
Robot Shape, Kinematics, and Dynamics

in Sensor-Based Motion Planning

Javier Mı́nguez Zafra

Ph.D. Dissertation

Main advisor D. Luis Montano Gella
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Centro Politécnico Superior

Universidad de Zaragoza, España

July 2002



ii



iii

Acknowledgments

I always suspected that this Section would be the last of my thesis, but I never
thought that it could be so difficult. I owe gratitude to all the people that
helped me to turn a dream into reality. As I am sure that I am going to forget
somebody, for you then, thanks.

The first person that comes to mind is my advisor Luis Montano, who has
been suffering me for the last years. With his patience, knowledge, vision,
willingness to share, now I am at the end of this long way. I am very grateful
for allowing me do what I love, and for believe in me and my research from
the very beginning, when nobody else did. Thanks Luis.

I am very fortunate to have had the opportunity to work and interact in
the Zaragoza research team. Their constructive criticism showed me how to
overcome the difficulties of a thesis. Thanks to all the members of the Robotics,
Vision, and Real-Time Group. In particular, I owe gratitude to Carlos Sagües
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Chapter 1

Introduction

There are many applications in Robotics where robots are required to be safely
moved in an environment to accomplish a given task. The motion generation
is an important module that, in most cases, determines the success of the
complete mission. Failures in this module might also have fatal consequences
upon the robot and the environment.

To move a robot among locations requires to address many robotic prob-
lems. In the basic version of this task, the environment is roughly known, and
the robot is required to safely reach a given location. Firstly, a collision-free
path joining the current and final locations is computed: Motion planning [35].
Next, the robot executes the motion as close as possible to the computed path.
Sensor information is needed to have a feedback of the environment and robot
state. The sensory information is used to: (1) plan local motions in order
to avoid non-predictable obstacles over the initial path (Sensor-based Motion
Planning); and (2) to integrate new information into a map of the environment
in order to compute the robot current location (Simultaneous Localization and
Map Building [18], [17], [38], [20], [57]). All these issues must be addressed
within a robotic architecture to build a robust navigation system (Supervision
[51], [15], [32]). The development of robust navigation systems able to deal
with everyday environments is still an open research area in Robotics.

This dissertation addresses the Sensor-based Motion Planning for mobile
robots. These algorithms are used to locally move a robot among successive
locations of a given path, while avoiding collisions with the sensed environ-
ment. This module is crucial in the complete robot architecture: a failure
usually leads to collisions, or the robot invades areas where it is susceptible to
be lost. Then, it is difficult to devise a real mobile robotic application that do
not rely on a robust Sensor-based Motion Planning module.

1
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Figure 1.1: The Sensor-based navigation module.

The Sensor-Based Motion Planning system is governed by a perception-
action process. Perception (sensory information) provides the system with a
feedback of the external and internal robot state. This information is processed
by the sensor-based navigation module to calculate an action, that is the exe-
cution of a motion command. Subsequently, the process is resumed.

The sensor-based navigation module design mainly covers at least the fol-
lowing three issues, see Fig. 1.1:

1. The collision avoidance technique: The most popular techniques of Sensor-
Based Motion Planning are the reactive navigation methods. These
methods compute at each cycle-time a collision-free motion command,
to converge the current robot location towards the goal location. The
result of applying these algorithms is a sequence of motions that drive
the robot free of collisions towards the goal location. Examples of these
methods include [30], [58], [29], [9], [50], [22], [11], [28], [56], [25], [54],
[44]. The reactive navigation methods are the inner part of the sensor-
based navigation system, see Fig. 1.1.

Some related work solves the problem by making physical analogies.
Other methods compute sets of ”suitable” motion commands, to select
”the best one” later on. These methods obtain good behavior when
the scenario is not troublesome: the obstacle distribution is not clut-
tered, dense, or complex. Otherwise, these methods exhibit difficulties
to successfully navigate. This issue is addressed in this thesis: robot
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navigation in very dense, complex, and cluttered scenarios. Chapter 2
presents a method called Nearness Diagram Navigation. By using this
reactive navigation method, navigation is successfully achieved in such
challenge scenarios.

2. The internal constraints: These constraints are imposed by the vehicle
specific characteristics. There are at least three types of internal con-
straints: (1) the robot shape, (2) the robot kinematic constraints, and
(3) the robot dynamic constraints. These constraints are called internal,
since they have to be considered in the design of the collision avoidance
technique, see Fig. 1.1. (e.g. dealing with a car-like robot, the kinematic
constraints have to be taken into account in the design of the reactive
navigation method.) To address the specific vehicle shape, kinemat-
ics, and dynamics is still a subject of research in Sensor-based Motion
Planning. However, some methods have been proposed dealing with the
shape and kinematics [25], [56], [59], [60], [54], [62], [28], [22], [52], [47];
and dealing with dynamics [56], [25], [13], [22], [62], [46]. Some of them
address all of these constraints [52], [16], [62].

Mainly, related work addresses the kinematics or the dynamics by cal-
culating sets of trajectories that comply with the kinematic or dynamic
constraints. One trajectory is selected with some criteria. Subsequently,
a motion command, that drives the platform over the selected trajec-
tory, is computed and executed by the vehicle. The limitation of these
approaches is that usually, the reactive navigation method is designed
from scratch to address the kinematics or the dynamics. There is a lot
of literature that proposes particular solutions to address the kinematic
and dynamic constraints in the Sensor-Based Motion Planning field. But
little attention has been paid to look for much wider solutions.

The Chapter 3 presents an under-constraint solution to address the robot
shape, kinematics, and dynamics in the reactive navigation layer. This
solution is used to extend the Nearness Diagram Navigation method to
address these issues. Moreover, the usage of different sensors for navi-
gation is explored. By using this framework, navigation is successfully
achieved in troublesome scenarios with non-circular robots that exhibit
kinematic and dynamic constraints.

Chapter 4 presents a solution to address the kinematic constraints based
on a spatial representation called the Ego-Kinematic space. The robot
kinematics is used in the construction of the spatial representation. In
this space the robot moves as a free-flying object. Many existing reactive
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navigation methods that do not address kinematics can be used in this
space. As a consequence, the reactive method solution complies with
the kinematic constraints. This is an ample solution to address the
kinematics in the Sensor-Based motion Planning field.

Chapter 5 addresses the dynamic constraints with a similar idea: to in-
troduce the dynamics into the spatial representation, the Ego-Dynamic
space. With minor modifications, standard reactive navigation methods
that do not address dynamics can be used in this space. As a conse-
quence, the reactive method solution complies with the dynamic con-
straints. This is an ample solution to address the dynamic constraints
into the Sensor-Based Motion Planning field.

3. The external constraints: These constraints are imposed by the type of
scenario where the vehicle is moving. For most of the mobile robotic
applications, the environment nature is non-predictable, unstructured,
and dynamic. Moreover, the environment structure can produce trap
situations or cyclic behaviors in the navigation systems that have to be
avoided. These constraints are called external, since they do not di-
rectly affect the design of the collision avoidance technique. However,
an external layer, that process information to improve the pure reactive
behavior, is required (see Fig. 1.1). (e.g. moving the robot in a highly
dynamic scenario requires a module to process the sensory information,
in order to improve the reactive method behavior. Although, the re-
active method might not be redesigned.) This issue has been mainly
addressed in Sensor-Based Motion Planning breaking down the problem
into sub-problems: the collision avoidance technique, and the design
of the external layer that improves the collision avoidance task. Each
of the modules works independently, but they interact to complete the
navigation task. Examples of these methods include [11], [59], [60], [13].

This issue has been mainly addressed by designing particular modules
in particular contexts. However, the instances of the modules are not
general, and no procedure is proposed to integrate the different modules.
Chapter 6 presents some instances of the functionalities required to im-
prove the method behavior in highly dynamic scenarios, and to avoid
the common trap situations. Nevertheless, an architecture is presented
allowing for integration of the base functionalities, and for module re-
placement - indispensable to reutilize the technologies proposed in this
thesis for different robot and sensors.

This dissertation addresses all the issues that make up the design of the
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Sensor-Based Motion Planning module: (1) the design of a sensor-based mo-
tion planner. (2) Solutions for the sensor-based motion planning with shape,
kinematic, and dynamic constraints. (3) Development of the modules required
to improve the performance of the sensor-based motion planner. (4) Integra-
tion of all the functionalities and the algorithms proposed in the dissertation.
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Chapter 2

Nearness Diagram Navigation

2.1 Introduction

The safe motion generation is an important task in a typical indoor-outdoor
mobile robotic mission. Unfortunately the robot navigation in very cluttered,
dense, and complex scenarios is still a robotic challenge. These scenarios are
where the robots are usually required to move. Then, the robots are limited
to work in well-controlled environments.

The sensor-based motion planning algorithms are one alternative to safely
drive a robot. These techniques are based on a perception-action process. The
sensors collect information from the robot and the environment. The actions
are the execution of safe motion commands. There are many sensor-based
motion planning algorithms that have been developed in the last few years.
A troublesome scenario for many sensor-based motion planners is depicted
in Fig. 2.1. The robot is required to move among random distributions of
any shaped obstacles like humans, doors, chairs, tables, wardrobes, and filing
cabinets. This is the main subject and motivation of this Chapter: to safely
move a robot in an scenario similar to the Figure.

The first contribution of this Chapter is the design of a reactive navigation
method. The design has been developed using a classic design paradigm,
the situated-activity paradigm [3]. The advantage of this paradigm is that
it employs a ”divide and conquer” strategy to reduce the difficulty of the
main task (reactive navigation in this Chapter). Moreover, by construction,
the design does not suffer from the ”action coordination problem” that arises
when the main task is divided into subtasks (and they have to be somehow
coordinated). Reactive navigation methods are implemented following this
design. The new reactive navigation methods inherit the design paradigm

7
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Figure 2.1: Typical office environment. The snapshot was taken in a experiment
performed using the Robels system. The Nearness Diagram Navigation is the sensory-
motor function that is driving the robot out of the office.

advantages. As a consequence, these methods must be able to solve more
complex scenarios problems than other methods do.

The Nearness Diagram Navigation method has been implemented follow-
ing the reactive navigation method design proposed. This reactive navigation
method is a geometry-based implementation. The main contribution of this
implementation is that it solves highly complex navigation problems. The
Nearness Diagram Navigation successfully achieves navigation in very com-
plex, dense, and cluttered scenarios. These scenarios present a high degree of
difficulty for many existing methods. Experimental results with a real plat-
form are presented to validate the method in these challenge environments.

This research was previously presented in [44].

The Chapter is organized as follows. After discussing the role of the re-
active navigation and related work, Section 2.3 explains the situated-activity
design methodology. Section 2.4 introduces the reactive navigation method
design. In Section 2.5 the Nearness Diagram Navigation method is imple-
mented. Section 2.6 validates the research with experimentation on the real
robot. Section 2.7 discusses the contributions of our approach regarding other
methods, and in Section 2.8 the conclusions are drawn.
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2.2 Preliminaries in Reactive Navigation

This Section discusses the application context where the reactive navigation
methods have better performance than techniques such as motion planning
(Subsection 2.2.1). Related work is analyzed in order to place our approach,
and to present the motivation for this work (Subsection 2.2.2).

2.2.1 The Reactive Navigation Problem

There are many ways to generate collision-free motion. Roughly, they can be
divided into those that are global, and based on a priori information (motion
planning). And into those that are local, and based on sensory information
(reactive navigation methods). Both techniques have some differences that
justify their usage depending on the application constraints. The context of
this work is to move a robot in unknown, unstructured, and dynamic scenarios.

Motion planning techniques calculate a collision-free path between the
robot and goal configurations (see [35] for a review). From the path, motion
commands are computed, and executed in real-time by the robot. The ad-
vantage of these algorithms is that they provide a global solution for reaching
the goal. However, in unknown, unstructured, and dynamic scenarios the be-
havior of the motion planning algorithms is diminished. Dealing with sudden
environmental changes, new sensory perceptions need to be integrated into a
model, and continuous re-planning are required. Both tasks are time consum-
ing, not complying with the real-time requirement. Besides, motion planning
do not solve some situations (e.g. a dynamic obstacle temporally locates it-
self on top of the goal location). In these situations, the motion control loop
cannot be closed, see Chapter 6.

The reactive navigation methods compute at each sample period one
collision-free motion command, to converge the current robot location towards
the goal location. The result of applying these algorithms is a sequence of
motions that drive the robot free of collisions towards the goal location. One
of the advantages is that explicit models of the environment are not required.
Another advantage is to not impose an expensive computational load. The
reactive methods are thus well-suited to deal with unknown, dynamic, and
non-predictable scenarios. The drawback is that these methods use a local
fraction of the information available (sensory information). Then, it is difficult
to obtain optimal solutions, and to avoid the trap situations.

The attention focuses on reactive navigation methods as they fitting in
the context of our application. The next Subsection presents related work to
introduce the motivation for this work.
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2.2.2 Related Work

The related work is introduced grouped according to the perception-action
process carried out.

• There are methods that use a physical analogy to compute the motion
commands. Some mathematical equations are applied to the sensory
information. The solutions are transformed into motion commands (e.g.
the potential field methods [30], [34], [58], [29], [9], [50], the perfume
analogy [6], the fluid analogy [43], among others).

• There are methods that first compute some sets of motion commands.
Next, a navigation strategy selects one motion command of these sets.
Some methods calculate sets of steering angles [22], [11], [59], [28]. Oth-
ers compute sets of velocity commands [56], [25], [13], [4].

• There are methods that calculate some form of high-level information
description from the sensory information. Then, a motion command
is computed, as opposed to being selected from a pre-calculated set.
[54], and [29] formulate the concept of bubbles to describe parts of the
free space. A collision-free path, included within the bubbles, is used
to compute the motion commands. The Nearness Diagram Navigation
method belongs to this group of approaches.

The motivation for this work is to develop a reactive navigation method
to achieve safe navigation in very dense, cluttered, and complex scenarios: a
task that presents a high degree of difficulty for most of the methods mentioned
above.

2.3 The Situated-Activity Paradigm of Design

One of the goals of this Chapter is the design of a reactive navigation method
using a classic design paradigm. This Section introduces the design paradigm
selected, pointing out the advantages, difficulties, and requirements for its
application.

The situated-activity is a paradigm for designing behaviors in Robotics
[3]. The paradigm is based on defining a set of situations that describe the
relative state of the problem entities. Subsequently, an action is designed for
each situation. During the execution phase, perception is used to identify the
current situation, and the associated action is carried out.
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This paradigm has some advantages for designing modules that execute
action-tasks with sensory information:

• The paradigm itself is a perception-action process.

• The paradigm utilizes a “divide and conquer” strategy to reduce the
task difficulty.

• The paradigm does not suffer the real-time action coordination problem.
This problem arises when the main task is divided into sub-tasks to
reduce the task difficulty 1.

The restriction for the application of the paradigm is to find a set of
situations that effectively describes the task-problem to solve (as commonly
pointed out [26]).

The usage of this paradigm has to comply with some design require-
ments:

• The situations have to be identifiable from sensory perception, exclu-
sive, and complete to represent the relative state of the problem entities.
Moreover, the explosion in the number of situations needed has to be
avoided.

• Each action design has to solve individually the task problem, in the
context of each situation.

2.4 The Reactive Navigation Method Design

The goal of this Section is to understand the design of a reactive navigation
method using the situated-activity paradigm. The Section presents the design,
and analyzes the completion with the paradigm requirements.

Fig. 2.2 depicts the reactive navigation method design that works as fol-
lows: at each sample period, the sensory information is used to identify the
current situation among the predefined set (introduced in Subsection 2.4.1).
Subsequently, the associated action is executed computing the motion. Sub-
section 2.4.2 addresses the action design.

1In short, when a real-time task is decomposed in some sub-tasks, a decision algorithm
might arbiter them - to decide which sub-task is active in real-time. This is the action
coordination problem.
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Figure 2.2: Reactive navigation method design.

2.4.1 General Situations Definition

The general situations describe the relative state of the reactive navigation
entities: the robot, the obstacle distribution, and the goal location. The
relations among them are studied below.

The Robot-Goal-Obstacle Relations

The robot and obstacle distribution relation
The relation between the robot and the obstacle distribution is analyzed with
a security distance, that creates a security zone around the robot bounds, see
Fig. 2.3a. The robot and obstacles relation is analysed with a safety evaluation.



2.4. The Reactive Navigation Method Design 13

The robot and goal relation
The relation between the robot and goal location is obtained with an interme-
diate device, the free walking area. To compute the free walking area, gaps in
the obstacle distribution are searched for. Two contiguous gaps form a region.
Finally, the angular closest region to the goal location is selected. It must be
checked whether this region is “navigable” by the robot. This region is called
free walking area, see Fig. 2.3a. The robot and goal relation is obtained from
the obstacle distribution structure with the free walking area.

Situations Definition and Representation

A decision tree is used to represent the situations, see Fig. 2.2. The tree
inputs are the robot and goal locations, and the obstacle distribution (sensory
information). The tree output is the current situation. The tree is traversed
using binary decision rules, that are based on criteria defined over the entities.
The four criteria are listed below.

Criterion 1: Safety criterion. There are two safety situations: Low Safety
(LS) and High Safety (HS), see Fig. 2.2. The robot is in Low Safety if there
are obstacles within the security zone. The obstacles present a risk for the
robot, Figs. 2.3a,b. If not, the situation is High Safety, Figs. 2.3c,d,e.

There are two Low Safety situations, see Fig. 2.2. The first two general
situations are obtained by applying the following criterion:

Criterion 2: Dangerous obstacle distribution criterion.

1. Low Safety 1 (LS1): The robot is in LS1 when there are obstacles
within the security zone, but only on one side of the free walking area
gap, which is the closest to the goal, see Fig. 2.3a.

2. Low Safety 2 (LS2): The robot is in LS2 when there are obstacles
within the security zone, on both sides of the free walking area gap,
which is the closest to the goal see Fig. 2.3b.

There are three High Safety situations, see Fig. 2.2. The third general
situation is obtained by applying the following criterion.

Criterion 3: Goal and free walking area criterion.

3. High Safety Goal in Region (HSGR): The robot is in HSGR if the
goal location is within the free walking area, see Fig. 2.3c.

If not, the fourth and fifth general situations are obtained by applying the
last criterion.
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Figure 2.3: a) LS1 situation/action example. b) LS2 situation/action example.
c) HSGR situation/action example. d) HSWR situation/action example. e)HSNR
situation/action example.

Criterion 4: Free walking area width criterion. A free walking area is
wide if its angular width is larger than a given angle. If not, the free walking
area is narrow.

4. High Safety Wide Region (HSWR): The robot is in HSWR if the
goal is not within the free walking area, but the free walking area is wide,
see Fig. 2.3d.

5. High Safety Narrow Valley (HSNR): The robot is in HSNR if the
goal is not within the free walking area, but the free walking area is
narrow, see Fig. 2.3e.

Some conclusions regarding the definition and representation of these sit-
uations are summarized next:



2.4. The Reactive Navigation Method Design 15

• The situations are identifiable from sensory perception. (When the sen-
sory information is available as depth maps.)

• The situations are exclusive and complete. They are obtained from a
binary decision tree.

• The situation definition avoids the explosion in the number of situations,
because there are five. This comes from the fact that, the situation defi-
nition does not depend on the resolution or size of the space considered.

Then, the definition and representation of the situations comply with the
requirements imposed by the situated-activity paradigm, mentioned in Section
2.3.

2.4.2 Action Design

This Subsection presents the action design guidelines:

1. Low Safety 1 (LS1): This action moves the robot away from the closest
obstacle, while directing the robot towards the free walking area gap
closest to the goal, see Fig. 2.3a.

2. Low Safety 2 (LS2): This action keeps the robot at the same distance
from the two closest obstacles, while moving the robot towards the free
walking area gap closest to the goal, see Fig. 2.3b.

3. High Safety Goal in Region (HSGR): This action drives the robot
directly to the goal, see Fig. 2.3c.

4. High Safety Wide Region (HSWR): This action moves the robot
alongside the obstacle, see Fig. 2.3d.

5. High Safety Narrow Region (HSNR): This action directs the robot
through the central zone of the free walking area, see Fig. 2.3e.

Conclusions regarding the action design are next summarized. Each action
solves individually the task problem, in the context of each situation: Avoiding
obstacles while moving the robot towards the goal location. This is achieved
in Low Safety and High Safety actions as follows:

• In Low Safety, both actions avoid the obstacles, while moving the robot
towards the free walking area gap closest to the goal. This gap implicitly
has information about the goal location.
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• In High Safety, the actions drive the robot towards the goal, towards
the free walking area gap closest to the goal, or towards the central zone
of the free walking area. Then, these actions explicitly or implicitly
drive the robot towards the goal location. The robot is not in danger of
collision, so there is no need to avoid obstacles.

Then, the actions design comply with the requirements imposed by the
situated-activity paradigm, mentioned in Section 2.3.

There are some points worth mentioning here:

1. The reactive navigation method design is described in symbolic level.
Different implementations of this design lead to new reactive navigation
methods. Learning techniques, Fuzzy sets, Potential Field implementa-
tions, optimization techniques and other tools may be used to implement
the design. The next Section presents a geometry-based implementation.

2. Any reactive navigation method implemented following the proposed
design simplifies the reactive navigation problem (by a “divide and con-
quer” strategy based on situations). So, a good implementation might
solve more difficult navigation problems than other existing methods,
that use a unique navigation heuristic, do. Besides, the design is flexi-
ble. New situations might be defined to reduce the difficulty even more.

3. The design does not suffer from the ”action coordination problem”. The
sub-tasks are self-coordinated, because the general situations are com-
plete and exclusive. Only one situation can be selected at each time, and
thus, only one action is executed.

Summarizing, this Section has presented the design of a reactive navigation
method using the situated-activity paradigm. The Section also demonstrated
that the situations, and the associated actions, comply with the requirements
imposed by the paradigm.

2.5 The Nearness Diagram Navigation (ND)

This Section presents a geometry-based implementation of the design called
the Nearness Diagram Navigation.

The attention is focused on a circular (with radius R) holonomic robot
moving over a flat surface. The Workspace W is IR2. A point x = (x, y) ∈ IR2

is a location of the robot. The space of motion commands is three-dimensional.
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Let (v,w) be a motion command. Let v = (vm, θ) be the translational velocity,
and let w be the rotational velocity.

The sensory information is supposed to be depth point maps for two rea-
sons: (1) maintaining the sensor as general as possible - the great majority
of sensory information can be processed and then reduced to points, and (2)
avoiding the use of structured information (as lines, polygons, etc), that oth-
erwise can be used if it is available. Let L be a list of the N obstacle points
perceived at each time.

Fig. 2.2 depicts the ND method design that works as follows: at each sam-
ple period T the sensory information is used to identify the current situation
among the predefined set (introduced in Subsection 2.5.1). Subsequently, the
associated action is executed computing the motion commands, (v,w). The
actions are control laws presented in Subsection 2.5.2.

2.5.1 Information Representation and General Situations

This Subsection introduces the tools used to analyze the sensory information:
the Nearness Diagrams. Subsequently, the robot location, obstacle distribu-
tion, and goal location relations are used to define the general situations.

Nearness Diagram Definition

The ND divides the space in sectors whose centre is over the robot centre.
Let n be the number of sectors (n = 144 in our implementation, so 2.5◦ is the
angle of each sector). Notice that in the robot reference, the bisector of the n

2
sector is 0◦, of the n

4 is π
2 , and of the 3n

4 is −π
2 .

Let δi(x, L) be the function that computes the distance from the robot
centre to the closest obstacle point in sector i. δi(x, L) = 0 when there are
no obstacles in sector i. max(δi(x, L)) = dmax, where dmax is the maximum
range of the sensor. Then, let D = {di = δi(x, L), i = 1 . . . n} be the list of
the minimum obstacle distances to the robot centre in each sector.

Definition 1 Nearness Diagram from the central Point (PND)

PND : IR2 ×D → {IR+ ∪ {0}}n

(x, di) → {PNDi(x, di)}n

if di > 0, PNDi(x, di) = dmax + 2R− di

else PNDi(x, di) = 0
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Definition 2 Nearness Diagram from the Robot bounds (RND)

RND : IR2 ×D → {IR+ ∪ {0}}n

(x, di) → {RNDi(x, di)}n

if di > 0, RNDi(x, di) = dmax + Ei − di

else RNDi(x, di) = 0

where

• E: function that depends on the robot geometry. The function Ei is the robot
radius, R, for a circular robot 2.

The PND represents the nearness of the obstacles from the robot centre.
The RND represents the nearness of the obstacles from the robot boundary.
Some PND and RND diagrams are illustrated in Fig. 2.4. From now on,
PNDi ≡ PNDi(x, di) and RNDi ≡ RNDi(x, di).

The Robot-Goal-Obstacle Relations

The relations among the robot, the obstacle distribution, and the goal are
analyzed by using these diagrams.

The robot and obstacle distribution relation
The relation between the robot and the obstacle distribution is obtained with a
safety evaluation. This evaluation is made with the RND, because it represents
the nearness of the obstacles from the robot bounds. Let the security distance
be the minimum obstacle admissible distance, ds, to the robot bounds. A
security nearness is computed by ns = dmax − ds, and used in the RND to
evaluate the robot safety, see Fig. 2.4c.

The robot and goal relation
The relation between the robot and the goal location is obtained from a high
level device called free walking area. It is computed from the PND, since it
represents the nearness from the obstacles to the robot centre. The PND
analysis is carried out in three stages. First, gaps are identified. From these
gaps, regions are obtained, and finally one region is selected: the free walking
area, see Fig. 2.4a.

1. Gaps: First, gaps in the obstacle distribution are identified searching for
discontinuities in the PND.

2If the robot is not circular, Ei is the distance from the robot centre to the robot bounds
in sector i.
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Figure 2.4: a) Gaps, regions, and free walking area. b) PND. c) RND. The following
values were set: R = 0.3m, dmax = 3m, ds = 0.3m.

A discontinuity exists between two sectors (i, j) if they are adjacent3,
and their PND value differs by more than 2R (robot diameter), that is
|PNDi − PNDj | > 2R. Fig. 2.4a depicts the gaps searched for. They
are identified by discontinuities in the PND, see Fig. 2.4b. Notice that
the robot diameter is used because only gaps where the robot fits are
searched for.

Two types of discontinuities are distinguished. When there is a discon-

3The adjacent sectors to i are i − 1 and i + 1. It is assumed that in all the operations
among sectors the mod(∗, n) function is used. Thus, if i = n then i = 0. This gives continuity
to the diagrams.
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tinuity between two sectors (i, j), then: if PNDi > PNDj the disconti-
nuity is a rising discontinuity from j to i, and a descending discontinuity
from i to j.

Regions: Two contiguous gaps form a region. Regions are identified
searching for valleys in the PND.

Let be a valley a non empty set of sectors, S = {i + p}p=0,···,r with
n > r ≥ 0, that satisfies the following conditions:

(a) There are no discontinuities between adjacent sectors of S.

(b) There exist two discontinuities:
|PNDi−1 − PNDi| > 2R AND |PNDi+p − PNDi+p+1| > 2R

(c) One of these discontinuities is a rising discontinuity from i to i− 1
or from i + p to i + p + 1 :
PNDi−1 > PNDi OR PNDi+p+1 > PNDi+p

Fig. 2.5 depicts some regions and the valleys identified in the PND.
There are not gaps within a region. Then, there cannot be discontinuities
within a valley (condition (a)). A region has one gap at each side. Then,
a valley has two discontinuities in the extreme sectors i and i+p, (i−1, i)
and (i+p, i+p+1). The sectors i−1 and i+p+1 do not belong to the
valley, but are adjacent to i and i+p respectively (condition (b)). Finally,
at least one of the discontinuities of the valley has to be rising (condition
(c)). Fig. 2.5a depicts two regions that are identified by valleys created
by two rising discontinuities. Valley1 in Fig. 2.5b is created by one
descending and one rising discontinuity. Thus, it identifies the region1.
The number of rising discontinuities structurally differs the two types of
regions considered (e.g. in Fig. 2.5b, region2 is identified by valley2 that
has two rising discontinuities, however region1 is identified by valley1
that has only one rising discontinuity).

A special case occurs when the goal is between an obstacle and the robot.
The sector that contains the goal location, sgoal, could not belong to a
valley. However, it is desirable that when this condition arises, the goal
was within a region. Thus, when this situation is detected, the PNDsgoal

value is set equal to zero. This creates an artificial valley in the goal
sector, that is, the goal is within a region. This case is illustrated in
Fig. 2.6. Another special case is when there are not obstacles. Then all
the sectors form the valley.
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Figure 2.5: Types of regions

2. Free walking area: The free walking area is the “navigable” region closest
to the goal location. To identify it, the valley with the rising discontinu-
ity closest4 to sgoal is selected (see Fig 2.4, the valley created by discon-
tinuities 3 and 4 is selected, because discontinuity 3 is the rising discon-
tinuity closer to sgoal). Then, it is checked whether the candidate region
is ”navigable” (see Appendix A for a description of the algorithm). If it
is not ”navigable”, another valley is selected and the process is repeated
until a “navigable” region is found or no region exists. The selected

4The term closest is in number of sectors.
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Figure 2.6: HSGR situation/action example. The artificial valley case.

valley identifies the free walking area, see Fig. 2.4.

A free walking area is wide if its angular width is greater than a given
quantity (in our current implementation it is considered 90◦). If not,
the free walking area is narrow. Then, a valley is wide if the number of
sectors is greater than smax = n

4 . If not, the valley is narrow. Notice
that the number of sectors of a valley is the angular width of the region.

General Situations

The general situations definition correspond to the reactive method situations
mentioned in Section 2.4.1. The situations are represented in the same decision
tree presented in Fig.2.2. The criteria to traverse the tree branches in order
to identify the situations are listed below.

Criterion 1: Safety criterion. To evaluate the robot safety the security
nearness is used. The safety situation is Low Safety (LS) if there are obstacles
that exceed the security nearness in the RND. If not, the situation is High
Safety (HS), see Fig. 2.8.

There are two Low Safety situations, see Fig. 2.2. They are obtained by
applying the following criterion:

Criterion 2: Dangerous obstacle distribution criterion.

1. Low Safety 1 (LS1): The robot is in LS1 if there is, at least, one sector
that exceeds the security nearness in the RND, only on one side of the
selected valley rising discontinuity which is closest to the goal sector.

See Fig. 2.8. The rising discontinuity of the selected valley closest to the
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goal sector (sgoal), is si (see the PND). Then, there are sectors exceeding
the security nearness only on one side of si in the RND .

2. Low Safety 2 (LS2): The robot is in LS2 if there is, at least, one sector
that exceeds the security nearness in the RND, on both sides of the
selected valley rising discontinuity which is closest to the goal sector.

See Fig. 2.8. The rising discontinuity of the selected valley closest to the
goal sector (sgoal), is si (see the PND). Then, there are sectors exceeding
the security nearness on both sides of si in the RND.

There are three High Safety situations, see Fig. 2.2. The third general
situation is obtained by applying the following criterion:

Criterion 3: Goal and free walking area criterion.

3. High Safety Goal in Region (HSGR): The robot is in HSGR if the
goal sector belongs to the selected valley.

See Fig. 2.8. The goal sector (sgoal) belongs to the selected valley, see the
PND. Notice that no sector exceeds the security nearness in the RND.

If not, the fourth and fifth general situations are obtained by applying the
last criterion.

Criterion 4: Free walking area width criterion.

4. High Safety Wide Region (HSWR): The robot is in HSWR if the
goal sector does not belong to the selected valley, but the valley is wide.

See Fig. 2.8. The goal sector (sgoal) do not belong to the selected valley
that is wide (the number of sectors of the valley is 102 > n

4 = 36), see the
PND. Notice that no sector exceeds the security nearness in the RND.

5. High Safety Narrow Region (HSNR): The robot is in HSNR if
the goal sector does not belong to the selected valley, but the valley is
narrow.

See Fig. 2.8. The goal sector (sgoal) do not belong to the selected valley
that is narrow (the number of sectors of the valley is 13 < n

4 = 36),
see the PND. Notice that no sector exceeds the security nearness in the
RND.

This Section has described the tools used to represent the sensory infor-
mation, and the definition and identification of the general situations.
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2.5.2 Associated Actions

This Subsection introduces the implementation of the actions associated with
the general situations. The objective is to find simple control laws that produce
the desired behavior associated with the situation identified (following the
reactive method design, see Section 2.4.2). The actions compute the motion
commands (vm, θ,w). The action implementation is summarized in Table I.

Translational Velocity Direction (θ)

A solution sector, sθ ∈ IR, is calculated for each situation. The direction of
motion θ (translational velocity direction) is the bisector of sθ. As sθ ∈ IR, any
direction of motion can be assigned θ ∈ [−π, π]. For a realistic implementation
of the method, instantaneous backwards motion is prohibited (θ ∈ [−π/2, π/2],
sθ ∈ [n4 , 3∗n

4 ]).
Translational velocity direction in Low Safety

In Low Safety the robot is in danger of colliding because there are obstacles
within the security zone. The robot must be brought to a secure situation.

1. Low Safety 1: In LS1, the objective is to move the robot away from the
closest obstacle, while directing the robot towards the free walking area
gap closest to the goal, see Fig. 2.8. The solution sector, sθ, is calculated
by:

sp = |si − sj | ∗ p + smax
2

sθ = si + sign(si − sj) ∗ sp (2.1)

where:

• si: sector corresponding to the selected valley rising discontinuity
which is closest to the goal sector (sgoal). This sector contains the
free walking area gap closest to the goal.

• sj : sector with the highest value in the RND, that exceeds the
security nearness, on one side of si. This sector contains the closest
obstacle point.

• p: experimentally tuned parameter. Its value depends on the tran-
sitions among the general situations, to ensure a smooth behavior
among them. The parameter acts as an adaptable proportional
controller. In the current implementation p ∈ [1.5, 2.5].
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TABLE: ACTIONS

SITUATIONS θ Trans. vel. angle vm Trans. vel. module w Rot. vel.

LS1 sp = |si − sj | ∗ p + smax
2

θ = bisec(sθ = si + sign(si − sj) ∗ sp)

LS2 smed1 =
sm+sj

2 smed2 =
sm+sj+n

2 vm = vmax ∗ dobs
ds

∗ (
π
2 −|θ|

π
2

)

If |si − smed1 | < |si − smed2 | w = wmax ∗ θ
π
2

Then θ = bisec(sθ = smed1 ± c)

Else θ = bisec(sθ = smed2 ± c)

HSGR θ = bisec(sθ = sgoal)

HSWR θ = bisec(sθ = si ± smax
2 ) vm = vmax ∗ (

π
2 −|θ|

π
2

)

HSNR θ = bisec(sθ =
si+sj

2 )

Table 2.1: Situation/Action table.

2. Low Safety 2:In LS2, the objective is to keep the robot at the same
distance from the two closest obstacles, while moving the robot towards
the free walking area gap closest to the goal, see Fig. 2.8. The solution
sector is computed by:

smed1 =
sm + sj

2
smed2 = sm+sj+n

2

If |si − smed1 | < |si − smed2 | then sθ = smed1 ± c

Else sθ = smed2 ± c (2.2)

where:

• si: sector corresponding to the selected valley rising discontinuity
which is closest to the goal sector (sgoal). This sector contains the
free walking area gap closest to the goal.

• sm, sj : the sectors with the highest values in the RND, that exceed
the security nearness, on both sides of si. These sectors contain the
two closest obstacles on both sides of the free walking area.

• c: is a correction function used to keep the robot centered between
the two closest obstacles. The function depends on the closest ob-
stacle distance, and on the difference between the distances of the
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two closest obstacles. This quantity, c, is added or subtracted due
to the sector that contains closest obstacle.

Translational velocity direction in High Safety
In High Safety the robot is not in danger of colliding. Thus, the robot moves
within the free walking area.

3. High Safety Goal in Region: In HSGR the objective is to drive the
robot directly to the goal, see Fig. 2.8. The solution sector is calculated
by sθ = sgoal.

The goal location is explicitly used to compute the motion commands
only in this situation. Notice that the robot is not in danger of colliding,
and the goal is within the free walking area. This situation is not dan-
gerous for the robot, and does not appear to exhibit complexity. Fig. 2.6
depicts the special case where an artificial valley is created preserving
the HSGR situation.

4. High Safety Wide Region: In HSWR the objective is to cause a mo-
tion alongside the obstacle, see Fig. 2.8. The solution sector is calculated
by:

sθ = si ± smax
2 (2.3)

where:

• si: sector corresponding to the selected valley rising discontinuity
which is closest to the goal sector (sgoal). This sector contains the
free walking area gap closest to the goal.

5. High Safety Narrow Region: In HSNR the objective is to direct the
robot through the central zone of the free walking area, see Fig. 2.8.

sθ =
si + sj

2
(2.4)

where:

• si, sj : sectors of the two discontinuities of the selected valley. These
sectors contain the two gaps of the free walking area.
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Translational Velocity Absolute Value (vm)

The translational velocity value, vm, is computed depending on whether the
robot is in High Safety or Low Safety. Let vmax be the maximum translational
velocity. Let dobs be the distance from the closest obstacle to the robot bounds,
and let ds be the security distance. Let θ ∈ [−π/2, π/2] be the translational
velocity direction calculated. Then:

1. High Safety:

v = vmax ∗ (
π
2 − |θ|

π
2

) (2.5)

2. Low Safety:

v = vmax ∗ dobs

ds
∗ (

π
2 − |θ|

π
2

) (2.6)

With this velocity control, the robot moves at maximum speed until one ob-
stacle shows up in the security zone. Then, the robot reduces the speed in
proportion to the distance to the closest obstacle, until the security zone is
clear. Moreover, sudden changes in the direction of motion reduce the trans-
lational velocity module.

Rotational Velocity (w)

This velocity term is required when the sensor has visibility constraints. It
aligns the main sensor direction with the robot instantaneous direction of mo-
tion (it is considered for the following analysis that the main sensor direction
and the robot orientation match).

The rotational velocity, w, is computed from the translational velocity
direction, θ. The robot must be aligned with the instantaneous direction of
motion. Let wmax be the maximum rotational velocity. Then:

w = wmax ∗ θ
π
2

(2.7)

This produces sudden turns of the robot when there are great changes in θ (the
robot rotates facing the direction of motion as soon as possible), and smooth
turns when the changes are small.

Summarizing, in this Section the ND method has been presented. The ND
method is a geometry-based implementation of the reactive method design.
The reactive navigation method computes from the sensory information, the
motion commands (vm, θ,w), to safely drive a vehicle among locations.
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2.6 Implementation and Experimental Results

The goal of this Section is to experimentally validate the ND method.

2.6.1 The Mobile Platform

The ND method has been tested on a Nomadic XR4000 at LAAS-CNRS,
France. The robot is equipped with a SICK 2-D laser rangefinder. For further
details about the platform and sensor see Appendix E. The sample period of
the ND method is around 125msec on the on-board Pentium II. In the current
implementation, a short-time memory built with the last 20 laser measure-
ments (361 × 20 points) is used. The maximum translational velocity is set
to vmax = 0.3 m

sec , and the maximum rotational one is set to wmax = 1.57 rad
sec .

These velocity limits were selected due to the potential applications of the
method: safe motion in indoor human environments. These scenarios exhibit
a high density of obstacles and the robot must work with humans around
preserving their safety, see Fig. 2.1.

2.6.2 Experimental Results

Three experiments using the real platform are discussed next. In all the exper-
iments the scenario was unknown. The environment might be unstructured,
dynamic, and non predictable. Only the goal location was available in ad-
vance. These circumstances justify the usage of a reactive navigation method
to move the robot, see Subsection 2.2.1.

The experiments were designed to verify that the ND method complies
with the motivation of this work: to safely drive a robot in very dense, clut-
tered, and complex scenarios. The experiments will also allow for discussion of
the method technical contributions in the next Section, which are summarized
as follows: (1) avoiding trap situations due to the perceived environment struc-
ture (e.g. U-shape obstacles, two very close obstacles); (2) generating stable
and oscillation-free motion; (3) selecting motion directions towards obstacles;
(4) exhibiting a high goal insensitivity - i.e. to be able to choose motion direc-
tions far away from the goal direction; (5) selecting regions of motion using a
robust ”navigability” criterion.

For each experiment an upper view is shown: the robot trajectory and all
the laser points perceived, see Fig. 2.9a. The robot velocity profiles are also
illustrated, see Fig. 2.9b. Some snapshots have been selected for better under-
standing of the robot motion - the floor tiles are 10cm square and the robot
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Figure 2.7: Situations during the experiments. 1: HSGV. 2: HSNV. 3: HSWV. 4:
LS1. 5: LS2. a) Experiment 1. b) Experiment 2. c) Experiment 3.

diameter is 48cm, see Fig. 2.9d. Moreover, at some selected times (match-
ing with some snapshots), the robot location, the perceived laser points, and
the method direction solution are shown, see Fig. 2.9k. The robot situation
selected at each time is illustrated in Fig. 2.7.

• Experiment 1: This experiment was designed to test the robot moving
in narrow places with highly reduced room to maneuver. In order to
reach the goal location, the robot traversed a very dense, complex, and
cluttered passage, see Fig. 2.9a.

In some parts of the experiment the robot was required to move among
very close obstacles < 10cm on both sides (notice that the tiles size is
about 10cm), see Figs. 2.9d,f,g. No trap situations appeared due to the
motion in narrow places.
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The robot entered and traveled along the passage, because the possibility
of whether the passage was ”navigable” was checked every time by the
free walking area. The free walking areas selected at some instants are
illustrated in Figs. 2.9e-l,f-m.

The selection of directions towards the obstacles was essential to suc-
cessfully accomplish this experiment. Figs. 2.9e-l,f-m,g-n depict some
instants when the computed direction solution pointed towards an ob-
stacle.

The motion computed and executed was oscillation-free. This is seen
in the robot path made and in the velocity profiles, see Figs. 2.9a,b.
The experiment was carried out in 60sec, and the average translational
velocity was 0.114 m

sec .

The Fig. 2.7a shows the situation selected at each time. Mainly, the robot
was in Low Safety 2, because there were obstacles within the security
zone on both sides of the free walking area at every moment.

• Experiment 2: This experiment tested the robot navigating in a dy-
namic environment. In order to reach the goal location, the robot moved
in a dense, complex, and cluttered scenario, see Fig. 2.10a, that was dy-
namically built by a human while the robot was moving (Figs. 2.10d,h,i,k
show the dynamic nature of the environment).

In the first part of the experiment, the human closed the passage when
the robot was in the first corridor, see Figs. 2.10f-p. The robot detected
that it was trapped and it stopped (in Fig. 2.10b the velocities from
second 33 to 52 are zero). Notice that a flag could be launched to a
higher-level module to plan a new subgoal (but these experiments only
test the reactive method). Finally, the passage was opened and the robot
resumed the motion, see Fig. 2.10g.

In some parts of the experiment, the robot moved among very close
obstacles, see Figs. 2.10e-o. No trap situations were detected due to the
motion in narrow places.

The robot used the free walking area to select areas of motion with a
width checking, see Fig. 2.10e-o,i-r.

The method selected motion directions towards the obstacles when re-
quired (in almost all the experiment). Some of them are illustrated in
Figs. 2.10e-o,h-q,i-r.

To successfully navigate in this environment, the robot was required to
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select directions of motion far away from the goal direction (mentioned
before as goal insensitivity). This property is illustrated in Figs. 2.10h-
q,i-r. Motion direction solutions and goal directions differ in more than
90◦ (any difference could be obtained with the reactive method).

No oscillations appeared during the run. This is seen in the robot path
made and in the velocity profile, see Figs. 2.10a,b. The complete time of
the experiment was 220sec, and the average translational velocity was
0.104 m

sec .

The situation selected at each time is illustrated in Fig. 2.7b. The robot
mainly is in Low Safety 2, since there were obstacles within the security
zone on both sides of the free walking area at every moment. Sometimes
the robot is in Low Safety 1, because there were risky obstacles only on
one side of the free walking area. The reasons are the sensor visibility
constraints, and the limited short-time memory. Sometimes, the robot
did not ”see” any obstacle on one side. However, when the robot turned,
it could ”see” the obstacles and the situation turned to be Low Safety
2.

• Experiment 3: This experiment was designed to test the trap situa-
tion avoidance. In order to reach the goal location, the robot avoided
three U-shape obstacles placed in the environment, see Fig. 2.11a and
Figs. 2.11c,g.

The robot avoided entering and getting trapped because the U-shape
obstacles were completely visible by the robot. The method uses the
free walking area device to avoid these structural trap situations. The
Figs. 2.11c-k,e-l,f-m,g-n depicts some parts of the experiment and the
free walking areas selected. The free walking areas of Figs. 2.11k,l,m
have the shape of the region1 of Fig. 2.5b. The free walking area of
Fig. 2.11n has the shape of the regions of Fig. 2.5a, and of the region2
of Fig. 2.5b. Fig. 2.11m depicts a moment where a U-shape obstacle
was partially visible. Thus, the free walking area is within the obstacle.
However, structurally the free walking area still has the solution (the gap
on the left-hand of the free walking area). Thus, the trap situation is
avoided.

Directions towards the obstacles were selected during almost all the ex-
periment. Figs. 2.11c-k,e-l,f-m,g-n depict moments where the robot was
directed towards an obstacle.

In some parts of the experiment, motion directions far from the goal
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direction were required. The Figs. 2.11m,n illustrate some of these mo-
ments.

The velocity profile is illustrated in Fig. 2.11b. The velocities are higher
than in other experiments, because in many parts of the experiment the
robot was in High Safety, see Fig. 2.7c. The time of the experiment was
83sec, and the average translational velocity was 0.247 m

sec .

2.7 Comparison and Discussion

This Section presents a discussion regarding other collision avoidance ap-
proaches, the limitations of the ND method, and the limitations of the reactive
approaches in general.

2.7.1 Discussion

The ND method avoids the local trap situations due to the environment
structure (e.g. the U-shape obstacles, and moving among very close obstacles).
The free walking area device is used to select a ”navigable” region to move.
When a U-shape obstacle is completely ”visible”, there are no free walking ar-
eas within the obstacle. Thus, the free space within the obstacle is not selected
for motion, see Figs. 2.11k,l,n. Only, when the U-shape obstacle is partially
visible, and there exist some symmetrical conditions involving the goal loca-
tion, the robot might move towards the inside of the obstacle. Fig. 2.11m
depicts an example of a partially visible U-shape obstacle that does not trap
the robot. The ND method successfully navigates among very close obstacles,
see Figs. 2.9d-k,f-m,g-n and Figs. 2.10e-o. Notice that, to select a free walking
area, it is checked whether the robot fits among the obstacles.

The Potential Field Methods produce local trap situations due to the mo-
tion among close obstacles, and the U-shape obstacles [33]. Both create po-
tential minima that trap the robot. To move a robot among close obstacles,
the methods based on polar histograms [11], [59], [60] have the difficulty of
tuning an empirical threshold. While one threshold is necessary to navigate
among close obstacles, the threshold has to be modified to navigate in envi-
ronments with no obstacle density. Traps due to the U-shape obstacles are not
avoided by the methods that use constrained optimizations [25], [56], [4], [22].
The reason is that the optimization loses the information of the environment
structure, which is necessary to solve these situations (the structure is studied
with the free walking area in the ND method). There are methods based on a
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given path that is deformed in real-time [54], [29], [14], [12]. When the path
lies within U-shape obstacles dynamically created a trap situation appears.

The ND method computes oscillation free motion when the robot moves
among very close obstacles. The Low Safety 2 action has been implemented to
comply with this requirement. The motion is computed from the two closest
obstacles. See the complete robot path and the velocity profile in Figs. 2.9a,b
and Figs. 2.10a,b. The Potential Field Methods can produce oscillatory motion
when moving among very close obstacles, or narrow corridors [33].

Motion directions far away from the goal direction are obtained with the
ND method (goal insensitivity). The reason is that the goal direction is
directly used in only one of the five motion laws (in High Safety Goal in Region,
where the robot is not in danger, and there is not an apparent navigation
complexity). This property was determinant in many situations encountered
in the experiments, see Figs. 2.10h-q,i-r and Figs. 2.11e-l,g-n.

The reactive methods that make a physical analogy directly use the goal
location in the motion heuristic: potential field methods [30], [34], [58], [29],
[9], [50], the perfume analogy [6], the fluid analogy [43]. These methods exhibit
high goal sensitivity. Thus, it is difficult to obtain directions far away from
the goal location (in all the situations where they are required). The methods
that solve the problem with a constrained optimization [25], [56], [4], [22] one
of the balance terms is the goal heading. Therefore these methods also exhibit
high goal sensitivity.

In the ND method action implementation, nothing prohibits the selection
of motion directions towards the obstacles. Thus, directions towards
obstacles are computed when required, see Figs. 2.9e-l,f-m,g-n, Figs. 2.10e-
o,h-q,i-r, and Figs. 2.11k-c,l-e,m-f,n-g. Some methods explicitly prohibit the
selection of motion towards the obstacles [59].

One difficulty found in most of the collision avoidance approaches is the
tuning of the internal parameters. It is intricate to find the optimum
values for a good behavior in all the collision avoidance situations. The ND
method only has one parameter heuristically chosen (p parameter). This pa-
rameter is only used in one of the five navigation laws, it is a multiplier of a
physical magnitude, and it is easy to find a value that does not determine the
final method behavior.

The ND method uses five different situations and the associated actions to
compute the motion commands. Hysteresis was required to smooth transitions
between some situations.

Seen as a whole, the ND method is a robust reactive navigation method.
This is mainly motivated by two facts:
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1. The success of using a ”divide and conquer” strategy to decompose the
reactive navigation problem in sub-problems (by different situations).
Specific strategies for motion are then developed for any situation.

2. The free walking area is a device that endows the method with the guar-
anty that: (1) it is possible to reach the goal, or (2) it is possible to
reach the closest point to the goal, within the maximum reach of the
local knowledge (sensory information).

2.7.2 Nearness Diagram Navigation Limitations

We think that the main limitation of the ND method is the method portabil-
ity to different types of robots. The ND method does not take into account
the so-called internal constraints of the robot: the shape, kinematic, and dy-
namic constraints. The ND method is designed for a circular holonomic robot
working at low/medium velocities (' 0.5 m

sec).
The methods of the related work take into account some of these con-

straints: the robot shape is considered in [30], [25], [4], and [22]. Some of them
compute motion commands that comply with the robot kinematics: [59], [25],
[4], [22], and [56]. The robot dynamic constraints are taken into account in
[25], [4], [22], and [56].

To deal with non-circular shapes is a difficult problem for the ND method
formulation. The ND method is formulated to apply over the Workspace,
while the classical space used to represent the robot geometry is the Con-
figuration space [39]. We have been working in this direction developing an
under-constrained solution for square and rectangular shapes, see Chapter 3.

Taking into account the kinematic constraints in the ND method formu-
lation, we have developed the Ego-Kinematic Space. By means of a simple
transformation, the reactive navigation problem is carried out to a space where
the robot is free of kinematic constraints. Standard reactive methods that do
not take into account the robot kinematics (in particular the ND method) can
be applied in this space, and as a consequence, the solution complies with the
kinematic constraints, see Chapter 4.

We have been working to introduce the robot dynamic constraints in the
ND method formulation. We have constructed a space where the dynamic
constraints are implicitly represented - the Ego-Dynamic Space. Standard
reactive methods are used in this space. As a consequence, the reactive method
solution complies with the dynamic constraints. By using this research, the
ND method velocity limits can be significantly increased, and still safety is
guaranteed, see Chapter 5.
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Another limitation of the reactive method design is that there is not a Low
Safety situation whose action drives the robot towards the goal, when it is
inside the security zone. This is a limitation of the reactive method design.
However, the ND method does not have this limitation. The reason is that
the robot can be in Low Safety 2 created by a virtual valley, see Fig. 2.6. The
robot would be driven towards the goal, irrespective of how close the goal is
to the obstacle.

We have not addressed the sensor noise in the ND method implementation.
We believe that external modules might process the sensory information in
order to deal with noisy sensors, see [10]. However, strategies such as increasing
the security distance according to the sensor uncertainty could be designed.

2.7.3 Improvements to all Reactive Approaches

The common limitation of all the reactive navigation methods analyzed in this
Section, including the ND method, is that they are purely local: global con-
vergence to the goal location cannot be guaranteed. Recently, some researches
have worked on introducing global information into the reactive methods to
avoid the global trap situations. [60] uses a look ahead verification to analyze
the consequences of heading towards the candidate directions. The method
avoids the trap situations by running the algorithm a few steps in advance
of the algorithm execution. [14], [12] and Chapter 6 exploit the information
of the connectivity of the space using a navigation function. This provides
the reactive method with global information used to avoid the trap situations.
Moreover, these two approaches take into account the so-called external con-
straints: the nature of the environment. Both methods are adapted to work
in highly dynamic scenarios.

2.7.4 Nearness Diagram Navigation Background

The ND method has been validated on the Diligent5robot at LAAS-CNRS
(France). The reactive method has been successfully integrated as the low-
level motion generator in the GenoM architecture [23], and the method is daily
used for demonstrations, see [1]. In the Robels system [51], the ND method
is one of the five sensory-motor functions used to move the robot. Two other
sensory-motor functions are evolutions of the ND method, see Chapter 6.

With some modifications, the method is now working in other indoor/outdoor

5Diligent is a Nomadic XR4000 platform.
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mobile platforms: Hilare, Hilare 26, and Lama7 at LAAS-CNRS (France);
Otilio8 at University of Zaragoza (Spain), and r29 at Technical University of
Lisbon (Portugal), see Chapter 3. Currently, the method is being implemented
on Dalay10 at LAAS-CNRS (France).

2.8 Conclusions

This Chapter presents the design of a reactive navigation method. It has been
designed using the situated-activity paradigm of behavioral design. The design
of the method is the basis to implement reactive navigation methods. The
advantage is that the paradigm used in the design employs a “divide and con-
quer” strategy to reduce the difficulty of the problem. As a consequence, the
reactive navigation methods implemented, following the presented guidelines,
might be able to successfully navigate in more troublesome scenarios than
other methods do.

At the current moment, the method design has been used to implement
some reactive navigation methods that adapt to their collision avoidance con-
text. For example the Free Zone Method [41], [42] for soccer player robots.
We have used the method design to implement the ND method. The main
contribution of this method is that it robustly achieves navigation in very
dense, cluttered, and complex scenarios. These environments are a challenge
for many existing methods.

The method can be extended to three dimensions. The information col-
lected to define the situations, and the geometry-based implementation of the
actions, both can easily be redefined to the third dimension. This will allow
for generating reactive collision avoidance for free-flying objects working in
three-dimensional workspaces.

6Hilare and Hilare2 are indoor rectangular differential-driven robots. The main sensors
used were two 2D planar laser.

7Lama is a rectangular outdoor robot that can work in differential-driven mode. The
sensor used was a pair B/W cameras.

8Otilio is square and differential-driven indoor robot. The sensor used was a 3D laser.
9r2 is a circular and differential-driven indoor robot. The sensor used was a ring of

ultrasounds sensors.
10Dalay is a rectangular and differential-driven outdoor robot. The sensor being used is a

2D laser.
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Figure 2.8: Situation/Action table and the PND and RND diagrams. Row 1: LS1.
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Chapter 3

Under-constrained
Sensor-Based Motion
Planning

3.1 Introduction

In typical mobile robotic missions, the indoor/outdoor environment is un-
known and non-predictable (e.g. offices, museums, planetary surfaces). From
the navigation point of view, the different nature of these scenarios imposes
a wide range of difficulties: they are unstructured, dense, cluttered, etc. In
addition, the robots designed usually exhibit different shapes, kinematics, and
dynamics. In these scenarios, the robot shape, kinematics, and dynamics play
an important role, since they constrain the possible robot motions.

This Chapter presents an under-constrained solution to address the shape,
kinematics, and dynamics in the reactive navigation layer. This solution is
used to extend the Nearness Diagram Navigation (Chapter 2) to compute
commands that comply with these constraints.

The solution proposed is under-constrained since the shape, kinematics,
and dynamics are taken into account after the reactive method usage. Thus,
while the motion commands comply with the constraints, they are not used
from the beginning in the motion commands computation.

The advantage of the framework is the integration methodology, the easy
portability among platforms, and the navigation results. The method suc-
cessfully achieves navigation, with different robots and sensors, in very dense,
complex, and cluttered scenarios. To demonstrate the easy portability among

41
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different platforms, the method has been tested on four indoor robots and on
one outdoor robot at three different laboratories.

This research was previously presented in [45].
The paper is distributed as follows. Section 3.2 discusses related work. Sec-

tion 3.3 introduces the framework and Section 3.4 presents the experimental
results. Finally, in Section 3.5 the conclusions are drawn.

3.2 Related Work

To design the safe motion generation task, there are at least three issues to
address: the navigation method, the robot kinematics and dynamics, and the
robot shape.

The navigation technique used is a reactive navigation method [30], [11],
[59], [25], [44], [54], among others. Based on a perception-action process, these
methods compute collision-free motion commands in a goal-directed fashion.
The main advantage is that these methods require a low computational load.
This provides the system with the possibility of a high-rate environmental
feedback. The drawbacks of these approaches are that they produce sub-
optimal solutions, and they cannot guarantee the reach of the goal location.
A deeper discussion about these methods is presented in Chapter 2.

Currently, most of the robots designed exhibit kinematic and dynamic
constraints. For these robots, the navigation method has to take into account
these constraints. Otherwise, the robot cannot execute the motion computed
by the reactive navigation method [30], [11], [44], [54]. This issue will be
discussed in detail in Chapters 4, and 5.

The robot shape is a difficult problem in reactive navigation. Classically,
the robot shape is taken into account by carrying out the problem to the Con-
figuration space [35]. In this space, a point represents the robot. To map the
obstacles into the Configuration space is a time-consuming task not comply-
ing with the real-time requirement. Some reactive navigation methods avoid
the Configuration space computation, by approximating the robot by circular
shapes. Thus, the collision checking can be carried out in the Workspace [11],
[44], [54]. If these methods are used over non-circular bases, the robot shape
needs to be approximated, under-constraining the method solution. This issue
will be discussed in detail in Chapter 4.

This Chapter addresses the robot motion in very dense, complex, and clut-
tered scenarios. The robot shape, kinematics, and dynamics are determinant
in these scenarios, and thus, they cannot be neglected. The Nearness Diagram
Navigation method is a reactive navigation method that successfully navigates
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in those scenarios. However, the Nearness Diagram Navigation method does
not consider the robot shape, kinematics, and dynamics. For this reason, this
Chapter addresses the extension of the Nearness Diagram Navigation method
to take into account the robot shape, kinematics, and dynamics.

3.3 The Framework

The goal of this Section is to understand the solution proposed to extend the
Nearness Diagram Navigation method to address the shape, kinematics, and
dynamics.

The solution is based on breaking down the motion computation process
into three sub-problems related to: (1) collision avoidance, (2) the robot kine-
matic and dynamic constraints, and (3) the robot shape:

1. The reactive collision avoidance approach - Nearness Diagram Naviga-
tion - is used to calculate the most promising motion direction and the
desired velocity. The assumption is a circular robot free of motion con-
straints.

2. The Motion Generator uses the information provided by the Nearness
Diagram Navigation method to compute a motion command that com-
plies with the kinematic and dynamic constraints.

3. For non-circular robots, the Shape Corrector modifies the pre-computed
motion command to take into account the robot shape.

Fig. 3.1 illustrates the complete process. Seen as a whole, this framework
computes collision-free motion commands to drive a mobile platform towards a
given goal location. The motion commands comply with the robot kinematics
and dynamics, and the robot shape is considered.

The three modules are next analyzed.

3.3.1 Nearness Diagram Navigation

The Nearness Diagram Navigation (ND) method is described in detail in Chap-
ter 2. However, a brief description of the method is next presented. The ND
method is based on the situated-activity methodology of design [3]. First, a
set of five situations that fully describe the relative state of the robot, ob-
stacle distribution, and goal location are defined. Subsequently, one action is
designed for each situation. In real-time, the sensory information is used to
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Figure 3.1: The reactive navigation problem broken down into subproblems.

identify the current situation, and the associated action is executed comput-
ing the motion commands (translational velocity vND, and velocity direction
θND).

Good results in very cluttered, complex, and dense scenarios have been
reported using the ND. This is motivation to select the ND for the framework.
However, the ND does not take the kinematic and dynamic constraints, and
non-circular shapes into account.

3.3.2 The Kinematic and Dynamic Constraints

The ND computes the most promising motion direction, θND, and the desired
velocity, vND. Both motion commands still need to be converted into motion
commands for the non-holonomic mobile base. This issue is achieved by the
Motion Generator, see Fig 3.1.

The Motion Generator (MG) [5] is a dynamic model-based robot controller
for differential-drive robots. The controller has physical parameters: inertia,
friction, application point of the force. These parameters are for tunning the
controller behavior, thus, there is no need to identify them. The MG computes
the velocity commands from a virtual force applied to a point on the robot at
each sample period. The MG has the following advantages:

1. The model takes into account the kinematic and dynamic constraints.
Thus, the controller computes feasible commands for the real robot.

2. The model parameters have a clear physical sense. This allows an easy
tuning of the parameters in order to obtain the desired dynamic behav-
ior (non overshooting during turns, and limits in velocities and acceler-
ations).

3. The model filters the sudden changes in direction produced by many
reactive navigation methods.
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Figure 3.2: a) Robot trajectory. b) Translational and rotational velocities (motion
command) obtained with the MG.

Fig. 3.2a depicts the robot moving between two locations. The input of
the MG is a force, −→F , calculated at each sampling period. The force “pulls”
the model towards the goal location. The output of the MG is the motion
command given to the differential-driven robot, v = (v, w). See Fig. 3.2b.

The Nearness Diagram Navigation method and the Motion Generator are
connected as follows. The most promising motion direction, θND, and the ve-
locity, vND, obtained with the ND are transformed into a force, −→F = (|F |, θF ),
the input of the MG:

|F | = Fmax. vND
vmax

, θF = θND (3.1)

This framework computes the collision-free motion commands to drive a
circular and differential-driven robot towards the goal location.

3.3.3 The Shape Constraint

The Nearness Diagram Navigation method and the Motion Generator compute
collision-free motion commands for a circular and differential-driven platform.
The reactive navigation method only takes into account circular shapes. Thus,
other robot shapes are not considered. The Shape Corrector is used to extend
this framework to take into account other shapes, see Fig. 3.1. From now on,



46 Chapter 3. Under-constrained Sensor-Based Motion Planning

Safety Area

ND sectorization
point ND solution

Safety Area

ND sectorization
point

ND solution

Front Part

Back Part

Inscribed Circle

(a) (b)

Figure 3.3: a) Circular robot. b) Rectangular robot.

the attention is focused on rectangular shapes (the square shape is a particular
case).

In a first step, the - ND + MG - framework is used to compute a motion
command approximating the robot shape by the inscribed circle, see Fig. 3.3b.
(Very dense, complex, and cluttered scenarios motivate this non-conservative
selection: the circumscribed circle is a coarse approximation). The Shape Cor-
rector modifies the pre-computed motion command, to protect from collisions
the two parts of the robot outside of the inscribed circle (the front and back
parts), see Fig. 3.3b.

The - ND + MG - computes motion commands that produce instantaneous
forward motion v ≥ 0. (The reactive method is constrained to compute in-
stantaneous forward directions of motion) Then, the Shape corrector is based
on three situations that exploit this constraint:

1. Imminent collision: The robot is in this situation when the collision
cannot be avoided with any sequence of forward motions. The motion
command stops the robot (v = 0, w = 0), because the collision is immi-
nent. A flag is then fired to launch a higher-level module to bring the
robot out of this situation (e.g. a motion planner). Fig. 3.4a illustrates
this situation: when there are obstacles inside the Emergency Stop Area
(calculated from the circumscribed circle to the robot shape), no motion
with v ≥ 0 (forward motion) or sequence of them avoid the collision.

2. Front collision danger: The robot is in this situation when there is a
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potential risk of entering into an Imminent collision situation. A Safety
Margin is defined to enclose the Emergency Stop Area, see Fig. 3.4b.
The robot is in this situation when there are obstacles within the Safety
Margin. The motion command stops and rotates the robot over its
center (v = 0,w) to clear the Safety Margin of obstacles. The selection
of the rotation direction depends on: (1) the closest obstacle inside the
Safety Margin, and (2) an internal piece of information of the Nearness
Diagram Navigation method called - free walking area (for wider details
see Chapter 2). The rotation direction is computed as follows:

(a) If the free walking area gap closest to the goal is on the right-hand
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of the direction of the closest obstacle inside the Safety Margin,
then the robot rotates towards the right. If not,

(b) The robot rotates towards the left.

The result of this strategy clears the Safety Margin of obstacles, implic-
itly avoiding the Imminent collision situation. Fig. 3.4b illustrates an
example of this situation, in which the robot stops and rotates towards
the right.

3. Back collision danger: The robot is in this situation when the pre-
computed motion command produces a collision with the back part of
the robot. To detect this situation, the trajectory that would be obtained
under the execution of the pre-computed motion command is analytically
calculated (following [25]). Then, the robot motion is simulated over the
trajectory checking collisions, to validate the motion command. The
back part of the robot is enlarged for safety reasons. The back of the
robot is divided into three parts Back-Left, Back-Right and Back-Center
Safety Margins, see Fig. 3.4c. Then, three cases distinguished:

• A collision is detected with the Back-Left Margin. The angle between the
ND solution and the direction that would produce w = 0, is discretized in
sub-directions. The MG computes a new motion command by using one
of those sub-directions. The new motion command is tested for collisions
over the trajectory. This procedure is repeated until a collision-free
motion command is found. Fig. 3.4c illustrates an example where the
pre-computed motion command produces a collision with the Back-Left
Margin. Some intermediate directions are tested, until a collision-free
command is found.

• A collision is detected with the Back-Right Margin. The above procedure
is repeated but towards the right-hand direction.

• A collision is detected with Back-Center Margin, or simultaneously with
Back-Left and Back-Right Margins. The motion command is a forward
motion without rotation (v ≥ 0,w = 0).

This framework computes the collision-free motion commands to drive a
rectangular and differential-driven robot towards the goal location.
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3.4 Experimental Results

This Section validates experimentally the proposed research. This framework
has been tested on four indoor robots and on one outdoor robot. The main
characteristics of the robots are: (1) they are differential-driven robots, with
the exception of the outdoor robot that can be set to work in differential-
driven mode. (2) The robots have circular, square, and rectangular shapes.
(3) The on-board sensors are ultrasounds, 2D and 3D laser rangefinders, and
a stereo pair of cameras.

To adapt the framework to each robot, the main adjustments were: (1)
an special safety area (for each robot shape) was designed for the Nearness
Diagram Navigation method, see Fig. 3.3a and Fig. 3.3b. (2) The Motion
Generator parameters were tuned to have the desired dynamic behavior com-
patible with each platform constraints (due to the different motion capabilities
of each robot). (3) Only some geometric parameters were changed in the Shape
Corrector.

In all the experiments the environment was completely unknown, and only
the goal location was given in advance to the robot. The environments were
unstructured (random shaped obstacles). Nevertheless, the environment could
be dynamic and non-predictable. Under all these circumstances it is widely
justified the use of reactive navigation algorithms to move the robot.

The experiments reported have a common objective: To show that this
framework is able to safely drive a kinematic and dynamic constrained mobile
platform in very dense, complex and cluttered scenarios. This is the type of
scenarios where other approaches are susceptible to failure for the following
reasons: (1) the reactive method itself, (2) approximations in the motion
executed, and (3) approximations in the robot shape.

3.4.1 Circular robots

For circular robots the Nearness Diagram Navigation + Motion Generator
framework is used.

Nomadic Scout

This framework has been implemented in a Nomadic Scout at the Instituto
Superior Técnico de Lisboa, Portugal, see Appendix E.0.7.

Fig. 3.3a illustrates the robot model and the point used to apply the ND.
The sampling time was T = 0.25sec and the maximum speed v = 0.3 m

sec .
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Figure 3.5: a) Simulated experiments with laser. c) Real experiment with ultra-
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The framework was tested on a simulator and on the real robot. On the
simulator a simulated SICK laser were used. On the real robot a ring of
ultrasounds was used. The ultrasound measurements were processed to build
depth maps [10]. The experiments showed good results in dense, complex and
cluttered scenarios. See Fig. 3.5a,b.

3.4.2 Rectangular and square robots

For square and rectangular robots the Nearness Diagram Navigation + Motion
Generator + Shape Corrector framework is used.

Labmate platform

This framework has been implemented and tested on a Labmate platform at
the Universidad de Zaragoza (Spain), see Appendix E.0.5.

For the experiments, the 3D TRC laser was used. The last 20 laser mea-
surements, projected onto the floor and corrected to the actual robot location,
were used as a short-time memory. The sampling period was set to T = 0.4sec
and the maximum speed to 0.3 m

sec .
Fig. 3.6. shows an experiment in a typical indoor environment. The robot

passed through two doors (the last one was half-open) and a corridor full of
obstacles. The goal location was successfully reached without any collisions
with the environment.
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Figure 3.6: Real Experiment the Labmate.

Hilare2 and Hilare2Bis

This framework has been implemented and tested on the Hilare2 and Hi-
lare2Bis platforms at LAAS (CNRS), France, see Appendix E.0.6.

For the experiments, a SICK was used. The last 40 laser measurements,
corrected with the robot odometry, were used as a short-time memory. The
sampling period was set to T = 0.4sec and the maximum speed to 0.3 m

sec . To
take the inertia into account on Hilare2Bis, some parameters of the Motion
Generator were tuned to have the desired dynamic response.

Fig. 3.7a shows an experiment with Hilare2 in a very dense, complex and
cluttered scenario. The robot navigated along a very narrow corridor (< 10cm
on both sides). Next the robot maneuvered reactively in a constrained space
(central part of the experiment) to turn towards the exit. The goal location
was successfully reached without collisions with the environment.

Fig. 3.7b shows an experiment with Hilare2Bis in a troublesome scenario
built while the robot was moving (this creates the environment dynamic com-
ponent). The robot navigated along an asymmetric corridor, and in the last
part of the experiment, the robot maneuvered to the right side to reach the
goal location. The robot successfully arrived to the goal location without



52 Chapter 3. Under-constrained Sensor-Based Motion Planning

GOAL 
LOCATION

INITIAL 
LOCATION

1 meter

GOAL
LOCATION

INITIAL 
LOCATION 1 meter

(a) (b)

Figure 3.7: a) Real Experiment with Hilare2. b) Real Experiment with Hilare2bis.

collisions with the environment.

Lama

This framework has been implemented and tested on the outdoor Lama plat-
form at LAAS-CNRS, France, see Appendix E.0.8.

The obstacle information is computed with a probabilistic obstacle detec-
tion procedure [27]. The perceived area is described by a set of polygonal cells.
By means of a Bayesian classifier, the cells are labeled with the probability
that an obstacle occupies them. The image-processing period is about four
seconds. The sampling time was set to T = 0.4sec and the maximum speed
10 cm

sec .
The experiment was conducted in a typical outdoor environment, see

Fig. 3.8a. The framework drove the robot towards the goal location avoid-
ing collisions with the obstacles. The complete run was about 20m.

3.5 Conclusions

The presented framework generalizes a reactive navigation method - Nearness
Diagram Navigation - to work on robots with kinematic and dynamic con-
straints. This framework computes reactively motion commands to drive a
mobile platform towards a goal location, whilst avoiding collisions with the
environment.
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Experiments in very dense, complex and cluttered scenarios have been
reported, where: (1) it necessary the use of a reactive navigation method
able to deal with these troublesome scenarios. (2) The robot kinematic and
dynamic constraints have to be taken into account, because they limit the
motion capabilities. (3) The robot shape also reduces the possible collision-
free motions, and it has to be taken into account.

To validate the proposed approach, and to demonstrate the easy portability
among different platforms, the framework has been tested on five different
robots at three different laboratories. The results were very satisfactory, and
the platforms were safely moved during hours of tests.

From the author’s point of view, the limitation of the framework is the
decomposition of the navigation problem in sub-problems. This is an under-
constrained solution, since the kinematics, dynamics, and shape are not explic-
itly taken into account in the reactive method stage. However, the navigation
results are outstanding because the typical mobile platforms have quick dy-
namics, and the kinematics are not very significant with the small sample
periods used. On the other hand the result would be degraded. This issue is
analyzed in detail in Chapters 4 and 5.
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Chapter 4

Sensor-Based Motion
Planning with Kinematic
Constraints

4.1 Introduction

Even though many robots exhibit kinematic constraints, most sensor-based
navigation methods do not take these constraints into account. This is a hard
limitation when using a navigation method. The robot can only approximately
execute the motion computed: safety cannot be longer guaranteed. In other
cases, some sensor-based algorithms have been extended to address the motion
constraints. However, with this approach, the reactive navigation method is
usually re-designed from scratch to address the constraints. And a new re-
design might be necessary to incorporate the constraints of another robot.

There is a lot of literature that proposes particular solutions to address
the motion constraints in the sensor-based motion planning field. But little
attention has been paid to look for much wider solutions.

This Chapter presents a novel idea to take into account the kinematic
constraints: to introduce them in the space. The proposal is to use the kine-
matics to construct a novel spatial representation, the Ego-Kinematic Space.
The kinematic constraints are embedded in the space, so the robot in this space
moves as a ”free-flying” object. Then, standard sensor-based algorithms that
do not take into account the kinematic constraints can be used in this space.
As a consequence, the algorithms comply with the kinematics without address-
ing it directly. By using this approach, it is straightforward to apply existing

55
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reactive navigation algorithms to non-holonomic robots. An ample solution, to
address the motion constraints in the sensor-based motion planning discipline,
is presented.

Another problem overcame in this Chapter is the space dimensionality.
The Configuration space for non-holonomic robots such as differential-driven
robots, tri-cycle robots, and car-like robots is three-dimensional IR2 × S1.
In the sensor-based motion planning context, the computations required to
deal with three dimensions are a limitation: these algorithms have to work
in real-time. The necessity of using only a subspace of the Configuration
space with the same structure of the Workspace, IR2, is demonstrated. As
such, the dimension of the Configuration space is reduced by one within the
context of sensor-based motion planning. This will alleviate significantly the
computation time of future sensor-based algorithms that make use of this
result. In particular, the research presented in this Chapter.

The main advantage of this framework is that it can be utilized by related
work. Many sensor-based algorithms, that do not take into account the kine-
matic constraints, can be used in the proposed spatial representation, without
further concern about the kinematic constraints. Experimental results involv-
ing a non-holonomic robot are shown to validate the framework. Two methods
were used for navigation (Nearness Diagram Navigation, Chapter 2, and the
Potential Field Method [30]). They both originally do not address kinematics.
By using the framework both methods were successfully used to safely drive
the constrained platform among locations.

This research was previously presented in [47].

The Chapter is organized as follows: In Section 4.2 a general background
for the rest of the Chapter is introduced. Section 4.3 discusses the Configura-
tion space dimensionality. The Ego-Kinematic Space is addressed in Section
4.4. Finally, Section 4.5 shows the experimental results and Section 4.6 draws
the conclusions.

4.2 Background and Preliminaries

This Section reviews some concepts used in the remaining part of the Chapter.
Firstly, the robot kinematics covered by the analysis is presented. Secondly,
the sensor-based motion planning techniques are discussed. Finally, the ad-
missible paths that arise from the robot kinematic model are examined.
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4.2.1 Robot Kinematics

Robots moving on a flat surface with the classical hypothesis “rolling without
slipping” are addressed. The Workspace, W, and the Configuration space, C,
are IR2 and IR2 × S1 respectively. A robot configuration is represented by its
location and the orientation q = (x, y, θ). The attention is focused on robots
whose motion is constrained by:

−ẋsinθ + ẏcosθ = 0 (4.1)

Equation 4.1 is a non-holonomic equality constraint. The effect is to
reduce by one the dimension of the space of differential motions at any given
configuration [7]. Hence, a motion command of the robot can be described by
two motion parameters only.

The kinematic model of the two-driving wheels and the car-like mobile
robots is next described. These robots are representative examples of mobile
platforms that verify the constraint of Equation (4.1), see Fig. 4.1. A deeper
description of both models is found in [36].

The kinematic model of both, the two-driving wheels and car-like robots,
can be expressed by the following equation (the difference is a change of vari-
able12), as detailed in [36]:
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ẏ
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0
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0

0

1
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where v and w denote the linear and angular velocities.
The main difference between these two platforms is that the car-like robot

has a mechanical constraint. This imposes a maximum curvature γmax (or
minimum turning radius rmin = γ−1

max) of the path executed by the robot.
There are other robots (e.g. tri-cycle robots) whose kinematic models can also
be expressed by Equation (4.2), and verify Equation (4.1).

4.2.2 Sensor-Based Motion Planning

To address the goals of this Chapter the role of the sensor-based navigation
methods in generating collision-free motion is discussed.

1For the differential-driven robot, the controls are speeds of the wheels, vr and vl. The
variable change is v = 1

2
.(vr + vl) and w = 1

l
.(vr − vl).

2For the car-like robot, the controls are the steering angle and the linear speed, φ and
w′. The variable change is v = L.w′.cos(φ) and w = L.w′.sin(φ).
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Figure 4.1: a) Two-driving wheels robot. b) Car-like robot.

The reactive navigation methods are based on a perception-action process.
They compute collision-free motion commands, that drive the robot towards
the goal. The result of applying repeatedly a reactive navigation method is a
sequence of motion commands that move the robot from the initial location
towards the final location, while avoiding collisions. Examples of these meth-
ods include [30], [58], [29], [9], [50], [22], [11], [28], [56], [25], [54], Chapter 2.
These on-line methods are commonly accepted to move a robot in dynamic,
unknown, and unstructured environments.

The vehicle kinematic constraints are still a subject of research in sensor-
based motion planning. However, some methods have been proposed that deal
with the kinematics. Mainly they parameterize a set of admissible trajectories
to select the better later on [59], [60], [62], [28], [22]. Others carry out and
solve the problem in the admissible motion command space [25], [56], [52]. Or
they use a metric induced from the kinematic constraints [54].

This research is based on a spatial representation prior to the reactive
method usage. The following analysis covers the spaces where in general the
reactive navigation methods apply: the Workspace (e.g. [11], [25], [22], [56],
[14]) and the Configuration space (e.g. [30], [59], [53]).

4.2.3 Admissible paths

The kinematic admissible paths have been mainly studied in motion planning
from the shortest path point of view. The optimal paths between configura-
tions are a concatenation of arcs of circle and straight segments for both, a car
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that can only move forward [21], or that can also move backwards [55]. The
idea of using the length of a kinematic admissible path as a distance is related
to this research. The shortest path complying with the kinematic constraints
is used as a distance for a non-holonomic metric in [37], and [49]. Other dis-
tances are computed from a robot configuration to an obstacle point [8], or to
a segment [61], both in IR2.

The interest in this Chapter is focused on the sensor-based motion plan-
ning context. The reactive navigation methods compute at each time a motion
command. Under the execution of a single motion command, the admissible
paths are arcs of circle or the straight segment (when dynamics are
ignored, see [25] for an upper bound of the approximation error). This charac-
terization of the paths has been widely used in sensor-based motion planning
to address the kinematic constraints, see [59], [60], [62], [28], [22], [25], [52],
among others.

4.3 Properties of the Workspace and the Configuration-
Space

The approach described in this Chapter lies in applying a spatial transfor-
mation, prior to the application of a reactive navigation method, in such a
way that the robot kinematic constraints are directly represented. This trans-
formation must be applied to the robot Workspace or Configuration space,
depending on the navigation method used.

The goal of this Section is to show that the Workspace and the subspace
of the Configuration space needed, are both represented by IR2 (within the
contest of sensor-based motion planning). Moreover, the obstacle information
in both spaces is also represented by IR2.

As the Workspace is readily defined as IR2, the attention is focused on
the Configuration space, IR2 × S1 (S1 is the unit circle). In the context of
reactive navigationm, those paths in the Configuration space obtained under
the execution of a single motion command are considered. The set of all the
robot configurations reachable by such paths is a subset of the Configuration
space, the Reachable Set of a single Motion Command, denoted by R1mc,
where R1mc ⊆ C.

The structure of R1mc depends on the kinematic model of a specific mo-
bile robot. As mentioned in Subsection 4.2.3, the paths obtained under the
execution of a single motion command are approximated by arcs of circle or
the straight segment. On a circular path, the robot orientation is constrained
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by:

θ =

{
atan( 2xy

x2+y2 ), |x| ≥ |y|
π − atan( 2xy

x2+y2 ), |x| < |y| (4.3)

which is expressed in the robot frame of reference.
Equation 4.3 is a holonomic equality constraint. The effect is to reduce

the dimension of the Configuration space by one [35]. Therefore, the Reachable
Set of a single motion commandR1mc (i.e. the set of all the configurations that
can be reached by the straight segment or one arc of a circle) is a function of
only two parameters, and can be represented by IR2. A configuration in R1mc

is represented by q1mc = (x, y) (once (x, y) are selected, θ is given by Equation
4.3.). Fig. 4.2 depicts how any point (x, y) of the space can be reached, but
only with one arc of a circle or the straight segment. The robot orientation at
each point (x, y) must be tangent to the arc of circle.

A point worth mentioning here is the fact that both, the robot Workspace,
W, and the Reachable Set of a single Motion Command, R1mc, can be de-
scribed by IR2.

For reactive navigation, the sensory information (obstacle information),
that is usually given in the Workspace W, still needs to be mapped into the
Reachable Set of a single Motion Command R1mc.

The obstacles are represented in W by a set of points (x, y) ∈ IR2. This is
a reasonable assumption since the sources of information are real sensors (e.g.
the lasers measure points), and the environment is assumed to be unstructured
(e.g. avoiding the use of polygons). Fig. 4.7d and Fig. 4.8d illustrate the type
of sensory information that is being dealt with. Then, each obstacle point
in W is mapped into a region in R1mc, called C-Obstacle [35]. The union
of the C-Obstacles is called the C-Obstacle region, R1mc

obs ⊂ R1mc. Fig. 4.8a
depicts a differential-driven rectangular robot and the sensory information in
W. The R1mc is illustrated in Fig. 4.8b. Notice that while C for this robot is
three-dimensional and so Cobs, the R1mc and R1mc

obs are two-dimensional.
Appendix B presents an algorithm to compute a discretization of the R1mc

obs

boundary. To calculate the exact boundary remains an open problem. The
interest is in a discretized version because: (1) in the following, a transfor-
mation IR2 → IR2 is presented. Then other representations of the boundary
might be discretized to apply the transformation, or the transformation might
be redesigned. And (2) the sensory information remains in the form of points,
that is the input of most of the existing reactive navigation methods.

Summarizing, the robot Workspace, W, and the subset of the Configu-
ration space needed, the Reachable Set of a single Motion Command, R1mc,
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Figure 4.2: The robot orientation, θ, is constrained at any point of the space. The
robot moves on arcs of circle, or on the straight segment.

both can be described by IR2. Moreover, a point obstacle in the Workspace
is (x, y) ∈ IR2. The point maps into the Reachable Set of a single Motion
Command, R1mc, as a region whose boundary can be approximated by points
(xi, yi) ∈ IR2. The obstacle information in both spaces (W and R1mc) is
fully represented by a set of points in IR2. As a consequence, a coordinate
transformation over IR2 can be applied either to W or to R1mc.

In the following the Ego-Kinematic Transformation is presented. This
transformation maps IR2 into the Ego-Kinematic Space, where the kinematic
constraints are implicitly represented.

4.4 The Ego-Kinematic Space

The Ego-Kinematic Space (EK-space) is constructed by mapping points of IR2

into: (1) descriptors of admissible paths leading to these points, and (2) the
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distances to reach these points measured over the admissible paths. This is
done by means of the Ego-Kinematic Transformation. Since the kinematic
constraints are embedded in the Ego-Kinematic Transformation, the admis-
sible paths are mapped into straight lines in the transformed space. Then
each point of the EK-space is reached by a straight line motion “free-flying
behavior”.

To introduce the Ego-Kinematic Transformation (EKT), the attention fo-
cuses on the robots discussed in Section 4.2: under the execution of a single
motion command they either move over one arc of circle, or over the straight
segment.

The family of admissible paths (circles) is first characterized. Considering
a point (x, y) ∈ IR2 in the robot frame, there is only one circle with radius
R that verifies: (1) the (x, y) point is on the circle, (2) the origin (0, 0) is on
the circle, and (3) the circle center is on the y-axis (the robot instantaneous
turning center has to be on the y-axis). The radius of this circle is given by
R = x2+y2

2y (R < 0 represents circles with the center in y < 0, and R = ∞ is
the straight segment). Fig. 4.2 depicts this fact.

The EKT maps each point expressed in the robot frame of reference into
the EK-space, which is represented in polar coordinates for convenience. This
mapping is a function of the circular arc length L, and the radius R of the
unique circular path leading to that point.

EKT:IR2 → IR+ × S1

(x, y) → (d, α) = (fd(x, y), fα(x, y))
(4.4)

• The distance d is the length of the admissible path leading to the point.
Then, d is the arc length L of the circle. From the two arc lengths of
the circle (L and 2πR − L), the shortest is selected. This distance is
computed as:

fd : IR2 → IR+

(x, y) → d = fd(x, y) =

{
|R.acos(x2−y2

x2+y2 )|, y 6= 0

|x|, y = 0
(4.5)

Fig. 4.3 shows two points (x1, y1) and (x2, y2) in the robot frame of
reference, and the arc lengths d1 = L1 and d2 = L2 computed by this
function.
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Figure 4.3: Circular paths to reach the points (x1, y1) and (x2, y2) of the space in
the robot frame.

• The angle α parameterizes the family of circular paths arising from the
kinematic constraints. The circles family is fully described by the radius
R ∈]−∞,∞[. A non-linear function to convert the radius into an angular
descriptor is required, in order to have a bounded representation.

Many functions can be used. Appendix C justifies the selection of the
function α = arctan( R

rp
). It converts into an index the relation between

a circular path with radius R and the circular path with radius rp. rp =
dm
2 , and dm is the diameter of the circular region to transform - for

practical issues dm is the distance of the farthest obstacle measured, see
Fig. 4.3.

An arc length, L, does not univocally identify a point on a circle. A
different value of α is used to distinguish the traveling direction on a
circle:
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fα : IR2 → [−π, π]

(x, y) → α = fα(x, y) = sign(x).π
2 − arctan( R

rp
) (4.6)

Fig. 4.4a shows an example of the EKT applied to a discrete set of points
of a polygon. Each side of the polygon is numbered to notice how it trans-
forms into the EK-space, illustrated in Fig. 4.4b. The angles α ∈]α1, π − α1[
correspond to 0 < R < R1, whereas the angles α ∈]α2,−π − α2[ result from
0 > R > R2. The values of α = 0 and α = π correspond to both, the straight
forward and backward paths respectively along the x-axis.

Some points are worth mentioning here:

1. The EK-space can be computed in closed form.

2. The EKT is invertible. A pair (d, α) ∈ EK-space determines univocally
a pair (x, y) ∈ IR2, and implicitly a θ ∈ S1.

3. The distance from the robot to any point in the EK-space is adequately
described by the Euclidean distance. While this distance is the length
of the admissible path that complies with the kinematic constraints.

4. The robot in the EK-space is a ”free flying object”, because it can move
in any direction. Notice that a direction of motion α in the EK-space
settles a unique turning radius for the robot, having R = f−1

α (α).

Next, the Ego-Kinematic Transformation is extended to consider the case
of robots that can only move forwards. Subsequently, the case of vehicles with
curvature constraints is analyzed.

4.4.1 Forward Motion Constraint

The EKT transforms each point into descriptors that univocally describe the
path leading to that point. So far circular paths have been considered, where
forward and backward motion were allowed. Here, the additional constraint
to forbid backward motion is added. This is incorporated to the EKT by
imposing a traveling direction over a circle. Fig. 4.3 depicts the idea: to
reach (x1, y1), L3 is computed, instead of L1 that would be calculated by the
standard EKT.

The Ego-Kinematic Transformation then becomes:
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Figure 4.4: a) Space to be transformed. b) EK-space.

EKT:IR2 → IR+ × [−π

2
,
π

2
]

(x, y) → (d = fF
d (x, y), α = fF

α (x, y)) (4.7)

where:

fF
d : IR2 → IR+

(x, y) → d

d = fF
d (x, y) =





|R.acos(x2−y2

x2+y2 )|, x > 0, y 6= 0

2.π.|R| − |R.acos(x2−y2

x2+y2 )|, x < 0, y 6= 0

x, x ≥ 0, y = 0
∞, x < 0, y = 0

(4.8)

fF
α : IR2 → [−π

2
,
π

2
]

(x, y) → α = fF
α (x, y) = sign(y).π

2 − arctan( R
rp

) (4.9)
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Fig. 4.5a shows an example of the EKT applied to a discrete set of points
of a polygon. Fig. 4.5b depicts the EK-space. The angles α > α1 correspond
to 0 < R < R1, while the angles α < α2 result from 0 > R > R2. The angle
α = 0 corresponds to the straight forward path. The value of d diverges when
x < 0 and y → 0, because the radius of the circle leading to that points tends
to infinity (the robot cannot move backwards).

4.4.2 Maximum Curvature Constraint

The car-like robot is a platform that has a minimum turning radius Rmin (or
a maximum curvature constraint γmax). This can be incorporated in the EKT
by a variable change R′ = R − Rmin. The space with |R| < Rmin is not
transformed (as any point within the region |R| cannot be reached under the
execution of a single motion command, there is no need to transform it).

Summarizing, this Section presents the Ego-Kinematic Space. The Ego-
Kinematic Transformation is defined over IR2. This result can be used to
transform the obstacle information in both, the Workspace W and in the
Reachable Set of a single Motion Command R1mc, into the EK-space. In this
space the kinematic constraints are implicitly embedded, so the robot moves
free of kinematic constraints. Thus, the EK-space represents the obstacle
information in a space where the robot is a “free-flying object”.
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Figure 4.6: The reactive navigation method solution cannot be executed by the non
holonomic robot.

Moreover, the Ego-Kinematic Transformation has been extended to con-
sidered the kinematic constraints of some widely used mobile platforms: either
robots that can only move forward, or systems with a minimum turning radius.

The sensor-based motion planning with kinematic constraints is addressed
in the following Section. The EKT is used to map the sensory information into
the EK-space, that implicitly represents the kinematic constraints - the robot
is not constrained anymore. Then, the sensor-based motion planning problem
is addressed in the EK-space without further concern about the kinematics.

4.5 Using the EK-space for Sensor-Based Motion
Planning

The goal of this Section is to understand how the EK-space is used as a frame-
work to address the kinematics in sensor-based navigation. Furthermore, this
Section validates experimentally the proposed research.

Many reactive navigation methods assume that the robot is a ”free flying
object” - they do not address the kinematic constraints. Without taking the
robot kinematic constraints into account, the execution of the motion com-
puted by a reactive method is doomed to rely on some approximations. The
Fig. 4.6 depicts this fact. The robot cannot execute the method solution, and
the motion that complies with the kinematic constraints is forward. Instead,
the EK-space is used to implicitly represent the robot kinematic constraints.



68 Chapter 4. Sensor-Based Motion Planning with Kinematic Constraints

Reactive navigation methods not designed for non-holonomic robots can be
applied to the EK-space. (Irrespective whether the method applies to the
Workspace or to the Configuration space.) Finally, the reactive navigation
method solution in the EK-space is transformed back to the Workspace, to
compute an admissible motion command.

At each sample period T , the procedure to use the EK-space is the follow-
ing:

1. The sensory information is reduced to points expressed in the robot
frame of reference.

(a) If the reactive method applies to the Workspace W, the EKT is
directly applied to the obstacle points.

(b) Or, if the reactive method applies to the Configuration space, the
C-obstacle region R1mc

obs is first built (as described in Section 4.2),
to apply the EKT.

In both cases the result is the obstacle information expressed in the
EK-space.

2. The reactive navigation method is then applied to the EK-space to com-
pute the most promising motion direction, α.

3. A turning radius is calculated by R = EKT−1(α). Finally, a motion
command that preserves this turning radius is obtained by v = ω.R.

Any strategy to compute a pair (v, ω) that preserves R is valid. In the
current implementation v is calculated with the distance to the closest obstacle.
Then, ω is computed. If ω > ωmax, then ω = ωmax and v is computed
preserving the turning radius R.

To validate this methodology experimentation with two different reactive
navigation methods has been conducted. Both methods do not take the kine-
matic constraints into account. The reason to select the methods is to cover
almost all the results presented in the Chapter: firstly the Nearness Diagram
Navigation, that applies to the Workspace and only allows forward motion.
Secondly, the Potential Field Method, that applies to the Configuration space
and allows both forward and backward motion.

Notice that the results obtained are not compared with other methods.
The reason is that the scope of the Chapter is the spatial representation, not
the reactive method itself. The particular results are completely dependent
on the reactive method used, and its specific implementation.
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Figure 4.7: a)Workspace . b)EK-space. c) Experiment. d) Experiment.

4.5.1 Platform and Experimental Settings

The framework was tested in a Labmate robot at the University of Zaragoza,
Spain. The main sensor is a 3D TRC laser rangefinder. For further details
about the robot and sensor, see Appendix E.0.5.

In all the experiments the environment was completely unknown, and only
the goal location was given in advance to the robot. The environments were
unstructured (random shaped obstacles). Moreover, the environment could
be dynamic and non-predictable. Under all these circumstances it is widely
justified the use of sensor-based motion planning algorithms to move the robot.
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4.5.2 Nearness Diagram Navigation

The Nearness Diagram Navigation (ND), Chapter 2, is a reactive navigation
method that does not take into account the kinematic constraints.

The ND method is described in detail in Chapter 2. However, a brief
description of the method is next presented. The ND method is based on the
situated-activity methodology of design [3]. First, a set of five situations that
fully describe the relative state of the robot, obstacle distribution, and goal
location are defined. Subsequently, one action is designed for each situation.
In real-time, the sensory information is used to identify the current situation,
and the associated action is executed computing the motion commands.

To identify the current situation, in the sensory information some high level
information is searched for: gaps, regions, free walking areas. Some criteria
are also applied: a security criterion, a free walking area criterion, etc. The
individual action designs are based on a geometrical implementation.

To apply the ND method to robots with kinematic constraints the EK-
space is used.

At each sample period T the following procedure is repeated:

1. The EKT is applied to the sensory information in the Workspace (Fig.
4.7a). The result is the obstacle information in the EK-space (Fig. 4.7b).

2. The ND method is applied to the EK-space to compute the most suitable
motion direction α∗ (represented in Fig. 4.7b as the ND solution). Some
information used by the ND to compute the solution (the gaps, regions,
and the free walking area, see Fig. 4.7a) is shown in Fig. 4.7b.

3. The direction α∗ is transformed back to the Workspace as a turning
radius R∗ = EKT−1(α∗), see Fig. 4.7a. Finally, a motion command
(v,w) that preserves this turning radius is computed.

This procedure was tested on the real robot. The cycle time of the al-
gorithm (construction of the EK-space and reactive method usage) is around
150msec on a 100MHz microSun SparcII. This execution time is enough for
real-time. Fig 4.7d shows a real experiment. The robot was safely driven to
the goal location - the only information given a priori to the robot. A circular
robot is drawn since a circle approximates the robot shape (due to ND imple-
mentation requirements). Notice that the robot is safely driven among closed
obstacles. The reason is that the ND method alone has been demonstrated
to successfully drive platforms in dense, cluttered, and complex scenarios, see
Chapters 2. The usage of the EK-space to address the kinematic constraints
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does not penalize the method advantages. Thus, the complete framework is
still able to deal with such troublesome scenarios.

4.5.3 Potential Field Approach

Potential Field Methods (PFM) [30] used as a reactive navigation method do
not take into account the kinematic constraints.

The robot is considered as a particle in the Configuration space, moving
under the influence of an artificial potential field. While the goal creates a
potential that attracts the particle, the obstacle information creates a repulsive
potential. The motion is computed to follow the direction of the artificial force
induced by the sum of the two potentials.

This framework cannot be used with non-holonomic robots. The reason
is that the gradient direction of the potential does not preserve the non-
holonomic constraint of Equation (4.1). In other words, in the Configuration
space not all differential motions are allowed. This is not represented by the
potential structure.

The PFM can be applied to non-holonomic robots using the EK-space.
The following procedure is repeated at each sample period:

1. The obstacle points (sensory information) in the Workspace, Fig. 4.8a,
are used to construct the C-Obstacle region R1mc

obs in the Reachable Set of
a single Motion Command, see Fig. 4.8b. Then, the EKT is applied to
R1mc

obs , yielding the obstacle information in the EK-space, see Fig. 4.8c.

2. The PFM is applied to the EK-space to compute the most promising
motion direction, α∗, represented in Fig. 4.8c as the PFM solution.

3. The direction, α∗, is transformed back to the Workspace as a turning
radius (see Fig. 4.8a), determined by R∗ = EKT−1(α∗). Finally, a
motion command (v,w) preserving this turning radius is computed.

This procedure was tested on the Labmate platform. The following ex-
pressions were used for the goal and repulsive forces [35], Fg and Fr:

Fg(q) = −Kg(q− qg) (4.10)

Fr(q) =

{
Kr( 1

d(q) − 1
d0

) 1
d(q)2

∂d(q)
∂q if d < d0

0 otherwise
(4.11)

where q = (x, y), Kg and Kr are constants, dg(q) and d(q) are the distances
from the robot to the goal and obstacle locations. The clearing distance is
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Figure 4.8: (a) Workspace. (b) Reachable Set of a single motion command R1mc
obs .

(c) EK-space. (d) Experimental result.

denoted by d0.
∂d(q)

∂q represents the unit vector pointing away from the C-
Obstacle region, and that is supported by the line passing through q and the
obstacle point of the region.

Notice that the original potential formulation deals with the Configuration
space, that is IR2 × S1. Here, the potential is defined in the Reachable Set of
a single Motion Command, that is IR2. The subspace of the configuration
needed has one dimension less (as detailed in Section 4.3).

The execution time of the algorithm (construction of the Reachable Set of
a single Motion Command, EK-space, and reactive method usage) is around
250msec. Hence this cycle-time was enough for real-time. Fig. 4.8d shows an
experiment performed with the real platform. The complete framework was
able to drive the constrained platform free of collisions to the goal location -
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the only information given a priori to the robot. The experiment highlights
the effect of the EK-space to address the kinematics: arcs of circle mainly
compose the motions computed and executed.

4.6 Conclusions

This Chapter addresses the sensor-based motion planning with kinematic con-
straints. The novelty of the idea is to use the motion constraints to construct
a spatial representation - Ego-Kinematic space. The kinematic constraints
are implicitly represented in this space, so the robot moves as a ”free-flying
object”. Then, it is straightforward to use in this space existing reactive
navigation methods. Therefore, the method solutions comply with the kine-
matic constraints. A wide solution to address the kinematic constraints in the
sensor-based motion planning discipline has been presented.

The Configuration space for the robots covered in the analysis is IR2×S1.
Another contribution is to show that only a subspace of the Configuration
space, IR2, is needed (in the context of sensor-based motion planning). An
algorithm to calculate the bounds of the C-Obstacle region in this subspace
is given. The author thinks that this result will alleviate the computations
required for reactive navigation methods in the future.

The proposed research has been validated experimentally with a real plat-
form. By using the methodology, two reactive navigation methods were used
to successfully drive the constrained platform among locations. Both methods
are not originally formulated to work on non-holonomic robots.

Extensions to other non-holonomic robots are straightforward. The ad-
missible paths that arise from their kinematic constraints would derive in new
formulations of the Ego-Kinematic Transformation.

This research addresses the kinematic constraints, but ignores the effect
of the dynamics. We have been working in a similar approach described in
detail in Chapter 5: to introduce the dynamic constraints in the space. Our
objective is to merge both works to address the sensor-based motion planning
with kinematic and dynamic constraints.
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Chapter 5

Sensor-Based Motion
Planning with Dynamic
Constraints

5.1 Introduction

The Robotic community is building robots for many fields and applications.
Many of these applications require the safe motion generation: Service ro-
bots, demining robots, healthcare robots, and supervision robots, among oth-
ers. Some of these robots exhibit dynamic constraints due to the mechani-
cal construction, or to the environment of application: robots with limited
torques, robots working in non-gravity conditions, underwater robots, and
blimps, among others. Moreover, some applications require moving the plat-
forms at relatively high-speeds. In both cases the dynamic capabilities of the
robot take an important place, constraining the feasible system motions.

This Chapter presents a framework to take into account the robot dynamic
constraints in the reactive collision avoidance layer. The proposal is to use the
dynamic constraints to build a spatial representation, where the dynamic con-
straints are implicitly represented. With minor modifications, many existing
reactive navigation methods, that do not take the dynamic constraints into ac-
count, can be applied to this space. As a consequence, the motion commands
computed comply with the robot dynamics. This is an ample solution to incor-
porate the dynamics into much of the current work developed in sensor-based
motion planning.

The novelty is that the dynamic constraints are implicitly embedded in the

75
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spatial representation where the reactive heuristic applies. This differs this
research from, related work that address dynamics by modeling or identifying
the vehicle behavior, or other researches that redesign a reactive method from
scratch to address this issue.

Some advantages derive from the proposed framework, irrespective of the
reactive navigation heuristic. The motion commands computed comply with
the robot dynamics - the vehicle can execute the planned motion. The vehicle
trajectories that arise from the motion commands are collision-free. Moreover,
the motion commands are Secure for the platform - the guaranty for safely
stopping the robot if it is required always exists. By addressing the dynamics,
the performance and safety of the reactive method that makes use of the
framework is improved - without redesigning the reactive method itself.

To demonstrate the utility of this framework, two reactive collision avoid-
ance approaches have been extended to address the dynamic constraints: the
Potential Field method [30] and the Nearness Diagram Navigation (Chapter
2). Both methods have been tested on a circular and holonomic platform. The
experiments are reported to validate the framework.

This research was previously presented in [46].
The Chapter is organized as follows. Section 5.2 and 5.3 present related

work and the dynamics covered in the analysis. Sections 5.4 and 5.5 introduce
the Ego-Dynamic Space and Spatial Window. Section 5.6 combines both con-
cepts to build the complete framework. Section 5.7 presents the combination
of the framework with reactive navigation methods. The experimental results
are discussed in Section 5.8, and in Section 5.9 the conclusions are drawn.

5.2 Related Work

This Section presents related work to sensor-based motion planning. The
attention focuses on the reactive navigation methods.

The reactive navigation methods are commonly accepted to generate safe
motion in unknown, unstructured, and dynamic environments. This field of
research has been extensively studied in the last decade. Some researchers
solve the reactive navigation problem making a physical analogy: Potential
Field methods [30], [34], [58], [5]; the perfume method [6], the fluid methods
[43]. Other authors attempt the reactive navigation problem by computing
a set of motion commands, to select the ”better” later on: the Vector Field
Histogram [11], and the successors [59], [60]. Other researches solve the reac-
tive navigation problem by calculating some high-level devices, that allow for
computing a motion command: Elastic Band [54], Elastic Strips [14], and the
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Nearness Diagram Navigation (Chapter 2).
Most of the reactive navigation methods do not address dynamics. Thus,

these methods are susceptible to failure in the case analyzed in this Chapter.
The dynamic constraints have been mainly addressed in sensor-based motion
planning from two different points of view: (1) some researches deal with
dynamics by modeling the system behavior. Some of them model the system
[31], [5], [16]. Others identify the system model by the responses to motion
commands (inputs) [2], [40]. Once the model is available, the system responses
are also known, and used to apply reactive navigation strategies. (2) Some
authors explain the system response with a model of constrained inputs. Some
of them solve the reactive navigation problem in the motion command space as
a constrained optimization [56], [25], [13]. Others compute dynamic admissible
trajectories, to obtain the motion commands later on [22], [62].

The spaces where the reactive navigation methods usually apply are the
Workspace W, [44], [14], [50], [6], [43], [11]; or the Configuration space C
[35], [30], [34], [58], [59], [60], [54]. The research presented here is based
on a spatial representation - prior to the reactive method usage - where the
system dynamics are implicitly represented. Then, both spaces, W and C, are
analyzed to achieve the maximum generality.

5.3 Dynamics in Motion Commands

This Section first analyses the vehicle case of study. Subsection 5.3.2 presents
the motion commands considered, and in Subsection 5.3.3 the dynamics in-
volved in the motion command execution are discussed.

5.3.1 Vehicle

The vehicle considered is a circular and holonomic robot moving on a flat sur-
face with the classical hypothesis “rolling without slipping”. The Workspace
W is IR2. The Configuration space C is IR2 × S1. Since the robot is circular,
the Configuration space can projected in IR2. Then both, the Workspace and
the Configuration space are represented by IR2. The space of motion com-
mands is three-dimensional, where (v,w) is a motion command. v = (vx, vy)
is the translational velocity, and w is the rotational velocity. Both velocities
expressed in the robot reference system. The attention focuses on v = (vx, vy)
because it modifies the robot location (the robot rotational velocity, w, is not
dependent on the translational velocity).
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Figure 5.1: a) Types of motion commands. b) Motion command execution.

5.3.2 Motion Commands in Reactive Navigation

Based on a perception-action process, the reactive navigation methods com-
pute at each time the ”best” motion command: to avoid collisions whilst mov-
ing the robot towards a given goal location. The types of motion commands
considered are next summarized:

• Emergency Stop: this command is a policy to stop the robot by applying
the maximum system deceleration.

• Collision-Free commands: the execution of these motion commands is
free of collisions during the next sample period T .

• Secure commands: these motion commands ensure: (1) the execution is
collision-free during the next sample period T - they are Collision-Free,
and (2) after the execution of the motion command, the robot can be
stopped with the Emergency Stop without colliding.

Fig. 5.1a depicts the motion commands in the one-dimensional case. The
system executes a motion command, and later, the Emergency Stop is launched.
The first motion command is not Collision-Free. The second motion command
is Collision-Free. But notice that after the command execution, the robot can-
not avoid the collision. The last motion command is a Secure command. This
command produces a Collision-Free motion during T , and later, the robot can
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be safely stopped an Emergency Stop. In reactive navigation the objective is
to compute this type of motion commands: Secure commands.

Since the objective of this chapter is to introduce the dynamic constraints
in the reactive navigation methods, the next Section presents the dynamics
involved in the motion command execution process.

5.3.3 The Dynamic Constraints

The robot acceleration constrains the motion, when the robot controller exe-
cutes motion commands. The controller design is not addressed here. How-
ever, the controller behavior must be taken into account to deal with the
dynamic constraints.

There are the two dynamic constraints determined by the maximum acceleration-
deceleration, ab, of the system:

1. Braking constraint: It appears when the Emergency Stop is launched.
The controller is designed to apply the maximum deceleration, ab, to
stop the robot, see Fig 5.1b.

2. Dynamic interval: The controller is designed to reach the steady state
of a reference command, vf , as soon as possible. First, the maximum
acceleration of the system, ab, is applied to reach the reference velocity.
Subsequently, the steady state is maintained, see Fig. 5.1b. Given the
current robot velocity, vo, the commands within the dynamic interval
vnext ∈ [vo ±4v] are dynamic admissible. To compute 4v, the assump-
tion is that the system can instantaneously reach the desired velocity
- the robot moves at a constant velocity during the sampling period
T . Then, 4v = |ab|.m.T (m is the sampling period T percentage that
the system spends to reach the steady state). The position error be-
tween the real system behavior, and the constant velocity assumption is
ed = |ab|.(m.T )2

2 . If ed is out of our requirements, a lower m is selected.
Thus, 4v is reduced.

The first constraint sets the maximum distance that the robot travels when
the Emergency Stop is launched. The second constraint determines the set of
dynamic admissible motion commands that can be selected for motion.

The design of the spatial transformation, that embeds the deceleration
constraints into the spatial representation, is presented next.
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Figure 5.2: a) Distance to an obstacle.

5.4 The Ego-Dynamic Space

The rational idea is to build a spatial representation. The distances to the
obstacles are transformed into distances that depend on the deceleration con-
straint of the robot, and on the sampling time. In this space - Ego-Dynamic
Space (ED-Space) - the first dynamic constraint presented in Subsection 5.3.3
is represented.

The analysis is firstly carried out in one dimension, see Fig. 5.2. dobs is the
measured distance from the robot to an obstacle. deff is the effective distance:
the maximum distance that the robot travels at a constant velocity during the
time period T , and that later allows the Emergency stop for stopping the robot
without collide (applying the maximum deceleration ab).

dobs = deff + dbrake

deff = v.T dbrake =
v2

2.ab

d2
eff

2.ab.T 2
+ deff − dobs = 0 (5.1)

where deff is obtained, and thus the Ego-Dynamic Transformation (EDT):

EDT:IR+ → IR+

dobs → deff = ab.T
2.(

√
1 + 2.dobs

ab.T 2 − 1)
(5.2)

This distance, deff , is a motion constraint: if the robot moves farther
than deff , the robot will not be safely stopped with the Emergency Stop.
deff depends on: (1) the measured distance to the obstacle, dobs. (2) The
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deceleration capabilities of the robot, ab. (3) The sampling period, T , in
which the motion command is applied.

In reactive navigation sometimes the deceleration effects are neglected -
infinite deceleration capabilities are assumed. This is represented by Equa-
tion (5.1): when ab → ∞, deff tends to be the measured distance dobs used
by these methods.

This framework extends to two dimensions with an upper bound error:
the braking trajectory (parabola) is not a straight line, as assumed in the
one-dimensional case. This error can be neglected in the context of reactive
navigation (deeper details are discussed in Appendix D). Then:

EDT:IR2 → IR2

(x, y) → (deffx
, deffy

)
(5.3)

This spatial representation is called the Ego-Dynamic space. The Ego-
Dynamic Transformation can be applied to both, the Workspace and the
Configuration space, leading the obstacle information to the Ego-Dynamic
Space. Next, the advantage of the ED-space is highlighted by an example:

Example 3 Fig. 5.3 shows an example of the EDT applied to both, the W and C,
to study the effect of the maximum deceleration, ab, in the spatial representation.
Fig. 5.3a illustrates the robot in the Workspace and the current perception (laser
scan). ab = 1.0 m

sec2 and T = 0.5sec. The EDT is applied to the obstacle points in W,
leading the obstacle information to the ED-space (see Fig. 5.3b), which is expressed
in the robot frame of reference. To transform C, first the C-Obstacles are computed
by enlarging each obstacle point with the robot radius. Then, the EDT is applied.
The result is the obstacle information in the ED-space, see Fig. 5.3c. Comparing the
Workspace, Fig. 5.3a, and the ED-space, Fig. 5.3b, the obstacle information is closer
to the robot when the dynamic constraints are taken into account. The ED-space fully
represents the dynamic capability: the obstacles are taken into account before, than
the case where the dynamics are neglected, that is, the obstacles are represented closer
to the robot. Next, the dynamic capabilities of the robot are reduced, ab = 0.5 m

sec2 . The
resulting ED-space from the Configuration space is illustrated in Fig. 5.3d. Comparing
Figs. 5.3c,d the obstacles are closer to the robot when the robot has less dynamic
capabilities.

The advantage of this spatial representation is that the robot deceleration
capabilities and sample period are implicitly represented in the space. The
next Section addresses the second mentioned constraint.
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Figure 5.3: a) Workspace. b) ED-space from the Workspace (ab = 1.0 m
sec2 , T =

0.5sec). c) ED-space from the Configuration space (ab = 1.0 m
sec2 , T = 0.5sec). d)

ED-space from the Configuration space (ab = 0.5 m
sec2 , T = 0.5sec)

5.5 The Spatial Window

This Section presents the Spatial Window to deal with the second of the dy-
namic constraints presented in Subsection 5.3.3: the next motion command
has to be within the dynamic interval [vo ±4v].

The Spatial Window (SW) is the set of robot configurations obtained under
the execution of motion commands within the dynamic interval. Assuming a
constant velocity during the period T , the corners of the Spatial Window are
given by:
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Figure 5.4: a) Spatial Window in the Workspace. b) Spatial Window in the Config-
uration space.

Xmax = (vox +4v).T and Xmin = (vox −4v).T
Ymax = (voy +4v).T and Ymin = (voy −4v).T

where vo = [vox, voy] is the current translational velocity, see Fig. 5.4a.
The Spatial Window is used to represent the possible collision-free locations

in the Workspace W and in the Configuration space C. Figs. 5.4a,b show
examples of the SW in both spaces. In the Workspace W, Fig. 5.4a, each
obstacle point creates an obstacle line of locations that cannot be reached
under the execution of a single motion command without collisions. The
intersection of these obstacle lines with the SW gives the collision locations
inside the SW. There are three cases: (1) the point is outside the SW, and
the obstacle line does not intersect the SW, see point 1 in Fig. 5.4a. (2) The
point is inside the SW, see point 2 in Fig. 5.4a. The segment of the obstacle
line inside the SW fixes the collision locations. (3) The point is outside the
SW, but the obstacle line intersects the SW, point 3 in Fig. 5.4a. The same
strategy used previously. In the Configuration space C, Fig. 5.4b, the obstacle
points create the C-Obstacles. The procedure is the same, but each C-Obstacle
produces an obstacle region instead of an obstacle line, see Fig. 5.4b. In both
cases, the SW contains the locations or configurations that can or cannot be
reached without collisions (under the execution of a single motion command
within the admissible dynamic interval).

Once a collision-free location, xp = (xp, yp), inside the Spatial Window
is calculated, a Collision-Free command is computed by v = (xp

T ,
yp

T ). The
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motion command, v, is dynamic admissible by the system, because v is within
the admissible dynamic interval. This ensures feasible motion execution.

The objective of this work is to take into account the dynamics in the
motion generation layer. Moreover, the motion commands computed have
to be Secure commands, as mentioned in the previous Sections. The next
Section combines the Spatial Window and the Ego-Dynamic Space, to comply
with both requirements.

5.6 The Framework

This Section unifies in a framework the Ego-Dynamic Space and Spatial Win-
dow: (1) calculating Secure commands, to assure robust motion commands
calculation. (2) taking into account the dynamics involved in the motion
command generation, to ensure feasible motion commands execution.

At each sampling period T , the procedure is the following:

1. The obstacle information is reduced to points expressed in the robot
frame of reference.

• To transform the Workspace, W, the EDT is applied to the obstacle
points.

• If not, to transform the Configuration space, C, first C-Obstacle
region is calculated. Then the EDT is applied.

In both cases the result is the obstacle information expressed in the
ED-space.

2. The SW is directly applied to ED-space. The SW locations or configura-
tions that cannot be reached due to the obstacle distribution are labeled
in collision.

3. Any strategy to select one collision-free location, xp, inside the SW is
valid. Then, a motion command is computed by v = (xp

T ,
yp

T ). The next
Section presents how to use reactive navigation methods to achieve this
goal.

Two examples that highlight the relevance of this framework are discussed
next:

Example 4 Figs. 5.3a,b,c show this framework on a robot with a fast dynamic ca-
pability working at high speeds (maximum acceleration ab = 1.0 m

sec2 ). The sample
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Figure 5.5: a) Robot moving in the Workspace. b) ED-space from C.

period is T = 0.5sec. Fig. 5.3a depicts the robot moving with vo = (0.6 m
sec , 0.8 m

sec )
that fixes the SW in the space. The SW is free of obstacles, thus all locations produce
Collision-Free motion commands for the next sample period. On the other hand, by
applying the EDT to W or C, the obstacle information leads to the ED-space, see
Figs. 5.3b,c. In both cases the ED-space represents the obstacles closer to the robot
due to the dynamic capabilities. Thus, there are obstacles inside the SW that constrain
the locations that can be chosen. Once a collision-free location inside the SW in the
ED-space is selected, a Secure command is computed. Notice that without considering
the dynamics in this situation, the robot might crash into the corner.

Example 5 An example with a system with slow dynamics, ab = 0.1 m
sec2 , is illus-

trated in Fig. 5.5. The robot is in the same environment presented in Fig. 5.3a,
but located in the center of the corridor, facing the frontal wall, and moving at
vo = (0.61m

sc , 0.0m
sc ) towards this wall (2.5m). In the ED-space, Fig 5.5b, the ob-

stacles are very close to the robot location, due to the slow dynamics. Moreover, there
are some obstacles inside the SW. The collision-free locations inside the SW are those
closer to the robot. These locations will produce motion commands that reduce the
velocity of the robot. This is the correct behavior: the robot starts to stop before ex-
pected to avoid the collision, even if the obstacle is located far away, 2.5m. Neglecting
the dynamics in this case, the robot will crash the frontal wall.
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In this framework all locations inside the SW can be in collision. Then,
the Emergency Stop is launched to safely stop the robot. Subsequently, the
motion is resumed.

The main interests of the - ED-space + SW - framework are:

1. The motion commands are Secure commands, because they are com-
puted from locations in the ED-space.

2. The motion commands comply with the system dynamics. They are
within the dynamic interval vnext = [vo±4v], because the SW is used.

The next Section presents one strategy to select a location inside the SW,
implicitly fixing the motion command.

5.7 Combining the Framework and the Reactive Nav-
igation Methods

The framework presented in the previous Section leaves open the problem of
selecting one location inside the SW. This Section presents a solution based
on reactive navigation methods.

Notice that any strategy to select one collision-free location inside the SW
solves the problem. [25], [13], and [56] solve a similar problem by a constrained
optimization that balances the goal location, the forward progress, and the
obstacle clearance. Similar strategies could be used.

The solution here is to use existing reactive navigation methods in the
ED-space, to select a collision-free location inside the SW. The reasons for
choosing these techniques are:

1. The presented framework has to work in real-time. The usage of a
reactive method does not impose a significant time penalty. Everything
-ED-space + SW + Reactive method - can be run in real-time.

2. The reactive navigation methods take directly into account the goal lo-
cation; and information about the obstacle spatial distribution - this
advantage is lost when the problem is solved with other types of heuris-
tics, e.g. with a constrained optimization as [25], [13], [56].

3. The reactive navigation method is a module not dependent on the rest
of the framework. Different reactive methods can be used and tested
within the framework without significant changes.
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Figure 5.6: a) The location solution inside the SW.

The solution of most reactive navigation methods is a most promising mo-
tion direction [30], [50], [11], [59], [54], [14], [44], among others. The strategy is
to apply the reactive navigation method to the ED-space. Then, the direction
solution is used to select a collision-free location inside the SW. The location
is selected as follows:

1. The direction solution intersects the SW (the robot can move towards
the direction that reactive method is computing). The location (inside
the SW) over the direction solution, and farthest from the robot location
is selected. This heuristic favors the maximum forward progress, while
moving over the reactive method solution. See Fig. 5.6a.

2. The direction solution does not intersect the SW (the robot cannot move
towards the direction that reactive method is computing). The closest
location (inside the SW) to both, the robot location and the direction
solution is selected. This heuristic reduces the robot velocity, while
bringing the robot closer to the reactive method solution. See Fig. 5.6b.

Finally, the motion command is computed by v = (xp

T ,
yp

T ).
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5.8 Experimental Results

This Section validates experimentally the proposed research. Experiments
were conducted with two reactive navigation methods: the Nearness Diagram
Navigation [44], that applies to the Workspace W. Secondly, the Potential
Field Method [30], that applies to the Configuration space C. Both methods
do not take into account the dynamic constraints. By using the proposed
framework, the vehicle dynamics are directly addressed.

Notice that the experimental results obtained are not compared to other
methods. The scope of the Chapter is the complete framework - ED-space +
SW + Reactive method, and not the reactive method itself. The particular
results are completely dependent on the reactive method used and its specific
implementation.

However, the difference of the each reactive method behavior, when using
or not the proposed framework, is discussed. The benefits of using the reactive
method with the framework are: (1) the motion commands computed are Se-
cure motions: they are collision-free in execution, and they give the guaranty
for safely stopping the robot without collisions. (2) The motion command are
dynamic feasible. Both benefits are not dependent on the navigation heuristic
used. Then, the comparison is not directed in quantitative terms, since the
usage of the framework improves the method behavior. The comparison is di-
rected in qualitative terms: it was tested how far the fact of ignoring dynamics,
produces motions that are not the planned ones - collision avoidance cannot
be guaranteed. This comparison demonstrates the robustness and quality of
the approach. Moreover, other issues as global execution time are discussed.

The same environment, robot, and sensor were used for the method com-
parison. However, it is very difficult to have the same navigation results in
two different trials, since real systems are used.

For experimentation was used a Nomadic XR4000 at LAAS-CNRS, France.
The robot is equipped with a SICK 2-D laser rangefinder. See Appendix E.0.4
for a deeper description of the robot and sensor.

5.8.1 Nearness Diagram Navigation

The Nearness Diagram Navigation (ND) [44] is a reactive navigation method
that does not take into account the dynamic constraints.

The ND method is described in detail in Chapter 2. However, a brief
introduction to the method is next presented. The ND method is based on the
situated-activity methodology of design [3]. First, a set of five situations that
fully describe the relative state of the robot, obstacle distribution, and goal
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location are defined. Subsequently, one action is designed for each situation.
In real-time, the sensory information is used to identify the current situation,
and the associated action is executed computing the motion commands.

To identify the current situation, some high level information is searched
for in the sensory information: gaps, regions, free walking areas. And some
criteria are also applied: a security criterion, a free walking area criterion, etc.
The individual action designs are based on a geometrical implementation.

Using the proposed framework, the ND is used taking into account the dy-
namic constraints. At each sample period the following procedure is repeated:

1. The EDT is applied to the sensory information in the Workspace (laser
scan). The result is the obstacle information in the ED-space. (Proce-
dure presented in Section 5.4)

2. The SW is filled using the obstacle information in the ED-space. (Pro-
cedure presented in Section 5.5)

3. The ND method is applied to the ED-space to compute the most suitable
motion direction α∗. This direction α∗ is used to select a collision-
free location, xp, inside the SW. (Procedure presented in Section 5.6).
Finally, a motion command is computed by v = (xp

T ,
yp

T ).

The procedure was tested on the real platform. Fig. 5.7a shows the result
of one of the runs. The robot successfully reached the goal location while
avoiding collisions with the environment. Figs. 5.7c,d depict the behavior of
the system during the experiment: the motion commands reference computed
by the framework (vx and vy), and the real ones executed by the robot (for
better appreciation only a fraction of the experiment is shown). Notice that the
system can execute the computed commands (the velocity error is illustrated
in Fig. 5.7e). The consequence is that the trajectories carried out are near
to the planned ones: by addressing dynamics, robust collision avoidance is
guarantied. On the other hand, the same experiment was carried out with the
reactive method alone (ND). The velocity profile is illustrated in Fig. 5.7f,g.
The system could not correctly execute the computed commands (the velocity
error is illustrated in Fig. 5.7h. The consequence is that the trajectories carried
out are distant from the planned ones: collision avoidance can be no longer
guaranteed. More experiments were run to characterize the velocity error
profile, see Fig. 5.7b. The error distribution gives the idea of the error in the
executed trajectories.

Notice that the robot is safely driven among close obstacles, Fig. 5.7a.
The reason is that the ND method alone has been demonstrated to successfully
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drive platforms in dense, cluttered, and complex scenarios, see Chapter 3. The
usage of the ED-space to address the dynamic constraints does not penalize
the method advantages. Thus, the complete framework is still able to deal
with troublesome scenarios.

From a global point of view, using the framework improves the safety of
the method: the trajectories executed are near to the computed ones. Beyond,
the framework gives the guaranty for safely stopping the robot if required. The
drawback is the global execution time. The same experiments took about two
or three times longer that the ones without the dynamic considerations. The
reason is that the framework is very conservative. Only Secure velocities are
computed. They usually penalize the acceleration because safety is prioritized.

5.8.2 Potential Field Method

Potential Field Methods (PFM) [30] can be used as reactive navigation meth-
ods, but they do not take the dynamic constraints into account.

The robot is considered as a particle in the Configuration space, moving
under the influence of an artificial potential field. While the goal creates a
potential that attracts the particle, the obstacle information creates a repulsive
potential. The motion is computed to follow the direction of the artificial force
induced by the sum of the two potentials.

Using the proposed framework, the PFM are used taking into account the
dynamic constraints. The following procedure is repeated at each sampling
period:

1. The sensory information in the Workspace is used to construct the C-
Obstacle region. Then, the EDT is applied to the C-Obstacles, leading
the obstacle information to the ED-space.

2. The SW is filled using the obstacle information of the ED-space.

3. The PFM is applied to the ED-space to compute the most promising
direction of motion. This direction is used to select a collision-free lo-
cation, xp, inside the SW. Finally, a motion command is computed by
v = (xp

T ,
yp

T ).

Fig. 5.8a shows the result of one run with the real platform. Figs. 5.8c,d
depict the motion commands reference computed by the framework (vx and
vy), and the real ones executed by the robot (for better appreciation only
a fraction of the experiment is shown). The velocity error is illustrated in
Fig. 5.8e. The same experiment was repeated with the reactive method alone
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(PFM). The velocity profiles are illustrated in Fig. 5.8f,g, and the velocity
error in Fig. 5.8h. Some experiments were repeated to characterize the velocity
error profile (see Fig. 5.8b). The difference in between both experimentations
(with and without the framework) is less outstanding than with the ND. The
PFM implementation is based on a function that changes smoothly in the
space. This results in smooth changes in the motion commands computed
(accelerations), and so in the errors neglecting the dynamics. However, after
repeating the experiment, the error distribution is still better when dynamics
are not neglected (Fig. 5.8b).

Although in the experiments without dynamic considerations the naviga-
tion is accomplished, it cannot be always ensured. The conclusion is that using
the proposed framework the robot executes in any case the velocity set points
planned. This results in safe and feasible motions, but higher execution time.

5.9 Conclusions

This Chapter addresses the problem of applying reactive navigation methods
to systems where the dynamic constraints cannot be neglected: (1) systems
working at high-speeds, or (2) systems with slow dynamics.

The advantage of the framework is that the system dynamics are directly
taken into account. Moreover, the computed motion commands are Secure
commands: (1) they are Collision-Free during the execution time, and (2)
they give the guaranty for safely stopping the robot with an Emergency Stop
policy.

The - ED-space and Spatial Window - have been presented as a general
framework to take into account the dynamics of the systems in sensor-based
motion planning. To validate the research, experimentation with two reactive
methods that do not consider dynamics has been presented. By using the
framework, both methods successfully achieve navigation taking into account
the robot dynamics.

The presented framework extends to the third dimension with generality.
This will allow the reactive navigation methods that operate in three dimen-
sions to make the most of the presented framework. The assumption is a
circular and holonomic vehicle. The author believes that the future work will
be to merge the presented research with the research presented in Chapter 4.
This will allow to use the framework for systems with non-circular shapes, and
with kinematic and dynamic constraints.
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Figure 5.7: a) Experiment the ND. b) Velocity error distribution of the experiment.
c,d) Velocity profile of the experiment within the framework. e) Error in the velocity
profile. f,g) Velocity profile of the experiment without the framework. h) Error in the
velocity profile.
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Figure 5.8: a) Experiment the PFM. b) Velocity error distribution of the experiment.
c,d) Velocity profile using the framework. e) Error in the velocity profile. f,g) Velocity
profile without using the framework. h) Error in the velocity profile.
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Chapter 6

The Sensor-Based Navigation
System

6.1 Introduction

The Robotic community is building robots to accomplish tasks that require
motion in human environments. ”Unfortunately”, the human environments
are designed for humans, and the robot algorithms must adapt to these work
places. The robots then deal with any shape unknown obstacles randomly
placed in the environment. Moreover, the robot motion algorithms face an-
other difficulty in these environments: they are full of humans that also move.
Sharing the environment with humans, converts the work place in a highly
dynamic scenario. Besides, the robot must also preserve the human safety
(avoiding collisions with humans!). Fig. 6.1 illustrates an scenario of such
characteristics. The motion in these environments is a challenge for Robotics,
but required for many mobile applications. This problem is dealt with in this
Chapter: moving a robot in human-made scenarios that it is highly dynamic.

The Chapter firstly analyses the sensor-based navigation requirements that
must be considered in order to navigate in the suggested scenarios. The com-
pliance with the requirements mainly determines the success of the navigation
task, thus they all must be considered in the sensor-based navigation design.
The proposed sensor-based navigation system is made up of three modules: a
mapping module, a planning module, and a reactive navigation method. They
all cooperate to complete the collision avoidance task: (1) the mapping mod-
ule deals with the sensory process, and thus with the environment nature -
the module is designed to model unknown, highly dynamic, unstructured, and
non-predictable scenarios. (2) The planning module extracts the workspace

95
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Figure 6.1: a) Robot moving in an office environment.

connectivity. This provides the system with information to avoid problems
related to the environment structure - avoiding the trap situations and cyclic
behaviors in the robot motion. (3) The reactive navigation method safely drives
the robot in dense, cluttered, and complex scenarios.

The Chapter also proposes an architecture to integrate the modules in
real-time. The integration improves the reactivity of the system by exploiting
the robustness of the modules, without sacrificing the base functionalities.
Besides, module failure detection and recovery are dealt with. The architecture
is generic for a sensor-based navigation system. The base functionalities could
replaced by other different instances that adapt to the particular application
context, robot, or sensor.

Seen as a whole, a robust sensor-based navigation system, that safely moves
a robot in human environments, is presented. The proposed framework is not
a global navigation system. To solve the complete navigation problem, the
proposed system needs to be integrated with other systems such as supervision
[51], [15], [32], localization and map building [18], [17], [38], [20], [57], and
global path planning [35].
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This research was previously presented in [48].
The Chapter is organized as follows: The system requirements are intro-

duced in Section 6.2, and discussed in relation to related work in Section 6.3.
Section 6.4 presents the three module-functionalities design. Section 6.5 in-
troduces the complete navigation system. Section 6.7 discusses the framework
and in Section 6.8 the conclusions are drawn.

6.2 Navigation System Requirements

The aim of this work is to develop a sensor-based navigation system to safely
drive a robot among locations in any human scenario. For this reason, the
requirements that the environment nature and structure impose upon the
navigation system design are next summarized:

1. Robust reactive navigation: the motion commands have to be ro-
bustly computed for a sensor-based motion planner. The reactive algo-
rithm has to solve highly complex navigation problems: to successfully
navigate in very dense, complex, and cluttered scenarios.

2. Information integration: past sensory perceptions have to be inte-
grated into a representation of the environment. Two reasons justify
this: (1) it gives a framework to have an incremental global reasoning.
(2) Information of the past perceptions must be used to avoid obstacles
not perceived at the current moment (visibility sensor constraints).

3. Reaction in dynamic environments: when the environment changes
dynamically in a non-predictable way, the environmental representation
has to model rapidly the change. Otherwise, the robot will avoid parts
of the space known to be free of obstacles, or will not avoid perceived
obstacles.

4. Trap situations and cyclic behaviors avoidance: There are many
obstacle configurations that produce trap situations, common for all the
reactive navigation methods. The most typical are the U-shape obsta-
cles. Moreover, there are some symmetric obstacle distributions where
the reactive methods can produce alternated solutions. These environ-
ments create cyclic behaviors in the robot motion. The robot will never
reach the goal location in both cases, unless a key is supplied.

5. Functionalities integration: The functionalities designed need to be
integrated within an architecture. Otherwise, interactions among func-
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tionalities must be designed from scratch to allow module replacement
- portability among different platforms/sensors. Therefore, the module
coordination requires failure detection and recovery.

The goal of this Chapter is to present a sensor-based navigation system
designed to comply with the above five requirements.

6.3 Related Work

This Section presents related work about sensor-based navigation systems.
The discussion is directed towards the five requirements presented: robust
reactive navigation, information integration, dynamic environments reaction,
trap situations and cyclic behaviors avoidance, and functionalities integration.

Many sensor-based motion planners have been developed in the last years.
Some of them use a physical analogy to compute motion commands [30], [34],
[58], [9], [50]. Particular solutions to the inherent problems of these methods
[33], f.e. [19], still appear in the literature. Other methods first compute some
sets of motion commands. Next, a navigation strategy selects one motion
command of these sets [22], [28], [56], [25]. Or there are methods that calculate
some form of high-level information description from the sensory information.
Then, a motion command is computed, as opposed to being selected from a
pre-calculated set [54], [14]. The limitation of these methods is to robustly
navigate in complex, dense, and cluttered scenarios. These scenarios present
a high degree of difficulty for many existing sensor-based motion planners.

[14] is a framework that uses a path computed by a path planning algo-
rithm. Incremental adjustments of the path are based on the sensory data,
while maintaining the path in the free space. Some strategies were introduced
to deal with dynamic environments: (1) letting an obstacle to jump over
the path, and (2) maintaining a set of alternative routes for selection. Trap
situations are avoided since a global path is always used. The difficulties of
this method are to deal with situations where the path does not exist anymore,
and to achieve robust navigation in dense, complex, and cluttered scenarios,
see [12].

[59] uses an occupancy-grid of the environment, [10], to integrate the
information. The reactive method uses the obstacle information of the local
map to compute safe motion commands. In highly dynamic environments,
the method presents the difficulty of the sensors used, ultrasounds. Recently,
[60] was presented. The trap situations are avoided by running the reactive
algorithm some steps before the algorithm execution. This method obtains
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good results even running on platforms with low computational capabilities:
the sensory integration is computationally efficient, and even with a reduced
number of steps local trap situations are avoided. However, the convergence
to the goal location depends on the number of steps selected. [11], [59], and
[60] have the difficulty to achieve robust navigation when switching between
dense and less dense scenarios, see [59].

[13] is a sensor-based navigation system that formulates the problem as
a constrained optimization in the velocity space. The cost function incorpo-
rates global information to avoid the trap situations. The method uses a
global-referred occupancy-grid that represents the robot configuration space.
This local map is used to integrate the sensory information. The difficul-
ties of this method are the computational load, and updating the free space
that is indispensable in dynamic environments (the configuration space is
represented in the grid).

The module integration is a point worth mentioning here. [59], [60] and
[13] are sensor-based navigation systems that are made up of modules. How-
ever, the module integration is not developed within any kind of architecture.

6.4 The Module-Functionalities Design

This Section presents the design of the modules that make up the sensor-based
navigation system. Firstly, the reactive algorithm base is discussed, Subsection
6.4.1. Secondly, the design of the module dealing with the sensory process is
presented, Subsection 6.4.2. Finally, Subsection 6.4.3 introduces the module
that allows for the trap situation avoidance.

6.4.1 Reactive Navigation Module

The reactive navigation method used is the Nearness Diagram Navigation,
that is described in detail in Chapter 2. However, a brief description is next
presented. The ND method is based on the situated-activity methodology of
design [3]. First, a set of five situations that fully describe the relative state of
the robot, obstacle distribution, and goal location are defined. Subsequently,
one action is designed for each situation. In real-time, the sensory information
is used to identify the current situation, and the associated action is executed
computing the motion commands.

The reason for selecting the ND method is because it achieves robust
navigation. Good results in very dense, complex, and cluttered scenarios
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Figure 6.2: a) Robot motion between two consecutive times, and grid displacement
to encompass the robot location. b) Grid update with the laser data.

have been reported using different platforms and sensors, see Chapters 2 and
3. These are the human-made environments where the robot has to move.

So far a reactive algorithm complies with the first requirement of the navi-
gation system has been selected. The sensory process has still to be addressed.

6.4.2 Mapping Module

Five requirements were outlined in Section 6.2 in order to design the sensor-
based navigation system. Next, the design of the mapping module is presented.
The module complies with the second and third requirements: information
integration and dynamic environments reaction.

The navigation is performed in a two dimensional space. The sensor used
to measure the environment is a 2D laser range-finder. No assumptions about
the environment (static/dynamic, structured/unstructured . . . ) are made.

The mapping module supervises a local model of the environment. The
model is constructed by integrating the sensory information in an occupancy-
grid, [10], that represents a fraction of the robot workspace.

The robot is the reference of the occupancy-grid. To handle the grid move-
ments, a control area is defined around the grid center. When the robot escapes
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Figure 6.3: Experiment using the Mapping and Reactive Navigation module.

from the control area, the grid is moved to encompass the robot within the
control area. This allows the robot to move within the control area, without
having to move the complete grid. The grid displacements are multiple of the
cell dimension, and the grid rotation is not allowed. This avoids the dissemi-
nation of false obstacle information among cells (remarkable source of errors).
Fig. 6.2a illustrates the process of a grid diplacement due to the robot motion.
The robot location at time t = i + 1 is out of the control area. Thus, the
complete grid moves to encompass the robot location within the control area.

The laser data are placed directly into the grid model without any pre-
processing. The occupancy-grid is made up of three types of cells: occupied,
free, and unknown. The grid cells coinciding with the obstacle points returned
by the laser sensor are labeled occupied. The cells between the sensor and
each obstacle point are labeled free ones. Initially, all the grid cells are labeled
unknown (never perceived). Fig. 6.2b depicts this process. The Bresenham
algorithm [24] is used to optimally implement the above procedure in order to
achieve real-time performance.

The framework relies on the fact that the robot surroundings are constantly
sensed, and the grid is updated at high rate. Under these conditions, and the
reliability of the sensor sensor used, temporal occupancy factors were not
added to the grid.
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Some points are worth mentioning here:

1. The current perception (laser scan) merged into the occupancy-grid has
no drift errors with respect to the robot location. Thus, only the grid
cells, not updated with the current perception, accumulate drift errors.
Moreover, spurious measures are removed from the grid while new laser
scans are integrated. Assuming that little slippage occurs during motion,
this model is suitable for integrating the information at different
times (for obstacle avoidance context).

2. The dynamic environments are rapidly reflected in the occupancy-
grid. This is a consequence of updating the entire grid area covered by
the last perception (laser scan).

Finally, the mapping module and the reactive navigation module must co-
operate to accomplish the navigation task. The reactive navigation module
uses the obstacle information of the mapping module, instead of using directly
the laser scan information. The obstacle information is obtained from the
occupied cells in the occupancy-grid.

Experimental Results

Both modules have been tested on a Nomadic XR4000 equiped with a 2D Sick
laser at LAAS-CNRS, France (see Appendix E.0.4).

For experimentation, the grid dimensions were 10 by 10 meters, and the cell
dimensions were 5 by 5 centimeters. The grid had 200 by 200 cells. Fig. 6.3b
depicts the grid size. The mapping module took around 100msec to update
the grid with a laser scan (361 points), and to shift the grid when necessary.
The reactive navigation module (ND) took less than 50msec. Both modules
together gave a cycle-time around 150msec, that was well suited for real-time
collision avoidance.

An example to highlight the relevance of the framework in a dynamic
environment is next presented. Fig. 6.3a depicts a real experiment where a
human walked between the robot and an open passage. The goal location was
at the end of the passage. Firstly, the ND drove robot towards the center
of the passage, Fig. 6.3b. The human appeared in the scene, Fig. 6.3c,d.
Then, the human entered in the ND security zone. Thus, the robot started an
avoidance maneuver while moving towards the passage, Fig. 6.3e. Next, the
human completely blocked the passage, but the robot continued the avoidance,
Fig. 6.3f. In Fig. 6.3g, the human had crossed the passage, that appeared open
for the robot to enter. The robot turned towards the passage while continuing
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the human avoidance. Finally, the human left the ND security zone. The
robot recovered the motion towards the center of the passage, Fig. 6.3h.

In this experiment, the environment dynamism had to be rapidly re-
flected into the grid model because:

1. The reactive method would not avoid the human, if it was not rapidly
integrated into the grid-model.

2. The passage would remain closed after the human crossed it, if the last of
the robot perceptions of the human were not eliminated from the model.
Thus, the reactive method would avoid the free space.

The cooperation between the mapping and the reactive navigation mod-
ules complies with the first, second, and third requirements of the navigation
system. However, the trap situations and the cyclic behaviors still need to be
avoided.

6.4.3 Planning Module

The planning module is presented next to comply with the fourth requirement
stated in Section 6.2: trap situations and cyclic behaviors avoidance.

This module is designed for a circular and holonomic robot working in a
two dimensional space. The configuration space is IR2. Other designs might
be required for other type of robots.

The planning module computes two pieces of information:

1. A path connecting the current robot and goal configurations (if it exists).
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Figure 6.5: Experiment using the Mapping, planning, and reactive navigation md-
dules.

2. The instantaneous path direction in order to reach the goal configuration.
This direction is the main direction of the first part of the path.

The next procedure is followed to compute the path: (1) the obstacle infor-
mation in the occupancy-grid is used to compute the C-Obstacles (by enlarging
the obstacles with the robot radius), see Fig. 6.4b. (2) The Navigation Func-
tion 11 [35] is constructed over the grid2 (see Fig. 6.4a). (3) A collision-free
path, connecting the current robot configuration and the goal configuration,
is obtained by a gradient-search technique over the NF1. (4) The path is
”stretched” with a recursive algorithm to be optimized, see Fig. 6.4b. This
”stretch” strategy avoids the border effects of the NF1 function, and it modi-
fies paths pointing towards or skirting the obstacles. The reasons for selection
of this path planning algorithm are: (1) the NF1 is a minima-free naviga-

1The Navigation Function 1 (NF1) is a potential built over a grid representation of the
configuration space. A wave is propagated among the free cells from the goal cell to all the
free cells in the grid. The free cells are labeled with the minimum number of cells crossed to
reach the goal location.

2The free space assumption is considered here. That is, the unknown space is considered
free for the NF1 function computation.
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tion function. (2) The NF1 is a grid-based navigation function, compatible
with the grid-model available. (3) The path planning algorithm is simple and
efficient, then it can be used at each sampling time.

The assumption here is that a path exists. When a path is not available
this module produces a failure. This will be supervised by the complete system
presented in the next Section.

The three modules work together as follows. The mapping module con-
structs the occupancy-grid. The planning module uses the occupancy-grid to
compute the instantaneous path direction. The reactive navigation method
uses the obstacle information in the occupancy-grid, and the instantaneous
path direction, to compute the motion commands.

Experimental Results

For experimentation, the same robot and settings presented in Subsection 6.4.2
were used. The first meter of the path was used to compute the instantaneous
path direction. The planning module imposed an additional time penalty of
100msec. The cycle time then was 250msec, enough for real-time.

An experiment to highlight the relevance of this framework in trap sit-
uations is presented next. Fig. 6.5a depict the initial state, that match up
with Fig. 6.8e. Figs. 6.5b,c,d illustrates the robot navigating along a passage
in order to reach the final location. While the robot was traveling, a human
blocked the end, see Fig. 6.8f. The environmental structure was modified, and
a big U-shape obstacle was created. This produced a trap situation for the
robot, see Fig. 6.5e. Rapidly, the mapping module reflected the change, and
the planning module calculated a new path. The instantaneous path direction
pointed away from the U-shape configuration, see Fig. 6.5e. The ND computed
the motion commands to follow this direction, see Figs. 6.5f,g,h. Therefore,
the robot was driven out of the U-shape obstacle. The trap situation was
avoided, see Fig. 6.8g.

The reactive method, mapping module, and planning module working to-
gether avoid trap situations and cyclic behaviors:

• There are no obstacle configurations that produce trap situations
(when a solution exists within the grid-model). The instantaneous path
direction is used to get the robot out of these situations.

• Any symmetry of the environment does not produce cyclic behaviors
in the robot motion. The possible symmetrical motions are discriminated
by the instantaneous path direction.
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This framework complies with the first four requirements. The complete
sensor-based navigation system is presented next.

6.5 The Sensor-Based Navigation System

This Section addresses the integration of the functionalities, the fifth
requirement. An architecture is proposed that specifies the interactions among
the modules. Moreover, failures in the planning module and in the reactive
method are dealt with.

Planning module failure. There exist two cases where a planning algo-
rithm cannot find a path, connecting the robot and goal configurations:

1. The goal configuration is not in free space Cfree [35] (final configuration
in collision with an obstacle). This is a typical situation in unknown
scenarios, where goals are randomly placed for exploration. While the
scenario is progressively perceived, the goal can be within an obstacle.
In dynamic scenarios an object can move, or even stop, over the goal
location. Even in static and known environments, this situation appears
when the goal moves within an obstacle due to the robot drift.

2. The robot or the goal are surrounded by an obstacle.

Notice that both situations can appear irrespectively of the distance to
the goal location. These situations could be avoided by replacing the goal
location. However, the role of the navigation system is not to modify the goal
location (imposed by an external agent). The consequences can drastically
determine the success of the global task.

The planning module produces a failure in these situations. However, the
system must be able to continue the navigation task (close the motion control
loop).

Reactive navigation failure. The ND method uses an internal piece
of information named free walking area (in short, it represents a region to
drive the robot). If there is not free walking area available, the goal cannot be
reached. This situation appears when the robot is completely surrounded by
obstacles. The reactive method produces a failure in this situation.

The following architecture specifies the module interaction and deals with
module failures, see Fig. 6.6. The navigation system works as follows:

Procedure Navigation System step (n, goal)
Datalaser = Read Laser
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Dataodom = Read Odometry
Gridn = Mapping Module(Datalaser, Dataodom, Gridn−1)
NF1path = Planning Module(Gridn, goal, Dataodom)
if NF1path available then

exec Reactive Module (Gridn , NF1path, Dataodom),
else

exec Reactive Module (Gridn, goal, Dataodom).

Procedure Reactive Module (Obstacles, goal, Dataodom)
if ∃ (NDfree walking area) then

(v = vND, w = wND) = ND(Obstacles, goal, Dataodom)
else

(v = 0, w = wcte).
(v, w) → Controllers

First, the mapping module updates the cells of the grid and the grid lo-
cation. Next, the planning module computes the path. If a path exists, the
reactive navigation module computes the motion commands to direct the ro-
bot towards the instantaneous path direction. If not, the reactive navigation
module drives the robot towards the goal location (planning module failure).
Then, if there is free walking area available, the motion commands computed
by the reactive method are used. If not, the motion commands stop and ro-
tates the robot over its center (reactive method failure). This strategy updates
the grid in all directions. This behavior is maintained until the environment
changes, and a free walking area can be selected for motion. Otherwise, a
time-out stops the robot and fires a global trap flag.

The navigation system integrates the information and reacts to dy-
namic environments due to the mapping module. The trap situations and
cyclic behaviors are avoided using information of the planning module. The
reactive navigation method achieves robust navigation. The integration is
carried out within an architecture that integrates the functionalities. Seen
as a whole, the sensor-based navigation system complies with all the require-
ments mentioned in the previous Sections.

6.6 Experimental Results

This Section presents the experimental results. The experiments were designed
to validate the compliance of the sensor-based navigation system with the
requirements of this work.
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For each experiment, only the executed robot path is outlined (showing
all the laser points perceived would result in a blurred Figure), see Fig. 6.7a.
The robot velocity profiles are also illustrated, see Fig. 6.7b. Some snapshots
have been selected for better understanding of the robot motion (notice that
the floor tiles are 10cm square, and the robot diameter is 70cm), see Fig. 6.7e.
Moreover, the robot location, a fraction of the grid-map, the computed path,
and the ND method direction solution are shown at some selected times, see
Fig. 6.7k.

The same platform and settings presented in Subsection 6.4.2 were used
for experimentation. In all the experiments the environment was unknown.
The scenario might be unstructured, dynamic, and non-predictable. Only the
goal location was available in advance. These circumstances justify the usage
of a sensor-based navigation method to move the robot.

Experiment 1: This experiment was designed to: (1) show robust nav-
igation in dense, complex, and cluttered scenarios, and (2) validate the in-
formation integration. In order to reach the goal location, the robot had
to navigate along a passage with a reduced space to maneuver, see Fig. 6.7c.

The reactive method successfully navigated among very close obstacles
(with less than 10cm on both sides of the robot), see Fig. 6.7d-k,e-l,h-m,i-
n. A smooth path was made by the robot, and no oscillatory behaviors were
observed, see Fig. 6.7a. The selection of the ND method is justified when the
robot is required to move in these scenarios, which remain troublesome for
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other existing reactive methods. A deep discussion about navigation in these
scenarios is presented in [44].

The mapping module also played an important role because:

• New sensory perceptions were rapidly integrated into the grid. Thus,
the robot avoided the new obstacles when they were perceived, see the
sequence of Figs. 6.7k,l,m,n.

• Past sensory perceptions remained integrated into the grid. Due to the
sensor visibility constraints and its location within the robot3, some-
times the closest obstacles were not perceived. Figs. 6.7g,h-m,i-n depict
moments when this happened. However, these obstacles were perceived
some time before, thus, they remained in the grid and collisions were
avoided.

The velocity profile is illustrated in Fig. 6.7b. The robot moved at low
speeds due to the complexity of the scenario. The maximum speed was
achieved when the robot was out of the passage. The time of the experiment
was 127sec, and the average translational velocity was 0.204 m

sec .
Experiment 2: This experiment was designed to test the trap situ-

ations avoidance. Fig. 6.8c shows the initial state of the robot and the
environment. The robot must navigate along the passage to reach the goal
location. Three consecutive trap situations were produced by changes in the
environment structure.

The robot started by navigating along the passage, Fig. 6.8d-k. While
the robot was moving forward, a passage on the rigth-hand was opened (the
robot could not perceive it), see Fig. 6.8d,e. Reaching the end of the passage,
a human placed a box closing the main way, see Fig. 6.8f-l. The robot was
trapped within a big U-shape obstacle. Due to the information provided by
the planning module, computed from the environmental model kept by the
mapping module, the robot rapidly turned and move backwards in the passage
to avoid the trap situation. This part of the experiment is displayed step by
step in Fig. 6.5. The robot perceived the open passage on the right-hand while
navigating to get out of the passage. The new passage was rapidly integrated
into the grid. Then, the robot moved towards the new passage, see Fig. 6.8g.
Then, the human closed the new passage, see Fig. 6.8h-m. The change was
rapidly modeled, and the robot was driven out of the passage, avoiding the
new trap situation, see Fig. 6.8i-n. Finally, the global trap situation was

3Notice that the sensor is placed 0.24cm away from the center of the robot. The sensor
has a 180◦ field of visibility.
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avoided, see Fig. 6.8j, and the robot resumed the motion towards the goal
location.

The path made by the robot is shown in Fig. 6.8a. The velocity profiles
are illustrated Fig. 6.8b (only 150sec due to a memory limitation). The com-
plete time of the task was 200sec, and the average translational velocity was
0.233 m

sec .
Experiment 3: This experiment shows the robot navigating in a typical

populated and changing scenario. The sensor-based navigation system must
comply with all the requirements proposed in order to successfully navigate in
this scenario. Fig. 6.9c depicts the initial state of the robot and the environ-
ment. The robot had to cross the hall to reach the final location.

During the first part of the experiment humans were randomly walking,
building, and modifying the environment to hinder the robot motion, see
Fig. 6.9c,d,e,f. In this part of the experiment the mapping module was rapidly
reflecting the environmental changes. Then, the reactive method was suc-
cessfully avoiding collisions. Notice that, if the sensory information were not
properly integrated, a barrier of obstacles would appear in the grid. Thus,
the robot would not be able to avoid the collisions, or would avoid the free
space. Subsequently, the humans built an obstacle configuration that trapped
the robot, see Fig. 6.9g. The planning module rapidly provided information
used by the reactive method to drive the robot out to the U-shape obstacle,
see Fig. 6.9h. Finally, the robot resumed the motion and reached the goal
location while reacting to the human motion, see Fig. 6.9i,j.

Unfortunately the information of the experiment was lost. However, a
very similar run is discussed. The highly dynamic nature of the environment
is depicted in Fig. 6.9k,l. They could be compared with the Fig. 6.9c,d,e,f.
Subsequently, the humans produced a trap situation, see Fig. 6.9m, similar to
the Fig. 6.9g. The robot turned to the right to avoid the trap situation. Finally,
the robot continued the motion in an environment continuously changing, see
Fig. 6.9n.

The path executed by the robot is shown in Fig. 6.9a. The velocity profile is
illustrated Fig. 6.9b (only 150sec due to a memory limitation). The complete
time of the experiment was 170sec, and the average translational velocity was
0.196 m

sec .

6.7 Discussion

The strength of the navigation system is the quality and robustness of the
navigation performance. The robot successfully navigates in troublesome sce-
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narios due to the compliance with the requirements presented in Section 6.2.
These scenarios would produce difficulties to other existing methods, since
none of them address all these requirements presented.

The limitation of the proposed sensor-based navigation system is the com-
putational load (in our current implementation a Pentium II is used. To work
on systems with low computational capabilities, the size of the grid map would
be reduced. This would affect the locality of the navigation method proposed.

The functional modularity and the coordination, both give generality,
portability, robustness, and efficacy to the navigation system. To validate
this last statement, the navigation system was tested with some modifications
on two indoor and one outdoor robot at LAAS-CNRS, France; on one indoor
robot at the Technical University of Lisbon, Portugal; and on an indoor robot
at the University of Zaragoza, Spain. The reactive method ND was modified
to work on robots with non-circular shapes and with kinematic constraints,
see [45]. The mapping module was re-designed to work with a tri-dimensional
laser, and with ultrasounds [10]. For the outdoor robot an special module to
process visual information was used [27]. In the planning module some changes
were required to take into account the specific robot characteristics. The new
modules were integrated within the architecture. Thus, the portability among
platforms was straightforward.

The presented navigation system is not a complete navigation system. The
system internal model represents a local fraction of the environment (setting
the locality of the method). Then, the system relies on higher levels to ac-
complish a global navigation task: supervision, global planning, localization,
and map building. To date, the proposed navigation system has been used as
the sensor-based navigation system for a topological-based navigation [63]. A
global topological model of the environment is built on-line, while the robot is
self-located within the model. From the model, sub-goals are placed for explo-
ration, and they are reached by means of the presented sensor-based navigation
system. Currently, in the Robels system [51], the navigation system is one of
the five sensory-motor functions used to perform the robot motion. Moreover,
the navigation system has been successfully integrated as the low-level motion
generator in the complete GenoM architecture [23] on the Nomadic XR4000
at LAAS-CNRS, France. The navigation system is daily used to move the
platform.
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6.8 Conclusions

In this Chapter a sensor-based navigation system for collision avoidance in
human-made scenarios has presented. Five navigation requirements were iden-
tified in order to navigate in these scenarios: robust navigation, information
integration, reaction in dynamic environments, trap situations and cyclic be-
haviors avoidance, and functionalities integration. The navigation system
compliance with these requirements has been the main design requirement.
The consequence is a sensor-based navigation system that achieves robust
navigation in dense, complex, cluttered, unknown, and highly dynamic sce-
narios. Besides, the trap situations and cyclic behaviors in the robot motion
are avoided. This is illustrated in the experimental results. Moreover, the
navigation system is validated by the robots that everyday make use of it.

The architecture that embeeds the funtionalities allows for module replace-
ment, and for module failure and recovery. The function modularity and the
architecture, both are the basis for the integration of the research, presented
in previous Chapters, in a unique framework. Besides, this navigation system
is the basis for the development of a complete navigation system.
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Chapter 7

Conclusions

The work presented in this memory contributes to the sensor-based motion
planning field. Each chapter has a different nature, and addresses a different
topic in this field. The main contributions are:

• Sensor-based motion planning

Chapter 2 addresses the sensor-based motion planning by presenting the
design of a reactive navigation method.

The reactive navigation method has been designed using the situated-
activity paradigm of behavioral design. By using this paradigm, the
reactive navigation problem is broken down into sub-problems. This
strategy simplifies the complete reactive navigation problem. As a con-
sequence, a new method implementation of the proposed design leads
to a new reactive navigation method. The new method might success-
fully move a robot in more troublesome scenarios than other methods
do. That is, the robot might be able to successfully navigate in dense,
complex, and cluttered environments.

To demonstrate the utility of the design, a geometric implementation
called Nearness Diagram Navigation has been presented. The method
has been validated using a real platform. Up to date the author does
not know any other method or approach that performs better navigation
than the Nearness Diagram Navigation.

• Under-constraint Sensor-based Motion Planning

The Chapter 3 presents and under-constrained solution to extend the
Nearness Diagram Navigation method, to work on robots with non-
circular shapes considering the kinematics and dynamics. By using the
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proposed framework, constrained robots are successfully move in dense,
complex, and cluttered scenarios.

Experimental results on five different robots using different sensors vali-
date the utility, and easy portability, of this reactive navigation method.
The author believes that this method is one of the most robust sensor-
based motion planners to drive constrained robots in troublesome sce-
narios.

• Sensor-based motion planning with kinematic constraints

To address the kinematic constraints, Chapter 4 presents the Ego-Kinematic
Space. This space can be used to convert existing reactive navigation
methods that do not address the kinematic constraints in methods that
do. A space, where the methods produce solutions that comply with
the kinematics, has been constructed. To validate this framework, two
reactive navigation methods have been successfully used to safely drive a
kinematic constrained platform among locations. Both methods do not
address the kinematics. The author believes that this is a wide solution
to address the kinematics in sensor-based motion planning.

Another contribution of this Chapter is to demonstrate, that the sub-
space that really matters for sensor-based motion planning with kine-
matic constraints, is two-dimensional (instead of three-dimensional, as
it has been classically addressed). The author believes that this result
will alleviate significantly the computations required by new methods in
the future.

• Sensor-based motion planning with dynamic constraints

To address the dynamic constraints, Chapter 5 presents the Ego-Dynamic
Space. This space is constructed by using the dynamic constraints. Thus,
reactive methods used in this space compute solutions that comply with
the robot dynamics constraints. To validate the framework two reac-
tive navigation methods have been successfully used to safely drive a
dynamic constrained platform among locations. Both methods do not
address dynamics. The author believes that this is a wide solution to
address the dynamic constraints into the sensor-based motion planning
discipline.

• Sensor-based navigation system

This thesis also addresses the improvement of the behavior of reactive
navigation methods. Chapter 6 proposes an architecture to coordinate
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some modules in order to improve the reactivity of the pure naviga-
tion base algorithm. By means of the complete framework, the robot
successfully navigates in highly dynamic scenarios, while avoiding the
well-known trap situations. The proposed framework has been validated
with a real platform.

Moreover, this Chapter is the basis for the integration of all the tech-
nologies proposed in other Chapters in a unique framework.

To discuss the future work, consider the following two questions: (1) how
many mobile vehicles exists (earth, air, water, space, . . .)? (2) For which of
them, safe motion is computed robustly? Consider shape, kinematics, dy-
namics, sensors difficulties, different scenarios . . .. There are many problems
still to be solved, at least in Sensor-Based Motion Planning, to develop appli-
cations in the real world.



120 Chapter 7. Conclusions



Bibliography

[1] R. Alami, I. Belousov, S. Fleury, M.Herb, F. Ingrand, J. Minguez, and
B. Morisset. Diligent: Towards a human-friendly navigation system. In
IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, pages 2094–2100,
Takamatsu, Japan, 2000.

[2] J.C. Alvarez, A. Shkel, and V. Lumelsky. Building topological models for
navigation in large scale environments. In IEEE International Conference
on Robotics and Automation, Leuven, Belgium, 1998.

[3] R.C. Arkin. Behavior-Based Robotics. The MIT Press, 1999.

[4] K. Arras, J. Persson, N. Tomatis, and R. Siegwart. Real-time Obstacle
Avoidance for Polygonal Robots with a Reduced Dynamic Window. In
IEEE Int. Conf. on Robotics and Automation, pages 3050–3055, Wash-
ington, USA, 2002.

[5] J. Asensio and L. Montano. A Kinematic and Dynamic Model-Based
Motion Controller for Mobile Robots. In 15th IFAC World Congress,
Barcelona, Spain, 2002.

[6] K. Azarm and G. Schmidt. Integrated mobile robot motion planning and
execution in changing indoor environments. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 298–305, Munchen,
Germany, 1994.

[7] J. Barraquand and J.C. Latombe. On nonholonomic mobile robots and
optimal maneuvering. In Intelligent Symposium on Intelligent Control,
pages 340–346, Albany, 1989.

[8] J.D. Boissonnat and X.N. Xi. Accesibility region for a car that only move
forward along optimal paths. In Research Report INRIA 2181, Sophia-
Antipolis, France, 1994.

121



122 BIBLIOGRAPHY

[9] J. Borenstein and Y. Koren. Real-Time Obstacle Avoidance for Fast
Mobile Robots. IEEE Transactions on Systems, Man and Cybernetics,
19(5):1179–1187, 1989.

[10] J. Borenstein and Y. Koren. Histogramic in-Motion Mapping for Mobile
Robot Obstacle Avoidance. IEEE Journal on Robotics and Automation,
7(4):535–539, 1991.

[11] J. Borenstein and Y. Koren. The Vector Field Histogram–Fast Obsta-
cle Avoidance for Mobile Robots. IEEE Transactions on Robotics and
Automation, 7:278–288, 1991.

[12] O. Brock. Generating Robot Motion: The Integration of Planning and
Execution. PhD thesis, Stanford University, 1999.

[13] O. Brock and O. Khatib. High-Speed Navigation Using the Global Dy-
namic Window Approach. In IEEE Int. Conf. on Robotics and Automa-
tion, pages 341–346, Detroit, MI, 1999.

[14] O. Brock and O. Khatib. Real-Time Replanning in High-Dimensional
Configuration Spaces using Sets of Homotopic Paths. In IEEE Int. Conf.
on Robotics and Automation, pages 550–555, San Francisco, USA, 2000.

[15] Joachim M. Buhmann, Wolfram Burgard, Armin B. Cremers, Dieter Fox,
Thomas Hofmann, Frank E. Schneider, Jiannis Strikos, and Sebastian
Thrun. The mobile robot RHINO. AI Magazine, 16(2):31–38, 1995.

[16] A. Calcitti and R. Zapata. Reactive Behaviours of Mobile Manipula-
tors Based on the DWZ Approach. In IEEE Int. Conf. on Robotics and
Automation, Korea, 2001.

[17] J. A. Castellanos, J.M.M. Montiel, J. Neira, and J. D. Tardós. The
SPmap: A probabilistic framework for simultaneous localization and map
building. IEEE Trans. Robotics and Automation, 15(5):948–952, 1999.

[18] J. A. Castellanos and J. D. Tardós. Mobile Robot Localization and Map
Building: A Multisensor Fusion Approach. Kluwer Academic Publishers,
Boston, 1999.

[19] L. Chenqing, M. Ang, H. Krishman, and L. Yong. Virtual Obstacle Con-
cept for Local-minimum-recovery in Potential-field Based Navigation. In
IEEE Int. Conf. on Robotics and Automation, pages 983–989, San Fran-
cisco, USA, 2000.



BIBLIOGRAPHY 123

[20] M. W. M. G. Dissanayake, P. Newman, H. F. Durrant-Whyte, S. Clark,
and M. Csorba. A solution to the simultaneous localization and
map building (slam) problem. IEEE Trans. Robotics and Automation,
17(3):229–241, 2001.

[21] L.E Dubins. On curves of minimal lenght with a constraint on average
curvature and with prescribed initial and terminal positions and tangents.
Amer. J. Math., 57:497–516, 1957.

[22] W. Feiten, R. Bauer, and G. Lawitzky. Robust Obstacle Avoidance in
Unknown and Cramped Environments. In IEEE Int. Conf. on Robotics
and Automation, pages 2412–2417, San Diego, USA, 1994.

[23] S. Fleury. Architecture de contrôle distribueé pour robots autonomes:
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Appendix A

A ”Navigable” Region

This Appendix introduces a local algorithm that verifies if a region is ”naviga-
ble” for a circular and holonomic robot. Firstly, a local algorithm is presented
to check whether the robot can reach a location in the space. Next, the use of
the algorithm to verify if a region is ”navigable” is discussed.

A.0.1 The basic algorithm

The inputs of the algorithm are:

1. The robot location, xr, and robot radius R.

2. A location in the space, xp.

3. A list of N obstacle points, L. An obstacle point is xL
j

The output of the algorithm is, if the point xp can be reached from the
robot location xr.

The algorithm computes the existence of a path that connects the robot,
xr, and a location, xp. The algorithm does not compute a path.

The plane is divided in four semi-planes by: (1) the line that contains xr

and xp, and (2) the perpendicular line to the previous line over xr. The space
is divided in four semi-planes FL,FR, BL, BR1, see Fig. A.1a. Then:

1. Compute the distances di(xp,xL
i ). If ∃i/di(xp,xL

i ) < R: xp cannot be
reached. If not,

2. Compute the distances dj,k(xL
j ,xL

k), xL
j ∈ FR and xL

k ∈ FL. If ∀j, k, dj,k(xL
j ,xL

k) >
2.R: xp can be reached. If not,

1F: forward. B: backward. R: right. L: left.
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3. For those points xL
l that do not verify the previous statement, compute

the distances dl(xL
l ,xr). If ∀l, dl(xL

l ,xr) > d(xp,xr): xp can be reached.
If not, xp cannot be reached.

This is the basic algorithm, but some computations are not required. The
algorithm is next discussed:

1. The algorithm checks whether the point xp is within any C-Obstacle2

[39]. Thus, the point could not be reached.

2. The algorithm checks intersections among C-Obstacles in different semi-
planes, FR and FL. If there are not intersections, a non-empty set of
paths that joins the xr and xp exists, see Fig. A.1a,b. Many collision-free
paths exist within this set.

3. If there are intersections among C-Obstacles of different semi-planes, the
distance to the closest C-Obstacle that intersects is computed. Compar-
ing this distance with the distance to xp, it is verified if xp belongs to
this set of paths. Thus, a path exists connecting xr and xp.

A.0.2 Implications with reactive navigation

This algorithm is useful for reactive navigation. The algorithm computes if the
robot can reach a given point of the space, without explicitly computing any
path. Then, the role of the reactive navigation is to drive the robot towards
that point (having in advance the guaranty that the point can be reached).
The point could be a landmark point, or the goal location itself. Figs. A.1a,b
illustrate an example that checks whether a point xp can be reached. The
solution of the algorithm is that the point can be reached.

The algorithm is local because global information is not provided. Then,
the algorithm fails in some cases that require global information. This sit-
uation is illustrated in Fig. A.1c. The output of the algorithm is that xp

cannot be reached, while a solution exists turning to the left in the middle of
the passage. This type of cases cannot be avoided by using local algorithms.
A global information must be added to the system to solve these cases, see
Section 2.7.G.

2A C-Obstacle in this case is computed by enlarging each obstacle point with the robot
radius.
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A.0.3 The ”navegability” of a region

The presented algorithm is used to verify the ”navigability” of a region. There
are two cases:

1. If the goal location is inside the region. The algorithm checks if the goal
location can be reached.

2. If the goal location is not inside the region. The algorithm checks if the
middle point of the region gap, which is the closest to the goal location,
can be reached. The middle point of the gap is used as a landmark in
order to reach the goal location.

Figs. A.1a,b shows how the algorithm is used to verify whether the gap of the
region can be reached. The solution of the algorithm is that the point can be
reached. Thus, the region will be ”navigable”, and becomes the free walking
area.



130 Appendix A. A ”Navigable” Region

FR

FL

BL

BR

    X
Xgoal1

    X Xgoal2

2R

OBSTACLES

    X Xgoal

Xrobot

P

REGION

GAP

(a)

FR

FL

BL

BR

    X

    X

Xgoal2

Xgoal1

    X

C−OBSTACLES

Xgoal

Xrobot

P

NEW
POINT

FR

FL

BL

BR

    X

ROBOT
CONFIGURATION

    X

Xgoal2

Xgoal1

Xgap

    X

(b) (c)

Figure A.1: Example of ”navigability” checking of a region.



Appendix B

C-Obstacle Region in R1mc

The goal of this Appendix is to describe an algorithm to compute a discretiza-
tion of the C-Obstacle region, R1mc

obs , in the Reachable Set of a single Motion
Command, R1mc.

The inputs of the algorithm are:

1. A list of N points of the robot boundary, (xi
c, y

i
c).

2. A list of M obstacle points, (xj
p, y

j
p).

The output is a list of N ×M points, (xi,j
sol, y

i,j
sol), of the R1mc

obs boundary.
The algorithm is a brute-force method with complexity N ×M . However,

the algorithm complies with the requirements mentioned in Section 4.3. Im-
provements of the algorithm remain an open problem. The current algorithm
has the advantage that can be used for any robot shape (even non-polygonal
shapes).

For each point (xi
c, y

i
c) and (xj

p, y
j
p) the following procedure is repeated to

compute the C-Obstacle bounds (xi,j
sol, y

i,j
sol):

Procedure (xsol, ysol)=Point(xc, yc, xp, yp)
The algorithm is presented for an obstacle point (xp, yp) ∈ IR2 in the first
quadrant xp, yp ≥ 0. For points in other quadrants, some signs would have to
be to be modified. The algorithm computes the circle that contains the
location (xsol, ysol), and that verifies (xc, yc) = (xp, yp).

The distance between the instantaneous center of rotation (0, r), and the
point (xp, yp) is dr

p. The radius r of the circle that verified (xp, yp) = (xc, yc)
is computed by:

{
x2

c + (yc − r)2 = (dr
p)

2

x2
p + (yp − r)2 = (dr

p)
2

⇒ r = x2
c+y2

c−(x2
p+y2

p)

yc−yp
(B.1)
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Figure B.1: (a) Problem geometry. (b) W and R1mc. geometry.

The origin Frame 2 is (0, r), and the y-axis is oriented towards the point
(xp, yp). In this frame, it is verified: (1) The circle with radius r contains
(x′sol, y

′
sol). (2) The circle with radius dc contains (x′sol, y

′
sol).

{
(x− dr

p)
2 + y2 = d2

c

x2 + y2 = r2
⇒





x′sol = (dr
p)2+r2−d2

c

2.dr
p

y′sol = −sign(xc).
√

r2 − (x′sol)2
(B.2)

A rigid transformation is applied to transform the point (x′sol, y
′
sol) in Frame

2, in the robot frame.

θ = arcsin(
yp − r

dr
p

) (B.3)

(
xsol

ysol

)
=

(
cos θ sin θ 0
− sin θ cos θ r

) 


x′sol

y′sol

1


 (B.4)

Fig. B.1b illustrates the workspace, IR2, and the Reachable Set of a Sin-
gle Motion Command, R1mc, over imposed. The Figure depicts five obstacle
points in W, and the bounds of the C-Obstacle region, R1mc

obs , computed by
the algorithm.



Appendix C

The Selection of the Atan()
Function

The goal of this Appendix is to justify the selection of the α = atan( R
rp

). This
function converts R =]−∞,∞[ into an angular descriptor α = [−π

2 , π
2 ].

rp = dm
2 , with dm the diameter of the region to transform, see Fig. 4.3. The

function α = atan( R
rp

) converts into an angular index, α, the relation between
the circle with radius R and the circle with radius rp. In the following analysis
the case R > 0 is considered.

In sensor-based motion planning, a high resolution for radius close to rp

is required, and low resolution in the other case. (e.g rp = 2m is a typical
value. A turning radius R = rp ± 1m makes a big difference in the executed
motion. On the other hand, with rp = 100m, a turning radius R = 100m±1m
makes no difference, both radius produce roughly the straight motion.) This
requirement is fully verified by the selected function:

1. The region to transform (circumference with radius dm) is divided by rp

in four regions with the same area, see Fig. 4.3. The circles within R ∈
[0, rp] and R ∈ [rp,∞[, that correspond to equal-area parts within the
region to transform, are mapped into equal-length intervals α ∈ [0, π/4]
and α ∈ [π/4, π/2].

2. The resolution of the transformation is maximal for low values of R.
Radius closed to rp are represented in more detail, as opposed to areas far
away from the vehicle. Fig. C.1a depicts the transformation. Fig. C.1b
shows the same information, with the horizontal axis in logarithmic scale.
In radius 0.1 < R

rp
< 10 the angle varies in an approximate linear manner

in this scale.
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Figure C.1: a) α = arctan( R
rp

) for rp = 1m. b) α = arctan( R
rp

) for rp = 1m in
logarithmic scale.



Appendix D

Error in the ED-space

This Appendix characterizes the error that arises from the EDT extension from
IR to IR2. In the one-dimensional case, IR, the following condition is verified:
~dobs = ~deff . The EDT applied to IR2 creates a space where the previous

equation is not always preserved: the particle describes a quadric (parabola)
during the braking policy, see Fig. D.1. The consequence is that a direction
in the ED-space does not necessarily correspond to the same direction in IR2.

The collision checking is carried out in the ED-space following motion
directions. In the ideal case, the obstacle direction in IR2 and the obstacle
direction in the ED-space have to be equal. The angle between a direction in
IR2, and the correspondent direction in the ED-space, αerror, is given by:

αerror = atan(
dobsy

dobsx

)− atan(
deffy

deffx

) (D.1)

where αerror = f(dobsx , dobsy , ab, T ).
The first quadrant of the function αerror = abs(f(dobsx , dobsy , 0.75 m

sec2
, 0.4sec))

is illustrated in Fig. D.2a. The values of ab and T are the real ones used in
the experiments performed with the XR4000 Nomadic platform.

The αerror function has the following properties:

1. αerror(x, y) = 0 for the following values: (0, y), (x, 0), and (x, x).

2. For local obstacle avoidance, obstacles closer than 3m are usually taken
into account. The max(αerror) = 9.49◦.

3. The mean of the αerror distribution for obstacles closer than 3m is
µ(αerror) = 5.23◦
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Figure D.1: ED-space error in IR2

The error derror is the distance between a location in the ED-space, and
the projection in the IR2 direction, see Fig. D.1. This distance measures the
distance error between a point in the ED-space, and where the point had to
be in the ideal case.

derror =
√

d2
obsx

+ d2
obsy

.sin(αerror(dobsx , dobsy)) (D.2)

The first quadrant of the function derror = abs(f(dobsx , dobsy , 0.75 m
sec2

, 0.4sec))
is illustrated in Fig. D.2b.

The derror function has the following properties:

1. derror(x, y) = 0 for the following values: (0, y), (x, 0), and (x, x).

2. For local obstacle avoidance, obstacles closer than 3m are usually taken
into account. The max(derror) = 0.51m.

3. The mean of the derror distribution for obstacles closer than 3m is
µ(derror) = 0.20m

derror is an unbounded function whose value increases with the distance to
an obstacle (around 3m, max(derror) = 0.51m). To derive a conclusion of how
far this error is significant, it must be compared with the maximum distance
that the robot travels in one sample period, T . Traveling this distance is when
collisions can occur. Notice that a new ED-space is constructed every sample
period, T . For the experiments with the real platform, the maximum velocity
was set to vmax = 0.8 m

sec . This gives a maximum travel distance of dmax =
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(a) (b)

Figure D.2: a) α = f(0 . . . 3, 0 . . . 3, 0.75 m
sc2 , 0.4sec). b) derror =

f(0 . . . 3, 0 . . . 3, 0.75 m
sc2 , 0.4sec)

vmax.T = 0.32m. For this distance, the maximum error is max(derror) =
0.08m. Thus, the max(derror) in the reactive navigation context is low, and
it can be neglected for collision checking. This error is comparable with other
errors such as uncertainties in the sensor measurements, the real controllers,
controller time delays, and communications time delays among others.

This statement is used to extend the EDT to the two-dimensional case
with generality.



138 Appendix D. Error in the ED-space



Appendix E

The Robots

E.0.4 Nomadic XR4000

The Nomadic XR400 is a circular and holonomic robot. The robot diameter
is 0.7m. The robot moves at omnidirectional translational velocities up to
1.2 m

sec , and accelerations up to 1.5 m
sec2

. It is equipped with a SICK 2-D laser
rangefinder with a field of view of 180◦, a range of 32 meters, an accuracy of
up to 1cm. Each laser scan has 361 points. See Fig. E.1a.

E.0.5 Labmate

The Labmate platform is an square and differential-driven robot. The robot
side is 0.8m. The maximum speed is 1 m

sec . It is equipped with a TRC 3D laser
rangefinder that scans the environment with a maximum range of 6.5m, and
an accuracy up to 2.5cm. See Fig. E.1b.

E.0.6 Hilare2 and Hilare2Bis

The Hilare2 and Hilare2Bis platforms are rectangular and differential-driven.
The robots are 1.3m × 0.8m. The maximum speed is 1.5 m

sec . Both robots
are equipped with a SICK laser rangefinder, see Subsection E.0.4. The main
difference between both robots is that Hilare2Bis is equipped with a GT6A
arm with 6 degrees of freedom. The arm weighs about 60kg and it is located
in the front part of the robot. This produces a high inertia when the robot
turns. See Fig. E.1c and Fig. E.1d.
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(a) (b)

(c) (d)

Figure E.1: a) Nomadic XR4000. b) Labmate platform. c) Hilare2. d) Hilare2bis.

E.0.7 Nomadic Scout

The Nomadic Scout is a circular and differential-driven robot. The robot
diameter is 0.4m. The robot moves up to vmax = 1 m

sec . This base has a ring of
16 Polaroid ultrasounds, and it is equipped with a SICK laser (see Subsection
E.0.4). See Fig. E.2a.

E.0.8 Lama

The Lama platform is has 6 driving wheels that can be programmed to work
in differential-drive mode. The robot is rectangular (1.85m × 1.2m). The
maximum robot speed is 0.17 m

sec . It is equiped with a pair of B/W cameras.
See Fig. E.2b.



141
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Figure E.2: a) Nomadic Scout. b) Lama.


