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Abstract

A probabilistic geometric model for 2D image line seg-
ments is first presented. We then propose a method,
using 2D segments, to accumulate evidence along an
image sequence of a polyhedral scene. The proposed
method degrades gracefully with camera location noise.
The matched 2D segments are fused with an extended
Kalman filter to reconstruct the scene structure.

The correspondences are established using sequen-
tial data association. The matching function encodes
the consistency between the 2D segments and the 3D
segment computed from their fusion. The computation
of a 8D segment from two 2D segments is overcon-
strained, and so using our model, the after-fusion con-
sistency test can reject false matches even from two im-
ages, allowing the pruning of false matching hypotheses
at early stages.

Two examples are provided. The first determines
a scene structure when the camera location is known
precisely; the structure is then compared with that ob-
tained by trinocular stereo. The proposed method im-
proves 3D segment orientation computation and Te-
duces the number of spurious segments. A second ex-
periment demonstrates the graceful degradation of the
performance, especially in orientation, with respect to
the camera location noise.

1 Introduction

This paper is devoted to the reconstructing a polyhe-
dral static scene from images taken by a mobile cam-
era whose location is known up to an uncertainty level.
We compute the matching of the segments along a se-
quence, as well as an estimation of both the 3D scene
segments location and their covariances. We use as
input data the following information:

e The segments extracted from the images (not the
correspondences), and their corresponding covari-
ance matrices. These covariances depend on the
feature extraction process, and on the intrinsic
parameters of the camera calibration.

e The camera uncertain location estimate, and its
location covariance matrix.
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We propose an image segment model, which we will
call 2D segment. Classical image segments represen-
tations [4, 5] consider image segments as 2D entities
in the image plane. The 2D segment we propose is a
3D entity composed of the supporting line projection
plane, plus the midpoint projection ray. Similarly the
consistency between a projection and a 3D segment
is not tested on the image, but considering a statisti-
cal distance between two tridimensional entities: the
2D segment and the 3D segment. A similar model to
match and reconstruct polyhedral scenes was proposed
in [8], although they proposed to use points and lines,
but not an specific treatment for line segments. The
segment covariance is tuned as proportional to image
segment length, inspired in [14], although they use it
for 3D segments, while we use it for 2D segments.

We represent in a unique feature the segment sup-
porting line and its midpoint,which is constrained to
rest on that line. The observation of a 3D segment im-
poses that the 3D segment supporting line is detected
as the 2D segment supporting line, and that the 3D
segment midpoint is detected as the 2D segment mid-
point. The different observations of an scene segment
are fused with an Extended and Iterated Kalman Filter
(EIFK). The covariance along the 2D segment direc-
tion is set proportional to its length; so, the constraint
that the 3D midpoint images as the 2D midpoint is
considered, along the 2D segment direction, with a
low weight.

The correspondences are computed using a track-
ing for several targets technique, the Split-Track fil-
ter, [2, 7, 13]. We exploit the fact that the scene is
static and that the camera motion is fairly well known.
The consistency between corresponding 2D segments
and the 3D segment computed by their fusion is de-
termined with a batch test [11] (instead of the clas-
sical recursive test). Due to non-linearities, this test
performs better, especially at early stages. It should
be noticed, that due to the image segment model, a
3D segment location from two images is an overcon-
strained problem, which allows to reject false matches
with two images, controlling the Split-Track hypothe-
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Figure 1: A 3D segment and its reference S.

ses explosion. Besides, using the score of the previous
test, a unique track is selected among all the tracks
which include the same image segment.

Two experiments are presented. First we compare
the results obtained from our technique with the re-
sults from a trinocular stereo [1]. A second experiment
shows the graceful degradation with the camera loca-
tion uncertainty, situation in which a stereo based on
epipolar constraint would not perform well [10]. .

Section 2 contents a brief introduction to the proba-
bilistic model used for geometric information. Section
3 presents the 2D segment and Sect. 4 the 3D segment.
Section 5 describes the measurement equation between
a 2D segment and a 3D segment. In Sect.6 the match-
ing algorithm and the acceptance tests are described.
Section 7 shows the experimental results and Sect. 8
the conclusions.

2 Geometric information

The SPmodel is a probabilistic model that associates
a reference G to every geometric element G [12]. Its
location is given by the transformation ¢y relative to
a base reference W. To represent this transformation,
a location vector xwq, composed of three Cartesian
coordinates and three Roll-Pitch-Yaw angles is used:

Xwa = (wvyaza'(p:a: ¢)T

twa = Trans(z,y, z) - Rot(z, ¢) - Rot(y, 6) - Rot(z, )

(1)

The estimation of the location of an element is de-

noted by X, and the estimation error is represented

locally by a differential location vector dg relative to

the reference attached to the element. Thus, the true
location of the element is:

Xwa = Xwa @ dag

where @ represents the composition of location vectors
(the inversion is represented with ). The SPmodel
also exploits the concept of symmetries of a geomet-
ric element, defined as the set Sg of transformations
that preserve the element. For example (see Fig.1),
the symmetries of a 3D line segment is the set of con-
tinuous rotations around the its supporting line.

To account for the continuous motion symmetries,
we assign in dg a null value to the degrees of freedom
corresponding to them, because they do not represent

an effective location error. The perturbation vector,
Pa, is formed by the non null elements of d¢:

de¢ = Bipc ; pc=Bgdg

Where B¢ is a selection matrix. e.g. for a 3D line
segment, Bg, selects rows 1,2,3,5 and 6.

Based on these ideas, the SPmodel represents the
information about the location of a geometric element
G by a self-binding matrix and the triplet:

LWG = ()A(WGa f’G) CG)

xwa = Xwa ® Blpa;pa = Epc]; Ca = Cov (pe)

Transformation Xy is an estimation taken as base
for perturbations, pg is the estimated value of the per-
turbation vector, and Cg its covariance matrix. When
Pa = 0, we say that the estimation is centered.

3 The 2D segment

To represent the observation of a 3D segment with a
camera, we define a geometric element called 2D seg-
ment. Despite its name it is a 3D entity. The reference
to locate a 2D segment, D, is defined as (Fig. 2):

e origin attached to the camera optical center.

e 2 axis normal to the plane defined by the camera
optical center, and also to the projection of the
3D segment on the image plane.

e —y axis pointing to the center of the projection of
the 3D segment in the image plane.

Thus, a 2D segment includes the following informa-
tion:

e A projection plane where the 3D segment sup-
porting line rests on.

e A projection ray, where the center of the 3D seg-
ment approximately rests on. It is defined by the
origin of D and its y axis. The center of a segment
is not invariant under projection, but in any case,
the covariances will be defined in such a way that
this constraint tolerates deviations along the seg-
ment comparable to = 30% of the segment length.

e The point of view, which is the origin of D.

As was said in Sect.2, to define a geometric en-
tity location, the elements of the triplet Lywp =
(Xwp,Pp,Cp) should be computed. We suppose the
location estimate is unbiased, so pp = 0. The 2D seg-
ment has one symmetry, translation along y because it
preserves the projecting elements. Because of that pp
has dimension 5. The rest of this section is devoted to
compute Xy p and Cp.



Figure 2: Relationship between the 3D segment S; its
projection in the normalized image plane, P; the camera
optical center, C, and the 2D segment, D.

3.1 Computing Xy p
The 2D segment location estimate is computed as:

Xwp = Xwc ®Xcp
) T
xcp = (0,0,0,%¢p,8cp,dcp)

where Xw¢ is the camera location estimate in the
world reference, read from the robot sensors. X¢cp
is computed using geometric relations from zcp, yop
and ¢p, the location of the segment in the image
(Fig. 3).

3.2 Computing Cp

The 2D segment location noise, has two independent
sources of noise: the camera location noise and the
image noise. So, we approximate the 2D segment lo-
cation noise covariance, Cp (5 x 5), as the addition of
two terms:

Cp = Jpcccjgc + JDPNC;:NTJEP (2)
where C¢ is the covariance matrix for the camera loca-
tion, C'p is the covariance for the line segment location
in the unnormalized image plane. Jp¢ is computed by
selecting rows and columns from the jacobian [11] of
the relative location vector Xpc. Jpp is computed
from Xpp values. N converts the covariance from the
unnormalized to the normalized camera. Cp is com-

uted as:
’ Cp = diag (025,03, 03)
e 0, p is proportional to the image segment length,
n (in pixels). (see Fig. 3):
Ozp = KN (3)
It mimics, for image segments, the model pro-
posed for scene segments in [14]. The experimen-
tal value for & is 0.14.
e 02p and o} p are computed from the covariances
of the image segment extreme points, ag. Some
correlation between the extreme points is consid-
ered, due to systematic calibration error.

i /‘/q;P

Figure 3: P is the image of a segment, in the normalized
image plane, I. The z direction of P is coherent with the
segment gray level gradient direction. n is the segment
length in pixels.

4 The 3D segment

The method uses a statistical data association tech-
nique for correspondences computing, so, an EIFK is
used for every scene 3D segment to accumulate evi-
dence from its observations. The state of each EIFK
is the 3D segment location, xws,, , k¥ being the num-
ber of fused observations. As the scene is considered
static, the prediction state equation is trivial:
XW Skt1ie — XWSkk (4)
and we drop the |k, denoting both of them with
XS,

The 3D segment location is defined by a reference,
S, whose x axis is aligned with the segment supporting
line; it is attached to a fixed point of the segment (an
approximation to the midpoint). It should be noticed
that the length is not explicitly considered in the state
vector. The 3D segment has only a symmetry because
only the d.o.f. rotation around z is not a true location
error (see Fig 1). The location covariance matrix, C,
is 5 x 5. Thus, a 3D segment is represented by the
triplet: Lws, = ()A(ngC ,Ps, > CSk)

The fused segment length is determined from the
projections of all the segment images on the fused sup-
porting line. For noisy images, the length is computed
from the intersection of the projections, and for noise-
free images from the union.

5 The measurement equation

Both the EIFK fusion of the 2D segments to determine
a 3D segment location, and the matching along the
sequence are based on the same measurement equa-
tion. The SPmodel measurement equation is based on
the relative location, xpg, between the measurement
reference, D, and the state reference, S, (see Fig.2).
Theoretically, if a 2D segment (D) is the projection of
a 3D segment (S), to pass from D to S, the x trans-
lation, the z translation, and the y rotation, should
all be 0. Expressing these constraints as an implicit
measurement equation:

rps =f(xps (Xps,Ps,Pp)) =

(5)

(zps, zps,0ps)”



Xps = SXwp DXws =

= (xps,Yps,2ps, ¥ns,0ps, éps)”

Ps is an incremental correction for 3D segment loca-
tion. pp is the unbiased measurement noise, it is the
perturbation vector of the measurement, i.e., the 2D
segment. Linearizing the equation (5) for EIFK, we
obtain:

rps ~ Hps + Gpp (6)
H = BB_f — (f_f
PS |(xps,ps=pp=0) PD [(xps.ps=pp=0)

The proposed measurement equation (5) considers:

e The collinearity in the image of a 3D segment and
its projection ( zps =0 Ops =0 )

e The overlapping in the image of the 3D segment
and its projection (zpg = 0).

Equation (5) enforces that the center of a segment is
invariant under projection, which is not strictly true.
This is alleviated because image segment covariance
along its direction is proportional to its length, so er-
rors compatible with 02, (3) are allowed.

6 Matching

We propose a Split- Track filter [2] to compute the cor-
respondences. For our system we exploit both the
scene staticity and the camera motion knowledge. This
section is devoted to computation of matches for the
“next image”.

Corresponding 2D segments are gathered in a track.
All 2D segments in a track, at time k, are fused with
a EIFK to compute the state: the 3D segment loca-
tion Lwg,. As the scene is static, it is also the state
prediction for next step (see Sect 4).

Prediction test Using the state prediction and the
camera location estimate, all the 2D segments in image
k + 1 which falls in the Lyg, validation region are
considered. If there is only one validated 2D segment,
it is added to the track; if more than one, a new track
is created for each additional validated 2D segment. If
no 2D segment is validated, the track is eliminated.

To validate the 2D segment we use a test based
on a statistical distance derived from the linearized
measurement equation (6):

rhsCrnsTDs < X3 (7)
C HCsHT + GCpGT

rps

where X3 , is a chi-square for 3 d.o.f with o confidence
level.

After-fusion test The prediction test normally ac-
cepts several matches, which implies an explosion in
the hypothesized tracks tree. To prune out this tree,
after including a new 2D segment in a track, it is tested
if all the gathered 2D segments in the track are con-
sistent with 3D segment resulting from their fusion.

n

> rh.s. (GrCp,GY) 05, < Xnosa (8)
Unlkiké the usual recursive test [2], the previous test
is a batch test proposed in [11]. All the distances are
computed with respect to S, the 3D segment estimate
with n images. Theoretically both test are equivalent
for a linear system; however our problem is non-linear,
then the batch test overperforms because all the lin-

earizations are made around the last estimate.

Unicity test Finally, the score of test (8) is used to
select a unique track for each multiple matched image
segment. This test is applied after processing several
images. As can be seen in the experiments, this test is
very useful to reject false matchings.

Track initiation Besides knowing how to process
the next image it is necessary an initial guess for the
first image. For every 2D segment detected in the first
image, D1, a 3D segment, Si, is considered as initial
guess. 57 is contained in the 2D segment, and located
in the middle of the working space defined by:

)A(D1S1 = (07y7070707¢)
y € [ymin;ymax] ¢€ [_71'/2,71'/2]

The covariance for the d.o.f constraint by the 2D seg-
ment, are computed from the 2D segment covariance,
however the the covariance for depth, y axis, and ro-
tation inside the 2D segment, ¢ are guessed from:
— Ymax—Ymin —
Oy = H55Te6 - 06 = 3x196

considering the working space as the 95% acceptance
region for a x? test.

7 Experimental Results

A first experiment computes a scene structure from the
camera location known with stereo calibration preci-
sion; the performance of the method is compared with
that of a trinocular stereo [1]. A second experiment
shows how the method performance degrades grace-
fully with camera location uncertainty.

The experiments process the images of a trinocu-
lar rig. The segments are extracted with the Burns’s
method [3]. The covariance matrix of camera location
uncertainty in the experiments is a diagonal matrix:

Cc = diag (012370%370%3702070207020) 9)
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Figure 4: Scene reconstruction in top and camera view.
Bottom figures for the trinocular stereo, top figures for the
proposed method.

where the covariance in position, 0%, and the covari-
ance in orientation, 0%, will be defined for each exper-
iment.

7.1 Comparison with a Trinocular Stereo

The camera location used is that of the stereo calibra-
tion. In order to take profit from the camera location
precision, its location covariances (9) are set low:

op = 0.00bmm. oo = 0.0035dg.

The factor x (3) for covariance along the segment
direction is set experimentally to 0.14. The a for
both consistency tests, (7) and (8) is set to 0.05. The
length of the 3D segments are computed as the union
of the projected lengths. Only segments longer than
10 pixel are considered. Figure 4 shows the recon-
structed scenes by both trinocular stereo and the pro-
posed method.

The proposed method produces a better scene re-
construction; it is nearly spurious-free. It performs
well in cluttered areas: the monitor, especially its lat-
tice; in areas where there are several nearly parallel
segments, e.g. middle left in the camera view. Theo-
retically, all the segments belonging a wall should be
seen on a line in top view; deviations from this line
shows the imperfections in reconstruction. The pro-
posed method does nearly not produce any segment
non-parallel to these ideal lines.

Figure 5: Top and camera view the for a typical sample
when camera orientation noise is 20% the 3 value. Dashed
segments are the noise-free reconstruction.

7.2 Graceful degradation with noise
It is analyzed with a Monte Carlo simulation. The
camera location is perturbed according to:

xwe =Xwe @ do

where Xy ¢ is the camera location estimate taken
from the trinocular rig calibration; d¢ is a normally
distributed perturbation vector, whose covariance ma-
trix is (9). The number of samples for the simulation
is 50. In these noisy experiments, only the segments
longer than 20 pixels are considered. The length of
the 3D segment is computed as the intersection of the
projected lengths. The factor « (3) is set to 0.14.

Table 1, shows camera location noise for two simu-
lations. The noise is defined by its standard deviation
values, op and oo and by the relative value of the
orientation noise 222. The reference value 3 is the
typical angle of the projection rays of a point detected
by two cameras; it indicates the effect of an angle er-
ror when computing the depth of a point from two
views. From the typical scene depth, 3175 mm., and
the typical camera baseline, 300 mm., g = 5.4dg..

As a result, the table shows the mean number of
hypotheses at each step: prediction with one image
(ptl), after-fusion with 2 images (af2), prediction with
2 images (pt2), after-fusion with 3 images (af3), and
unicity test (ut). The number of hypotheses is reduced
with the after-fusion test, what allows to control the
complexity of the algorithm. It also shows the ability
of the unicity test to reject false matches. The last
column shows the correct matches among the detected
ones.

Figure 5 shows a typical reconstruction when orien-
tation noise is 20% the 3 value. Top view shows how
errors in position are bigger than in orientation.

8 Conclusions

The proposed image segment model combines the
properties of a point, its midpoint, with those of its
supporting line. All the geometric information con-



20p | 200 %O— mean number of hypotheses ok
mm | dg % a ptl af2 [ pt2 [ af3 | ut | %

1.0 [0.54 | 10 0.05 903 167 149 115 69 87

2.0 1.09 | 20 0.5 1096 59 52 35 25 61

Table 1: Monte-Carlo simulation results. Hypotheses
number after prediction test, “pt”; after after-fusion, “af”;
after unicity, “ut”. The digit stands for the number of im-
ages considered. “ok” stands for the true matches among
the detected ones.

cerning the segment is managed together with the SP-
model, which weights together the “point properties”
and the “line properties” of a segment depending on
the relative location of the image segments, on the im-
age noise covariance and on the camera location covari-
ance. The improvement in the segments orientation is
due to the effect of the line properties.

In general, the computed orientation of the scene
segments improves that of the classical stereo based
on the epipolar constraint. The number of spurious
is also reduced. When the camera location noise in-
creases, the epipolar constraint cannot be any longer
applied. However, the proposed system performance
degrades gracefully and it mainly affects the position
of the segments, rather than their orientation. This is
because the segment representation can profit from the
fact that the orientation computing is not so sensitive
to camera orientation noise as the position computing
is.

The after-fusion consistency test cuts down the hy-
potheses tree. It can reject some tracks using only two
images, because, unlike the fusion of two image lines,
the fusion of two 2D segments is an overconstrained
problem. Thus, the proposed test can prune out the
hypotheses tree at early stages. The unicity test based
only on the score of the after fusion test, has a good
spurious rejection. It should be noticed, that we only
consider the consistency of each track to compute cor-
respondences, even to select a unique track when a
image segment is multiple matched. The trinocular
stereo [1] uses a global neighborhood test to select the
unique match.

In order to improve reconstruction from a un-
precisely located camera our future work goal is
twofold. On one hand, to use the proposed segment
representation to compute both the structure and the
camera motion. On the other hand to develop ac-
tive sensing techniques for the image segment model
in order to determine a point of view for the next im-
age, that could reduce the structure uncertainty, while
taking profit from the available information for corre-
spondences [9].

It should be noted that the proposed system only

manages geometrical information; the performance of
the system can be increased using additional non-
geometrical parameters, such as the image segment
bright parameters [6].
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