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Abstract

The validation of matching hypotheses using Mahalanobis distance is extensively
utilized in robotic applications, and in general data-association techniques. The Ma-
halanobis distance, defined by the innovation and its covariance, is compared with a
threshold defined by the chi-square distribution to validate a matching hypothesis;
the validation test is a time-consuming operation. This paper presents an efficient
computation for this test.

The validation test implies a computational overhead for two reasons: first, be-
cause of covariance matrix inversion, and second because the computation of the
covariance and innovation terms are also expensive operations, in fact, more expen-
sive than the inversion itself.

The method described here can be summarized as an incremental, non-decreasing
computation for the Mahalanobis distance; if the incrementally computed value
exceeds the threshold then the computation is stopped. The elements of covariance
and innovation, and the matrix inversion itself, are only computed if they are used;
progressivity is the major advantage of the method. The method is based upon the
square-root-free Cholesky’s factorization.

In addition, a lower bound for the Mahalanobis distance is proposed. This lower
bound has two advantages: it can be progressively computed, and it is greater than
the classical trace lower bound.
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1 Introduction

In robotic applications, real-time aspects are important, and efficient algo-
rithms are needed to implement both recognition and robot reactivity from
recognition. Focusing the attention on the issue dealt with in this paper, in
many robotic applications a combination and fusion of error-prone or im-
precise information obtained from multiple sensors is achieved. Many current
works use a probabilistic representation of the uncertainty and a Kalman Filter
formulation to fuse and validate sensor information, and to estimate geomet-
ric parameters describing the environment. In (Ayache and Faugeras, 1987,
Tardés 1992), nonlinear implicit equations are used to represent the relation-
ships between sensor measurements, and the geometric parameters represent-
ing the geometric features and calibration parameters involved, or to represent
geometric constraints such as perpendicularity, intersection, and parallelism.
A chi-square test is proposed here so as to accept new measurements before
integrating them. Durrant-White (1988) also uses implicit equations to repre-
sent geometric features, and the Mahalanobis distance test is carried out for
clustering different measurements in a general multisensor system. In (Crowley
1995), a general formulation for linear and nonlinear measurement equations
is presented, and applied to navigation and perception for autonomous mo-
bile robots. The Mahalanobis distance is used for matching observations and
state prediction. Castellanos et al (1996) also use this matching framework to
pair and fuse laser and vision observations of a 3D segment for mobile robot
navigation.

The matching between the estimated features and the observations detected
after a sensing operation is determined using data-association techniques.
The use of data association for matching allows one to benefit from using
a well-founded theory (Bar-Shalom and Fortmann 1988). Data-association al-
gorithms include a hypothesis-validation step, based on Mahalanobis distance;
this step is one of the most time-consuming operation of the matching process
(Cox 1993). This validation step is known also as “gate validation”.

After a sensing operation, M feature location estimates, and N measurements,
are available. The problem is how to associate each measurement with a fea-
ture estimate; spurious measurements and target initiation should be also
considered. Initially, there are M N pairing hypotheses; however most of the
data-association techniques perform a validation test for each pairing hypoth-
esis in order to work with only a reduced set of validated hypotheses. The
validation is performed using a statistical test based on the Mahalanobis dis-
tance (left-hand term in the inequality):

viC v < 2 (1)



The validation procedure is time-consuming because:

e Matrix inversion is a time-consuming operation.

e The computation of matrix C and vector v is in itself time-consuming due,
to linearizations.

e The test should theoretically be computed for M N hypotheses.

This paper presents a progressive method of computing the Mahalanobis dis-
tance. By progressive is meant that the Mahalanobis distance is computed
incrementally as a non-decreasing quantity. If the incrementally computed
value exceeds the x? threshold, the computation is stopped. The elements of
C, and v, and the matrix inversion itself, are computed only if they are used
before the computation is stopped. The progressivity is the core idea of the
proposal, because the rejected hypotheses can be detected at early stages, and
hence the computational load is reduced.

From the progressive computation, a lower bound for the Mahalanobis distance
can be deduced, allowing some hypotheses to be rejected without Mahalanobis
distance computation. Orr (1992) proposed a lower bound based on trace of the
matrix C. The lower bound presented in this paper has two main advantages
over the trace bound:

e [t can be computed progressively, using the C elements progressively; so
if the hypothesis is rejected at an early stage only the elements actually
utilized are computed.

e [t is greater than the trace lower bound, implying a bigger rejection ratio.

In fact, in the experimental results below, a comparison between the two
techniques is presented.

Several solutions have been proposed to reduce the computational load due to
hypothesis validation. The proposed techniques are focused on the reduction
of the number of hypotheses to be validated. Zhang and Faugeras (1992) pro-
posed the use of “bucketing” to reduce the number of hypotheses when the es-
timated feature and the measurement are 3D segments. Collins and Uhlmann
(1992) proposed a technique which significantly reduces the problem com-
plexity, using multidimensional search trees. In any case, after the reduction
of the hypotheses, the hypotheses should finally be validated, and the progres-
sive test proposed in this paper will perform more efficiently than computing
the Mahalanobis distance first and testing the threshold afterwards. Besides,
the reduction of hypotheses is not easily performed when the observations are
partial observations of the estimated feature, because they are related by a
nonlinear implicit measurement equation.

The next section is devoted to presenting the notation and computation of
the Mahalanobis distance using the LDL” factorization (Bierman 1977); it is



a square-root-free Cholesky’s factorization. Section 3 presents a description of
how to perform the validation test progressively. Section 4 is devoted to com-
puting a lower bound for the Mahalanobis distance. Next, Section 5 presents
a geometrical interpretation for the lower bound, and Section 6 summarizes
the computational cost for the proposed test, the non-progressive test and
two lower bounds for the Mahalanobis distance. Section 7 shows the compu-
tation reduction on real sensor information. Finally in section 8 conclusions
are drawn.

2 Problem statement
2.1 Notation

Lower-case letters will be used, v, y, ..., for vectors; their components are
represented by the corresponding lower-case letter with a simple subindex: v;,
Zi, Yi, - - .. Bold upper-case letters C, G, H, ... represent matrices; components
of these matrices are represented by the corresponding lower-case letter and
a double subscript: ¢, ¢ij, hij, - - . (LD)ij represents the element ij for the
matrix product LD. Where necessary, the matrix dimension is expressed in a
parenthesized subindex, H;, ). The superscript T yepresents the transpose
operation. The superscript 7 stands for the transpose of the inverse of a
matrix.

2.2 Computation of the Mahalanobis distance

The goal is to determine whether the following inequality is fulfilled:

vIiC v < y?

provided that the matrix C,y) is symmetric positive definite because it is
a non-singular covariance matrix. This section is devoted to presenting an
efficient method of Mahalanobis distance computation. This method is the
basis for the definitive proposal presented in Section 3. The proposed method
is based on LDL” factorization. This factorization is closely related with the
UDUT factorization; in fact both of them were presented by Bierman (1977).
The unique difference between them is that the former uses a lower triangular
matrix L, while the latter uses, U, an upper triangular matrix. The UDU”
factorization has been widely used for square-root filtering, an implementation
of the Kalman filter which is computationally efficient and robust to numerical
errors.



FUNCTION LDL” factorization(C)
; INPUT: C symmetric positive definite matrix
; RETURN VALUE:
; L lower triangular matrix
; D! inverse of the diagonal matrix D
BEGIN

FORi=1TO n DO

FOR j=1TO:—-1DO

k<j
(LD)ij = |G — Zlik(LD)jk)
k=1
END FOR
k<i
dy' = (Cz'z' - Zlik(LD)ik>
k=1
END FOR

RETURN L, D!
END

ij

-1

Fig. 1. LDLT factorization algorithm.

It is a well-known fact from numerical analysis (Burden et al 1981), that
the product: C v = y is more efficiently computed solving the linear sys-
tem Cy = v. Besides, using a factorization method to determine the Maha-
lanobis distance is even more efficient that solving the previous linear system.
The usual factorization method for symmetric positive definite matrices is
Cholesky’s factorization. However, the factorization LDL” (and UDU?) is
more suitable for the computation of Mahalanobis distances because, unlike
Cholesky’s factorization, it does not need n square roots (n is the dimension
of matrix C).

Let Cnxn) be a positive definite matrix; then it can be factorized as:

C = LDL” (2)

where:

L is a lower triangular matrix, whose main diagonal elements are 1’s.
D is a diagonal positive definite matrix.

Figure 1 presents the factorization algorithm. The algorithm computes L and
D !. D! is computed instead of D because only the inverse of the diagonal
elements are used in the algorithm and subsequent computations. The matrix
product LD is stored as an intermediate value.



ops. iteration ¢ || total ops. dimension n
step +/— x || +/- X +
2402 |i%43i—4 nd-n n®+3n%—dn
factor. = | L : : n
. . 2 2_
forwsub.| i —1 | 1—1 SR S
dot prod. 1 2 n n—+n
i243i—2 | i245i—4 n34+3n242n | n346n245n
total 5 5 1 6 6 n

Table 1
Operations to compute the Mahalanobis distance

Next, this section presents how to use (2) to compute the Mahalanobis dis-
tance:

vicTlyv =vT (LDLT)_1 v=v LD 'L v

SO:

viCT'v=w'D"'w =) wld;' (3)

[t 1)
k=1

where w = L™!v is computed solving the linear system:

Lw =v.

As L is lower diagonal with 1’s in its diagonal, the previous system is solved
by a forward substitution:

k<i

Wi =V — Z lirw;. (4)
k=1

Table 1 shows the total of the operations required for the Mahalanobis distance
computation, split into the following steps: factorization, i.e. computation of
L and D!; forward substitution, expression (4); and dot product, expression
(3). The operations for step i of algorithm 1, and the total operations for a
dimension-n problem are shown.

2.8  Computation of the covariance matrix

The validation test, usually comes from the linearization of a nonlinear mea-
surement equation. The focus here is on solving problems using a implicit



measurement equation (Ayache and Faugeras 1987, Tardds 1992):
0="f(x,2)

where x is the state and y the measurement. Linearizing around the point

x=0,z=0:

0~v+Hx+ Gz

where:
H— of (x,z) G_ of (x,z)
0x (x=0,2=0) 0z (x=0,z=0)
V= f|(x:0,z*0)

So the covariance matrix C = Cov (v) is:

where P = Cov (x) and Q = Cov (z) are the covariance matrices correspond-
ing to x and z. It should be pointed out that H and G, the linearization
matrices, depend on both of the elements of the pairing hypothesis. Because
of this there are different linearization matrices (H and G) for each hypothe-
sis, thus impeding the to use of the hypothesis reduction proposed by (Collins
and Ulhmann 1992) , because no explicit measurement equation is available.

Consider the first addend (the other matricial addend can be considered sim-
ilarly):

H(nxm)P(me)HT- (6)

As will be shown in Section 3.1, the complexity of the previous matrix product
is (the reduction due to matrix symmetry has been considered):

n(m?+m) + ”?”m products ™
n (m? +m) + >%m  additions.

Normally n < m because normally the state dimension is bigger than the
measurement dimension. So, m = n is an optimistic assignment with regard to
complexity, an thus covariance matrix computation implies O (3%3) products
and additions per matricial addend, which is bigger than the distance cost,



@) (%3) Additionally, the elements of H and G should be computed, and often
imply time-consuming operations such as trigonometric functions or square
roots.

3 Progressive validation

In order to reduce the computational load for hypothesis validation this paper
proposes the use of the algorithm presented in Section 2.2 in a progressive way.
The Mahalanobis distance is computed in a progressive and non-decreasing
way, so as soon as the distance is detected as being bigger than y2, the com-
putation is stopped. The elements of the covariance matrix C and v can also
be computed progressively, so only the elements that are actually used are
computed. The progressive computation is an efficient technique because in
many applications, most of the hypotheses (99% or even more) are rejected,;
so in most of the cases the computation is stopped before computing the full
Mahalanobis distance.

This section is devoted to presenting the progressive algorithm for the Maha-
lanobis distance computation. Section 3.1 is devoted to the progressive com-
putation of the covariance matrix.

The core idea of the progressive algorithm is that the Mahalanobis distance
is computed as the dot product (see (3)):

w D 'w = Z wdzt

[t}
=1

As D is positive definite, all the addends of the summation are positive. Thus,
it is computed as an addition of positive terms. The elements of w and D!
can be computed progressively, so the Mahalanobis distance can be computed
progressively as a non-decreasing quantity, in n steps; n being the dimension
of the covariance matrix.

The main steps of the progressive algorithm are also factorization, forward
substitution and dot product. A detailed algorithm is presented in Fig.2. The
complexity of the algorithm is shown in Table 1.

3.1  Progressive computation for the covariance matriz

As has been mentioned, one of the main advantages of the proposed algorithm
is that covariance matrix elements are computed only when necessary. This



FUNCTION progressive_validation(P,Q,v,x?)
; INPUT: P, Q covariance matrices
: v vector to validate
; x? threshold for the statistical test
: RETURN VALUE:
; IF vI'C~'v > x> THEN -1.0
: ELSE vIC v
BEGIN
maha_dist = 0.0
FOR i=1TO n DO
;factorization
{H, G} =compute_i row_linearization(H, G,1)
C =compute_i_row_covariance(P,Q,C H, G
FOR j=1TO:—1DO

(LD)ij = (Cij - kf:jlik(LD)jk)

, 2

lij — (LD)Ud]_J
END FOR
k<i -1
d{i = (cm lek (LD), )
k<z
w; = V; — Zlikwk ;forward substitution
k=1

maha dist = maha dist +w?d;'; dot prod.
IF maha dist> x> THEN RETURN -1.0
END FOR
RETURN maha dist

END
Fig. 2. Progressive validation (PV) algorithm

section presents some remarks and how to do this progressive computation
efficiently.

Consider again the first addend of expression (5) (the other addend can be
treated similarly). The product can be expressed as:



SO:

Cij = hZTPh] .

As C is a symmetric matrix, only the terms j < i have to be computed. In
addition, the algorithm uses one row after another progressively, and uses only
the computed terms in each row (i < 7).

When a term ¢;; is the first one computed in that row, two matrix products
should be computed, first

hiTP m? products, m? additions

and then

(hz-TP) h; m products, m additions

where the complexity is shown next to each product. For any additional ele-
ment c;;, belonging to the same row, only the product:

(hz-TP) h, m products, m additions

has to be performed. Without loss of generality one can consider that the n
diagonal terms are computed first, which implies

n (m2 + m) products, n (m2 + m) additions.

n’-n
2

The 22=n off-diagonal terms imply m additions and multiplications. So

2
the total complexity is:

n(m?+m) + ”22_”m products

n(m?+m) + ”2;”m additions.

(8)

It also should be noted that the computation of the elements of a vector h;
can be time-consuming. As j < ¢, the h; vectors can be reused from the
computation of the previous rows.

10



4 One-component bound

From the progressive validation, a lower bound for the Mahalanobis distance
can be deduced:

n 2
_ _ _ v
vicTlv =Y wid;' > wid = L. 9)
i C11
=1

The deduction is taking straight from the algorithm of Fig.2 after the first
iteration:

maha_dist =w?d, !

w1 =11
e |
diy =cip -

It should be noted that the vector v can be reordered; this implies only per-
mutations in the rows and columns of C to achieve the covariance matrix for
the reordered vector. Reordering v, every v; can be brought into the first row
so, inequality (9) yields for every i:

v;

vicT'v >+ i=1,...,n.
Cii

So, the greatest lower bound that can be obtained is:

o2
vIiC'v > max {—l} (10)

— {i=1.n} | ¢

The previous lower bound will referred to as the “One Component Bound”,

(OCB).

As the OCB implies a low computational load, it can be used to test if a
hypothesis can be rejected before computing the Mahalanobis distance. If the
OCB is greater than the x? threshold, then the hypothesis can be rejected;
otherwise, the Mahalanobis distance must be computed to test whether the
hypothesis can be eventually accepted. The use of a lower bound is normally
useful because many hypotheses can be rejected without computing the Ma-
halanobis distance. Its main pitfall is that when a hypothesis is not rejected,
the Mahalanobis distance has to be computed, and so for the accepted hy-
potheses,s the OCB is an extra cost.

11



Orr (1992) proposed another lower bound, which will be referred to here as
the “Trace Bound” (TB).

nv2 nv2

T—1 i=1 Vi i=1 Vi
C > = . 11
v Ve " ci trace (C) (11)

As the following two propositions will prove, the OCB (10) is a greater lower
bound than the TB (11), i.e.:

02 nogy2
vIC v > max {—’} > ==l (12)
{i=1..mn} | ¢ Ei:l Cii
Proposition 1 Let be a,b,c,d > 0 then:
a c a a+c c
- > — - > > — 13
b=d T b brd-d (13)
The equality case yields:
a_c _ atc_a_c
b b+d b d
PROOF. Since:
a_c > bc
b=d "
at+c_%4+c cb+d ¢
b+d~ b+d db+d) d
Analogously:
a_ ¢ o< ad
b=d =
and then:

atec a+ % :a(b—l—d)
b+d~ b+d b(b+d)

Proposition 2 Let be v € R" and C a definite positive matriz of dimension
2

n. Without loss of generality, consider that the values {:—1 1=1...n can

be sorted as:

i A

Ci1 — €2 Cnn

|ww

)
)

12



Then:

2 no,2 no .2
Un S i1 Uy i=1Y;

Con X1 ¢ trace (C)

The equality case implies that if:

2 2 2
o e L2 e = Y
C11 €22 Cnn
then:
n 2 2 2 2
Zl:l Ui = b = by = = Un
=1 Cii C11 C22 Cnn

PROOF. This proposition is demonstrated by induction:

o [t is fulfilled for n = 1. This is trivial.
e Provided that is fulfilled for n,

2
Up

no2 2 no .2
i=1Y; N Unt1 S 2=l U;
= n - n

Cnn i1 Cii Cntlntl  Doieq Cid

v2 v e . .
because —2tl— > Vi Identifying in (13):

Cn+1n+l — Cnn
n n
2 2
a— U, b= Coyinsr c—>Zvi d—>Zcii
i=1 i=1
the conditions for proposition 1 are fulfilled and then,

2 n+1l,,2

i1 Zei=1 Y

— n+1 .

Cp+1 n+1 Zi:l Cii

So (12) has been proved. Thus the OCB can reject more hypotheses before
computing the Mahalanobis distance, than the TB.

It should be pointed out that the two lower bounds, the OCB and the TB,
have an important computational cost due to the matrix covariance terms
involved. Both bounds use ¢; elements, and all of those elements belong to
different rows, so the computation of all of them implies (see section 3.1):
n (m? 4+ m) additions and multiplications per matricial addend. Additionally,
all the elements for the linearization matrices and for vector v should be
computed.

However, OCB can be computed progressively. In fact, it is not necessary to
2
compute all the g— terms, then select the maximum and then test whether it

i1

13
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Fig. 3. Geometrical interpretation for the acceptance regions of the OCB, TB and
the Mahalanobis distance test, for a dimension two example.

2
is greater than the y? threshold. It is enough to compute the %_ progressively
until one of them is greater than the threshold.

5 Geometrical interpretation

This section is devoted to presenting a geometric interpretation of the accep-
tance regions associated with each of the lower bounds, i.e the OCB and the
TB. It is a well-known fact that the acceptance region for the validation test
based on the Mahalanobis distance:

viCTlv < 2 (14)

is the n-dimensional ellipsoid defined by the previous quadratic form. This
section presents a geometric interpretation of the acceptance regions for the
lower bounds:

One-Component Bound (OCB).- Collins (Collins and Uhlmann 1992) proves
that the border for the region:

{vT = (v,...,v,) € R"/ max {”—2} < XZ} (15)

{i=1..n} | ¢i
is the n-dimensional bounding box tangent to the ellipsoid (14). The 2n

hyperplanes that define the bounding box are normal to the coordinate
axis, and are defined by the equations:

v; = E/ex? i=1...n.

14



test HG v C C operations
rows | elem | diag | off-diag

H FV ‘ n ‘ n ‘ n ‘ "ZTfn ‘ opsFV(n) H
IPv | kK | & | k| B2 | opsFV(R) |
reject n*xn—1+

TB n n n 1=+
accept ‘ opsFV(n), n x*,
TB n n n "22_" n—1+4+,1+
reject

OCB k k k kx k=
accept ‘ opsFV(n),
OCB n n n "2;" n*,n =

Table 2
Computational Cost Per Hypothesis

Figure 3 shows a graphical representation for a bidimensional example.
Trace Bound (TB).- The acceptance region for TB:

n 2
T n i=1Y; 2
= .. — <

defines a n-dimensional sphere; the spheres radius is y/trace (C) x2. The
previous sphere circumscribes the bounding box defined by (15). To prove
this, observe that all the points of the bounding box are included in the
sphere and its border, because of proposition 2:

v max <{ — = ==t <
{i=t.n} ¢ | — X trace (C) X

and the equality holds for the “corners” of the bounding box (intersection
of n hyperplanes):

o2 no2
v; = ciiXQizl...n:>—l:X2:>£:X2
Cii trace (C)

so the corners belong to the sphere border. See Fig.3 for a bidimensional
example.

6 Computational cost

This section is devoted to presenting a summary of the computational cost of
validating a hypothesis when using four different techniques. The cost is split
into five components: (1) Number of rows of the linearization matrices (H and
G) that should be computed, (2) number of elements of the innovation vector,

15



v, that should be computed, (3) number of diagonal elements of covariance
matrix C that should be computed, (4) number of off-diagonal elements of
C that must be computed, and (5), arithmetic operations involved. Table 2
summarizes the computational cost; the expression opsFV(m) stands for the
number of operations required to perform a full validation for a dimension m
problem (see Table 1). Next the cost for each validation technique is detailed:

Full Validation (FV).- First, the Mahalanobis distance is computed, and
then this is tested to see if it is greater than the threshold. The computa-
tional cost is fixed for all hypotheses, irrespective of whether or not they
are validated.

Progressive Validation (PV).- The algorithm is applied progressively un-
til the progressive distance is greater than the y? threshold, or the total
distance is computed; so, the total cost for a hypothesis depends on the
iteration, k, at which the progressive computation is stopped.

Trace Bound (TB).- First the TB is computed. If it is greater than the x?
threshold, the hypothesis is rejected; otherwise the full validation is com-
puted to determine if the hypothesis is definitively rejected. The computa-
tional cost for a hypothesis depends on whether it is rejected by the trace
test, or not.

One-Component Bound (OCB).- First the OCB is computed. If it is greater
than the x? threshold, the hypothesis is rejected; otherwise the full valida-
tion is computed to determine whether the hypothesis is definitively re-
jected. The OCB is computed progressively, so the cost of a hypothesis
depends on the step, k, at which it is rejected, or on whether the full tests
is computed.

7 Experimental results

This section is devoted to presenting an example of the simplification that
can be achieved following the proposed progressive validation (PV) and the
proposed one-component lower bound (OCB). The system of the example is a
trinocular stereo system, used to determine the correspondences between the
straight image segments in three images (see Montiel et al (1995) for more
details); the example processes real sensor information. Two experiments are
considered:

Matching in the second image. The matches between the segments in the
first and the second images are computed. After the generation of hypothe-
ses, 69117 hypotheses are selected to be validated using (1). 3922 hypotheses
are finally validated, so the acceptance ratio is 5.67%.

Matching in the third image. The matches for the third image segments
are considered. After hypothesis generation, 160464 hypotheses are consid-

16



ered, to be validated using (1). 257 hypotheses are finally validated, so the
acceptance ratio is 0.16%.

These two examples are presented to show the behavior of the different val-
idation methods with respect to the acceptance ratio. For each experiment,
two cases for computing the covariance matrix are considered:

(1) The covariance matrix obtained through the linearization (see Section. 2.3):
Cixs) = H(3><3)P(3><3)HT + G(3><11)Q(11><11)GT
In this example, Q is block diagonal; considering that:

R 0
G = [Js.5) Kixs)| Q= l 0 S(m)]

the C computation can be expressed as:
C= H(3x3)P(3><3)HT + J(3><5)R(5><5)JT + K(3><6)S(6><6)KT

which is the linearization used by the real system. From complexity analy-
sis presented in Section 3.1, the complexity for each diagonal term is 252
additions and 252 products; for each additional off-diagonal term in the
same row 42 additions and products are necessary. As this cost is big-
ger than the dimension-3 full validation (12 additions, 16 products and
2 divisions), the complexity analysis for this case is approximated by the
complexity of the covariance computation. Experimental results validate
this simplification because the time required for validation is negligible
with respect to covariance computation.

(2) The covariance matrix is readily available, without any additional com-
putational cost. The summary proposed in Section 6 is used to determine
the complexity, but removing the terms related to covariance computa-
tion and linearization; i.e. using the column “operations” of Table 2.

These two cases are presented to show the importance of the matrix covariance
computation in nonlinear systems.

For each of the four cases (image 2 and image 3, with and without considera-
tion of covariance computing) the validation has been done using four meth-
ods: FV, PV, OCB and TB. For each experiment, the theoretical complexity
is determined, expressed as the number of arithmetic operations to be per-
formed. The execution time of the corresponding algorithm on a computer
Sun Sparc 20, 150MHz is also shown. In order to compare the results, the
reduction factor with respect to F'V is computed for the rest of the validation
techniques. Table 3 shows a summary of the results.

17



In both images 2 and 3, the rejection rate for the OCB is bigger than for the
TB. This validates experimentally the benefits of using a greater lower bound.
The high rejection rate achieved for the OCB before the last step can also be
seen. Note that the PV rejects more hypotheses than the OCB; this can be
seen by considering the accumulated number of rejected hypotheses at each
step.

Next, this paper will focus on the validation, considering the covariance com-
putation cost. In all the experiments the computation time taking into account
the computation of covariance is more than one order of magnitude greater
than the computation of the validation, showing how important is to avoid
the computation of the covariance matrix elements. Also, due to the compu-
tational load for the covariance, the TB cannot reduce the load, because it
needs all the diagonal elements for every hypothesis. Unlike the TB, the PV
and the OCB can do the validation twice faster in image 3 than in image 2,
because the rejection ratio is higher in image 3, and most of the hypothesis
can be rejected at an early stage. The reduction predicted by the complexity
analysis agrees with the computation times measured. Progressive methods
(PV,0CB) perform better than the TB, and of course better than the FV.
There are not big differences between the OCB and the PV. However, the PV
performs better when the acceptance ratio is not very low because, unlike the
OCB, it does not add any extra computation for the accepted hypotheses.

Next, consider the cost when the covariance computation is not taken into ac-
count. When the acceptance ratio is high (image 2), the OCB performs better
than the TB because it can reject more hypotheses without distance computa-
tion; remember that the trace bound is always greater than the one-component
bound (see Section 4). Because of the high acceptance ratio, the PV performs
better than the OCB; this is because the validated hypotheses have no addi-
tional extra cost. When the acceptance ratio is low, there are no big differences
between the three methods (OCB, TB, PV). Despite the number of additions
and products being greatly reduced for the OCB, TB and PV with respect
to the FV, it is not the same for divisions; because of that the computation
time is only reduced by a factor 0.4 (image 3 without covariance computation)
with respect to full validation.

8 Conclusions

Computation of the Mahalanobis distance is a time-consuming operation be-
cause of matrix inversion, and because of the computation of the covariance
matrix itself. Due to the linearizations, the most important computational
load is the computation of the covariance matrix.
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Table 3

IMAGE 2 MATCHING
total hypo. 69117, accept. 3922, acce
FV PV

pt. ratio 5.67%

TB OCB
rejected step 1 40.68% 40.68%
rejected step 2 38.22% 23.79%
rejected step 3 15.43% | 52.07% | 8.83%

considering matrix

covariance computation

usec. 29.3 15.3 27.3 16.8
reduct. factor 1 0.53 0.93 0.57
adds/prods. 882 497 816 525
reduct. factor 1 0.56 0.92 0.59
without considering matrix covariance computation
J4S€ec. 0.8 0.53 0.74 0.58
reduct. factor 1 0.67 0.93 0.72
adds 12 4.06 9.75 3.20
prod. 16 6.08 10.67 6.22
div 3 1.80 2.24 2.75
reduct. factor + 1 0.33 0.81 0.26
reduct. factor * 1 0.37 0.66 0.38
reduct. factor — 1 0.60 0.81 0.91

IMAGE 3 MATCHING

total hypo. 160464, accept. 257, accept. ratio 0.16%
FV PV

TB OCB
rejected step 1 84.54% 84.54%
rejected step 2 15.16% 15.04%
rejected step 3 0.14% 199.19% | 0.16 %

considering matrix

covariance computation

Jsec. 29.3 8.92 24.1 8.55
reduct. factor 1 0.30 0.82 0.29
adds/prods. 882 298 757 292
reduct. factor 1 0.33 0.85 0.33
without considering matrix covariance computation
[1S€eC. 0.8 0.35 0.35 0.3
reduct. factor 1 0.44 0.44 0.37
adds 12 1.70 4.10 0.03
prod. 16 1.80 3.13 1.20
div 3 1.16 1.02 1.17
reduct. factor + 1 0.14 0.34 0.002
reduct. factor x 1 0.11 0.19 0.07
reduct. factor — 1 0.38 0.34 0.38

average per hypothesis complexity

In order to detect efficiently whether the Mahalanobis distance is greater than
a threshold, it is important to compute the Mahalanobis distance, or a lower
bound to it, progressively, and to stop the computation as soon as it is detected

that the distance is greater than the threshold.

This paper has presented two progressive computations, which have similar
performance:

One-Component bound.- This computes a lower bound for the Maha-
lanobis distance, avoiding its computation. It has two main advantages over
the trace bound, normally used in the literature: (1) the computation is
progressive, (2) it determines a greater lower bound. The use of the lower
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bound is interesting when the rejection rate is very high.

Progressive validation.- This computes the Mahalanobis distance progres-
sively, so that the computation can be stopped as soon as the distance is
detected to be bigger than the threshold. Besides, the progressiveness incurs,
no any additional cost over the Mahalanobis distance computation in any
hypothesis (accepted or rejected). This test has good performance in every
situation, with high or low rejection rates, and with or without covariance
computation.

The complexity reduction for a dimension-3 example is in the interval [0.3, 0.4],
with a 0.16% acceptance ratio; and in the interval [0.5,0.7] with a %5.67
acceptance ratio. For problems of higher dimension, a better reduction can be
achieved.
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