��i��
�

i���i��
� 
 n��n

	
n���n���n

	 n

forw sub� i� 
 i� 
 n��n
�

n��n
�

dot prod� 
 � n n� n

total i���i��
�

i��
i��
� 
 n���n���n

	
n��	n��
n

	 n

Table 

Operations to compute the Mahalanobis distance

Next� this section presents how to use ��
 to compute the Mahalanobis dis�
tance�

vTC��v � vT
�
LDLT

���
v � vTL�TD��L��v

so�

vTC��v � wTD��w �
nX

k��

w�
i d

��
ii ��


where w � L��v is computed solving the linear system�

Lw � v�

As L is lower diagonal with ��s in its diagonal� the previous system is solved
by a forward substitution�

wi � vi �
k�iX
k��

likwi� ��


Table � shows the total of the operations required for the Mahalanobis distance
computation� split into the following steps� factorization� i�e� computation of
L and D��� forward substitution� expression ��
� and dot product� expression
��
� The operations for step i of algorithm �� and the total operations for a
dimension�n problem are shown�

��� Computation of the covariance matrix

The validation test� usually comes from the linearization of a nonlinear mea�
surement equation� The focus here is on solving problems using a implicit

�



measurement equation �Ayache and Faugeras ��	
� Tard�os ����
�

� � f �x� z


where x is the state and y the measurement� Linearizing around the point
x � �� z � ��

� � v �Hx�Gz

where�

H�
�f �x� z


�x

�����
�x���z���

G �
�f �x� z


�z

�����
�x���z���

v� f j�x���z����

So the covariance matrix C � Cov �v
 is�

C�n�n� � HPHT �GQGT ��


where P � Cov �x
 and Q � Cov �z
 are the covariance matrices correspond�
ing to x and z� It should be pointed out that H and G� the linearization
matrices� depend on both of the elements of the pairing hypothesis� Because
of this there are di�erent linearization matrices �H and G
 for each hypothe�
sis� thus impeding the to use of the hypothesis reduction proposed by �Collins
and Ulhmann ����
 � because no explicit measurement equation is available�

Consider the �rst addend �the other matricial addend can be considered sim�
ilarly
�

H�n�m�P�m�m�H
T � ��


As will be shown in Section ���� the complexity of the previous matrix product
is �the reduction due to matrix symmetry has been considered
�

n �m� �m
 � n��n
�

m products

n �m� �m
 � n��n
�

m additions�
�



Normally n � m because normally the state dimension is bigger than the
measurement dimension� So�m � n is an optimistic assignment with regard to
complexity� an thus covariance matrix computation implies O

�
�n�

�

�
products

and additions per matricial addend� which is bigger than the distance cost�






O
�
n�

	

�
� Additionally� the elements ofH andG should be computed� and often

imply time�consuming operations such as trigonometric functions or square
roots�

� Progressive validation

In order to reduce the computational load for hypothesis validation this paper
proposes the use of the algorithm presented in Section ��� in a progressive way�
The Mahalanobis distance is computed in a progressive and non�decreasing
way� so as soon as the distance is detected as being bigger than ��� the com�
putation is stopped� The elements of the covariance matrix C and v can also
be computed progressively� so only the elements that are actually used are
computed� The progressive computation is an e�cient technique because in
many applications� most of the hypotheses ���� or even more
 are rejected�
so in most of the cases the computation is stopped before computing the full
Mahalanobis distance�

This section is devoted to presenting the progressive algorithm for the Maha�
lanobis distance computation� Section ��� is devoted to the progressive com�
putation of the covariance matrix�

The core idea of the progressive algorithm is that the Mahalanobis distance
is computed as the dot product �see ��

�

wTD��w �
nX
i��

w�
i d

��
ii �

As D is positive de�nite� all the addends of the summation are positive� Thus�
it is computed as an addition of positive terms� The elements of w and D��

can be computed progressively� so the Mahalanobis distance can be computed
progressively as a non�decreasing quantity� in n steps� n being the dimension
of the covariance matrix�

The main steps of the progressive algorithm are also factorization� forward
substitution and dot product� A detailed algorithm is presented in Fig� �� The
complexity of the algorithm is shown in Table ��

��� Progressive computation for the covariance matrix

As has been mentioned� one of the main advantages of the proposed algorithm
is that covariance matrix elements are computed only when necessary� This

	



FUNCTION progressive validation�P�Q�v� ��

� INPUT� P� Q covariance matrices
� v vector to validate
� �� threshold for the statistical test
� RETURN VALUE�
� IF vTC��v � �� THEN ����
� ELSE vTC��v
BEGIN

maha dist � ���
FOR i � � TO n DO
�factorization
fH�Gg �compute i row linearization�H�G� i

C �compute i row covariance�P�Q�C�H�G� i

FOR j � � TO i� � DO

�LD
ij �

�
�cij �

k�jX
k��

lik�LD
jk

�
A

lij � �LD
ijd
��
jj

END FOR

d��ii �

�
cii �

k�iX
k��

lik�LD
ik

���

wi � vi �
k�iX
k��

likwk �forward substitution

maha dist � maha dist �w�
i d

��
ii � dot prod�

IF maha dist� �� THEN RETURN ����
END FOR
RETURN maha dist

END

Fig� �� Progressive validation 
PV� algorithm

section presents some remarks and how to do this progressive computation
e�ciently�

Consider again the �rst addend of expression ��
 �the other addend can be
treated similarly
� The product can be expressed as�

H�n�m�P�m�m�H
T �

�
BBBBBB�

hT
�
���
hT
i
���
hT
n

�
CCCCCCA
P �h� � � �hj � � �hn 


�



so�

cij � hT
i Phj�

As C is a symmetric matrix� only the terms j � i have to be computed� In
addition� the algorithm uses one row after another progressively� and uses only
the computed terms in each row �i � j
�

When a term cij is the �rst one computed in that row� two matrix products
should be computed� �rst

hT
i P m� products� m� additions

and then

�
hT
i P

�
hj m products� m additions

where the complexity is shown next to each product� For any additional ele�
ment cik belonging to the same row� only the product�

�
hT
i P

�
hk m products� m additions

has to be performed� Without loss of generality one can consider that the n
diagonal terms are computed �rst� which implies

n
�
m� �m

�
products� n

�
m� �m

�
additions�

The n��n
�

o��diagonal terms imply n��n
�

m additions and multiplications� So
the total complexity is�

n �m� �m
 � n��n
�

m products

n �m� �m
 � n��n
�

m additions�
�	


It also should be noted that the computation of the elements of a vector hi

can be time�consuming� As j � i� the hj vectors can be reused from the
computation of the previous rows�

��



� One�component bound

From the progressive validation� a lower bound for the Mahalanobis distance
can be deduced�

vTC��v �
nX

i��

w�
i d

��
ii � w�

�d
��
�� �

v��
c��

� ��


The deduction is taking straight from the algorithm of Fig� � after the �rst
iteration�

maha dist�w�
�d

��
��

w�� v�
d���� � c���� �

It should be noted that the vector v can be reordered� this implies only per�
mutations in the rows and columns of C to achieve the covariance matrix for
the reordered vector� Reordering v� every vi can be brought into the �rst row
so� inequality ��
 yields for every i�

vTC��v �
v�i
cii

i � �� � � � � n�

So� the greatest lower bound that can be obtained is�

vTC��v � max
fi�����ng

	
v�i
cii



� ���


The previous lower bound will referred to as the �One Component Bound��
�OCB
�

As the OCB implies a low computational load� it can be used to test if a
hypothesis can be rejected before computing the Mahalanobis distance� If the
OCB is greater than the �� threshold� then the hypothesis can be rejected�
otherwise� the Mahalanobis distance must be computed to test whether the
hypothesis can be eventually accepted� The use of a lower bound is normally
useful because many hypotheses can be rejected without computing the Ma�
halanobis distance� Its main pitfall is that when a hypothesis is not rejected�
the Mahalanobis distance has to be computed� and so for the accepted hy�
potheses�s the OCB is an extra cost�

��



Orr �����
 proposed another lower bound� which will be referred to here as
the �Trace Bound� �TB
�

vTC��v �

Pn
i�� v

�
iPn

i�� cii
�

Pn
i�� v

�
i

trace �C

� ���


As the following two propositions will prove� the OCB ���
 is a greater lower
bound than the TB ���
� i�e��

vTC��v � max
fi�����ng

	
v�i
cii



�

Pn
i�� v

�
iPn

i�� cii
� ���


Proposition � Let be a� b� c� d � � then�

a

b
�

c

d
�

a

b
�

a� c

b� d
�

c

d
� ���


The equality case yields�

a

b
�

c

d
�

a � c

b � d
�

a

b
�

c

d
�

PROOF� Since�

a

b
�

c

d
� a �

bc

d
�

a � c

b� d
�

bc
d
� c

b � d
�

c �b � d


d �b � d

�

c

d
�

Analogously�

a

b
�

c

d
� c �

ad

b
�

and then�

a� c

b� d
�

a� ad
b

b � d
�

a �b � d


b �b � d

�

a

b
�

Proposition � Let be v � �n and C a de�nite positive matrix of dimension

n� Without loss of generality� consider that the values
�

v�
i

cii

�
i � � � � � n can

be sorted as�

v�
�

c��
�

v�
�

c��
� � � � � v�n

cnn
�

��



Then�

v�n
cnn

�

Pn
i�� v

�
iPn

i�� cii
�

Pn
i�� v

�
i

trace �C

�

The equality case implies that if�

v�
�

c��
�

v�
�

c��
� � � � � v�n

cnn

then� P
n

i��
v�
iP

n

i��
cii

�
v�
�

c��
�

v�
�

c��
� � � � � v�n

cnn
�

PROOF� This proposition is demonstrated by induction�

� It is ful�lled for n � �� This is trivial�
� Provided that is ful�lled for n�

v�n
cnn

�

Pn
i�� v

�
iPn

i�� cii
�

v�n��
cn�� n��

�

Pn
i�� v

�
iPn

i�� cii

because
v�
n��

cn�� n��
� v�n

cnn
� Identifying in ���	�

a	 v�n�� b	 cn�� n�� c	
nX

i��

v�i d	
nX

i��

cii

the conditions for proposition � are ful�lled and then�

v�n��
cn�� n��

�

Pn��
i�� v

�
iPn��

i�� cii
�

So ���
 has been proved� Thus the OCB can reject more hypotheses before
computing the Mahalanobis distance� than the TB�

It should be pointed out that the two lower bounds� the OCB and the TB�
have an important computational cost due to the matrix covariance terms
involved� Both bounds use cii elements� and all of those elements belong to
di�erent rows� so the computation of all of them implies �see section ���
�
n �m� �m
 additions and multiplications per matricial addend� Additionally�
all the elements for the linearization matrices and for vector v should be
computed�

However� OCB can be computed progressively� In fact� it is not necessary to

compute all the
v�
i

cii
terms� then select the maximum and then test whether it

��



trace boundv2

v1

one component
 bound

Mahalanobis
 distance+ 2

22c χ

− 2
22c χ

− 2
11c χ + 2

11c χ

Fig� �� Geometrical interpretation for the acceptance regions of the OCB� TB and
the Mahalanobis distance test� for a dimension two example�

is greater than the �� threshold� It is enough to compute the
v�
i

cii
progressively

until one of them is greater than the threshold�

� Geometrical interpretation

This section is devoted to presenting a geometric interpretation of the accep�
tance regions associated with each of the lower bounds� i�e the OCB and the
TB� It is a well�known fact that the acceptance region for the validation test
based on the Mahalanobis distance�

vTC��v � �� ���


is the n�dimensional ellipsoid de�ned by the previous quadratic form� This
section presents a geometric interpretation of the acceptance regions for the
lower bounds�

One�Component Bound �OCB�	� Collins �Collins and Uhlmann ����
 proves
that the border for the region�

	
vT � �v�� � � � � vn
 � �

n� max
fi�����ng

	
v�i
cii



� ��



���


is the n�dimensional bounding box tangent to the ellipsoid ���
� The �n
hyperplanes that de�ne the bounding box are normal to the coordinate
axis� and are de�ned by the equations�

vi � 

q
cii�� i � � � � � n�

��



test H G v C C operations
rows elem diag o��diag

FV n n n n��n
� opsFV
n�

PV k k k k��k
� opsFV
k�

reject n �� n� 
 �
TB n n n 
 �

accept opsFV
n�� n ��

TB n n n n��n
� n� 
 �� 
 �

reject
OCB k k k k �� k �

accept opsFV
n��

OCB n n n n��n
� n �� n �

Table �
Computational Cost Per Hypothesis

Figure � shows a graphical representation for a bidimensional example�
Trace Bound �TB�	� The acceptance region for TB�

	
vT � �v�� � � � � vn
 � �

n�

Pn
i�� v

�
i

trace �C

� ��



���


de�nes a n�dimensional sphere� the spheres radius is
q
trace �C
��� The

previous sphere circumscribes the bounding box de�ned by ���
� To prove
this� observe that all the points of the bounding box are included in the
sphere and its border� because of proposition ��

�v � �n� max
fi�����ng

	
v�i
cii



� ����

Pn
i�� v

�
i

trace �C

� ��

and the equality holds for the �corners� of the bounding box �intersection
of n hyperplanes
�

vi �
q
cii�� i � � � � � n�

v�i
cii

� �� �

Pn
i�� v

�
i

trace �C

� ��

so the corners belong to the sphere border� See Fig� � for a bidimensional
example�


 Computational cost

This section is devoted to presenting a summary of the computational cost of
validating a hypothesis when using four di�erent techniques� The cost is split
into �ve components� ��
 Number of rows of the linearization matrices �H and
G
 that should be computed� ��
 number of elements of the innovation vector�

��



v� that should be computed� ��
 number of diagonal elements of covariance
matrix C that should be computed� ��
 number of o��diagonal elements of
C that must be computed� and ��
� arithmetic operations involved� Table �
summarizes the computational cost� the expression opsFV�m
 stands for the
number of operations required to perform a full validation for a dimension m
problem �see Table �
� Next the cost for each validation technique is detailed�

Full Validation �FV�	� First� the Mahalanobis distance is computed� and
then this is tested to see if it is greater than the threshold� The computa�
tional cost is �xed for all hypotheses� irrespective of whether or not they
are validated�

Progressive Validation �PV�	� The algorithm is applied progressively un�
til the progressive distance is greater than the �� threshold� or the total
distance is computed� so� the total cost for a hypothesis depends on the
iteration� k� at which the progressive computation is stopped�

Trace Bound �TB�	� First the TB is computed� If it is greater than the ��

threshold� the hypothesis is rejected� otherwise the full validation is com�
puted to determine if the hypothesis is de�nitively rejected� The computa�
tional cost for a hypothesis depends on whether it is rejected by the trace
test� or not�

One�Component Bound �OCB�	� First the OCB is computed� If it is greater
than the �� threshold� the hypothesis is rejected� otherwise the full valida�
tion is computed to determine whether the hypothesis is de�nitively re�
jected� The OCB is computed progressively� so the cost of a hypothesis
depends on the step� k� at which it is rejected� or on whether the full tests
is computed�

� Experimental results

This section is devoted to presenting an example of the simpli�cation that
can be achieved following the proposed progressive validation �PV
 and the
proposed one�component lower bound �OCB
� The system of the example is a
trinocular stereo system� used to determine the correspondences between the
straight image segments in three images �see Montiel et al �����
 for more
details
� the example processes real sensor information� Two experiments are
considered�

Matching in the second image	 The matches between the segments in the
�rst and the second images are computed� After the generation of hypothe�
ses� ����
 hypotheses are selected to be validated using ��
� ���� hypotheses
are �nally validated� so the acceptance ratio is ���
��

Matching in the third image	 The matches for the third image segments
are considered� After hypothesis generation� ������ hypotheses are consid�

��



ered� to be validated using ��
� ��
 hypotheses are �nally validated� so the
acceptance ratio is ������

These two examples are presented to show the behavior of the di�erent val�
idation methods with respect to the acceptance ratio� For each experiment�
two cases for computing the covariance matrix are considered�

��
 The covariance matrix obtained through the linearization �see Section� ���
�

C����� � H�����P�����H
T �G������Q�������G

T

In this example� Q is block diagonal� considering that�

G �
h
J���
� K���	�

i
Q �



R�
�
� �

� S�	�	�

�

the C computation can be expressed as�

C � H�����P�����H
T � J���
�R�
�
�J

T �K���	�S�	�	�K
T

which is the linearization used by the real system� From complexity analy�
sis presented in Section ���� the complexity for each diagonal term is ���
additions and ��� products� for each additional o��diagonal term in the
same row �� additions and products are necessary� As this cost is big�
ger than the dimension�� full validation ��� additions� �� products and
� divisions
� the complexity analysis for this case is approximated by the
complexity of the covariance computation� Experimental results validate
this simpli�cation because the time required for validation is negligible
with respect to covariance computation�

��
 The covariance matrix is readily available� without any additional com�
putational cost� The summary proposed in Section � is used to determine
the complexity� but removing the terms related to covariance computa�
tion and linearization� i�e� using the column �operations� of Table ��

These two cases are presented to show the importance of the matrix covariance
computation in nonlinear systems�

For each of the four cases �image � and image �� with and without considera�
tion of covariance computing
 the validation has been done using four meth�
ods� FV� PV� OCB and TB� For each experiment� the theoretical complexity
is determined� expressed as the number of arithmetic operations to be per�
formed� The execution time of the corresponding algorithm on a computer
Sun Sparc ��� ���MHz is also shown� In order to compare the results� the
reduction factor with respect to FV is computed for the rest of the validation
techniques� Table � shows a summary of the results�

�




In both images � and �� the rejection rate for the OCB is bigger than for the
TB� This validates experimentally the bene�ts of using a greater lower bound�
The high rejection rate achieved for the OCB before the last step can also be
seen� Note that the PV rejects more hypotheses than the OCB� this can be
seen by considering the accumulated number of rejected hypotheses at each
step�

Next� this paper will focus on the validation� considering the covariance com�
putation cost� In all the experiments the computation time taking into account
the computation of covariance is more than one order of magnitude greater
than the computation of the validation� showing how important is to avoid
the computation of the covariance matrix elements� Also� due to the compu�
tational load for the covariance� the TB cannot reduce the load� because it
needs all the diagonal elements for every hypothesis� Unlike the TB� the PV
and the OCB can do the validation twice faster in image � than in image ��
because the rejection ratio is higher in image �� and most of the hypothesis
can be rejected at an early stage� The reduction predicted by the complexity
analysis agrees with the computation times measured� Progressive methods
�PV�OCB
 perform better than the TB� and of course better than the FV�
There are not big di�erences between the OCB and the PV� However� the PV
performs better when the acceptance ratio is not very low because� unlike the
OCB� it does not add any extra computation for the accepted hypotheses�

Next� consider the cost when the covariance computation is not taken into ac�
count� When the acceptance ratio is high �image �
� the OCB performs better
than the TB because it can reject more hypotheses without distance computa�
tion� remember that the trace bound is always greater than the one�component
bound �see Section �
� Because of the high acceptance ratio� the PV performs
better than the OCB� this is because the validated hypotheses have no addi�
tional extra cost� When the acceptance ratio is low� there are no big di�erences
between the three methods �OCB� TB� PV
� Despite the number of additions
and products being greatly reduced for the OCB� TB and PV with respect
to the FV� it is not the same for divisions� because of that the computation
time is only reduced by a factor ��� �image � without covariance computation

with respect to full validation�

� Conclusions

Computation of the Mahalanobis distance is a time�consuming operation be�
cause of matrix inversion� and because of the computation of the covariance
matrix itself� Due to the linearizations� the most important computational
load is the computation of the covariance matrix�

�	



IMAGE � MATCHING
total hypo� ��

�� accept� ����� accept� ratio �����

FV PV TB OCB
rejected step 
 ������ ������
rejected step � ������ ������
rejected step � 
����� ������ �����

considering matrix covariance computation
�sec� ���� 
��� ���� 
���
reduct� factor 
 ���� ���� ����
adds�prods� ��� ��� �
� ���
reduct� factor 
 ���� ���� ����
without considering matrix covariance computation
�sec� ��� ���� ���� ����
reduct� factor 
 ���� ���� ����
adds 
� ���� ���� ����
prod� 
� ���� 
���� ����
div � 
��� ���� ����
reduct� factor � 
 ���� ���
 ����
reduct� factor � 
 ���� ���� ����
reduct� factor � 
 ���� ���
 ���


IMAGE � MATCHING
total hypo� 
������ accept� ���� accept� ratio ��
��

FV PV TB OCB
rejected step 
 ������ ������
rejected step � 
��
�� 
�����
rejected step � ��
�� ���
�� ��
� �

considering matrix covariance computation
�sec� ���� ���� ���
 ����
reduct� factor 
 ���� ���� ����
adds�prods� ��� ��� ��� ���
reduct� factor 
 ���� ���� ����
without considering matrix covariance computation
�sec� ��� ���� ���� ���
reduct� factor 
 ���� ���� ����
adds 
� 
��� ��
� ����
prod� 
� 
��� ��
� 
���
div � 
�
� 
��� 
�
�
reduct� factor � 
 ��
� ���� �����
reduct� factor � 
 ��

 ��
� ����
reduct� factor � 
 ���� ���� ����

Table �
average per hypothesis complexity

In order to detect e�ciently whether the Mahalanobis distance is greater than
a threshold� it is important to compute the Mahalanobis distance� or a lower
bound to it� progressively� and to stop the computation as soon as it is detected
that the distance is greater than the threshold�

This paper has presented two progressive computations� which have similar
performance�

One�Component bound	� This computes a lower bound for the Maha�
lanobis distance� avoiding its computation� It has two main advantages over
the trace bound� normally used in the literature� ��
 the computation is
progressive� ��
 it determines a greater lower bound� The use of the lower

��



bound is interesting when the rejection rate is very high�
Progressive validation	� This computes the Mahalanobis distance progres�
sively� so that the computation can be stopped as soon as the distance is
detected to be bigger than the threshold� Besides� the progressiveness incurs�
no any additional cost over the Mahalanobis distance computation in any
hypothesis �accepted or rejected
� This test has good performance in every
situation� with high or low rejection rates� and with or without covariance
computation�

The complexity reduction for a dimension�� example is in the interval ����� �����
with a ����� acceptance ratio� and in the interval ����� ��
� with a ����

acceptance ratio� For problems of higher dimension� a better reduction can be
achieved�
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