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Abstract— This paper describes an EEG-based human brain-
actuated robotic system, which allows performing navigation
and visual exploration tasks between remote places via internet,
using only brain activity. In operation, two teleoperation modes
can be combined: robot navigation and camera exploration.
In both modes, the user faces a real-time video captured by
the robot camera merged with augmented reality items. In
this representation, the user concentrates on a target area
to navigate to or visually explore; then, a visual stimulation
process elicits the neurological phenomenon that enables the
brain-computer system to decode the intentions of the user. In
the navigation mode, the target destination is transferred to the
autonomous navigation system, which drives the robot to the de-
sired place while avoiding collisions with the obstacles detected
by the laser scanner. In the camera mode, the camera is aligned
with the target area to perform an active visual exploration of
the remote scenario. In June 2008, within the framework of
the experimental methodology, five healthy subjects performed
pre-established navigation and visual exploration tasks for one
week between two cities separated by 260km. On the basis of
the results, a technical evaluation of the device and its main
functionalities is reported. The overall result is that all the
subjects were able to successfully solve all the tasks reporting
no failures, showing a high robustness of the system.

I. INTRODUCTION

To command robots just by thought is a technical and
social dream that is turning to be a reality due to the
recent advances in brain-machine interaction and robotics.
On one hand, brain-computer interfaces provide a new com-
munication channel for patients with severe neuromuscular
disabilities bypassing the normal output pathways, and also
can be used by healthy users. On the other hand, robotics
provides a physical entity embodied in a given space ready to
perceive, explore, navigate and interact with the environment.
Certainly, the combination of both areas opens a wide range
of possibilities in terms of research and applications.

One of the major goals for human applications is to
work with non-invasive methods (non intracraneal), where
the most popular is the electroencephalogram (EEG). So far,
systems based on human EEG’s have been used to control a
mouse on a screen [1], for communication such as a speller
[2], an internet browser [3], etc. Regarding brain-actuated
robots, the first control was demonstrated in 2004 [4], and
since then, research has focused on wheelchairs [5], manip-
ulators [6], small-size humanoids [7] and neuroprosthetics
[8]. All these developments share an important property: the
user and the robot are placed in the same environment.
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Fig. 1. Design of the brain-actuated teleoperation system: the two stations,
the main systems, and the information flow among them.

A breakthrough in brain-teleoperated robots arose in Jan-
uary 2008, when a cooperation between two research teams
enabled a monkey (located in the USA) to control the inferior
part of a humanoid in Japan [9]. The animal was practiced
a craniotomy; thus, the recording method to measure the
brain activity was invasive. So far, there are no similar
results in humans using non-invasive methods. Notice that
the ability to brain-teleoperate robots in a remote scenario
opens a new dimension of possibilities for patients with
severe neuromuscular disabilities.

This paper reports the first EEG-based human brain-
actuated teleoperation system, which allows the users to
perform navigation and visual exploration tasks between
remote places, using only their brain activity. This system
relies on a user station and a robot station, both remotely
located but connected via internet (Figure 1). In operation,
two teleoperation modes can be combined: robot navigation
and camera exploration. In both modes, the user faces a
real-time video captured by the robot camera merged with
augmented reality items, which is used as visual feedback for
decision-making and process control. In this representation,
the user concentrates on a target area to navigate to or
visually explore; then, a visual stimulation process elicits the
neurological phenomenon that enables the brain-computer



system to decode the intentions of the user. In the navigation
mode, the target destination is transferred to the autonomous
navigation system, which drives the robot to the desired place
while avoiding collisions with the obstacles detected by the
laser scanner. In the camera mode, the camera is aligned with
the target area to perform an active visual exploration of the
remote scenario. This prototype has been validated using five
healthy subjects in two consecutive steps: (i) screening plus
training of the subjects, and (ii) pre-established navigation
and visual exploration teleoperation tasks during one week
between two laboratories located 260km apart. On the basis
of the results, a technical evaluation of the device and its
main functionalities is reported. The overall result is that
all the subjects were able to successfully solve all the tasks
reporting no failures, showing a high robustness of the
system.

II. BRAIN-COMPUTER SYSTEM

This section describes the brain-computer system, which
is located in the user’s station (Figure 1).

A. Neuropsychological protocol and instrumentation

The neurophysiological protocol followed in this study is
based on the P300 visually-evoked potential [10], which is
usually measured in a human EEG. In this protocol, the user
focuses his attention on one of the possible visual stimuli,
and the BCI uses the EEG to infer the stimulus that the user is
attending to. The P300 potential manifests itself as a positive
deflection in voltage at a latency of roughly 300 msec in the
EEG after the target stimulus is presented within a random
sequence of non-target stimuli (Figure 2). The elicitation time
and the amplitude of this potential are correlated with the
fatigue of the user and with the saliency of the stimulus (in
terms of color, contrast, brightness, duration, etc.) [10].

(a) (b)
Fig. 2. (a) Typical P300 response. The red line shows the EEG activity
in one channel (elicited by the target stimulus), and the green line shows
the activity for the non-target stimuli. (b) Topographical plot of the EEG
distribution on the scalp at 300 msec. The area with more activity (mid-low
part of the scalp) is the parietal lobe, where the P300 potential is elicited.

The BCI instrumentation consists of a commercial gTec
EEG system (an EEG cap, 16 electrodes and a gUSBamp
amplifier). The electrodes are located at FP1, FP2, F3, F4,
T7, T8, C3, C2, C4, CP3, CP4, P3, P2, P4 and OZ, according
to the international 10/20 system as suggested in previous
studies [11]. The ground electrode is positioned on the
forehead (position Fz) and the reference electrode is placed
on the left earlobe. The EEG is amplified, digitalized with
a sampling frequency of 256Hz, power-line notch filtered

Fig. 3. (Upper section) Visual display in the robot navigation mode.
(Lower section) Visual display in the camera control mode. In both figures
an individual stimulus is shown; however, the real stimulation process is
accomplished by means of rows and columns.

and bandpass-filtered between 0.5 and 30Hz. The signal
recording and processing as well as the graphical interface
are developed with the BCI2000 platform [12], placed on an
Intel Core2 Duo @ 2.10GHz with Windows XP OS.

B. Graphical interface

The brain-computer system incorporates a graphical in-
terface with two functionalities: (i) it visually displays a
predefined set of options that the user can select to control the
robotic system, and (ii) it develops the stimulation process to
elicit the P300 visual-evoked potential and therefore, enables
the pattern recognition system to decode the user’s intents.
Both functionalities are described next:

1) Visual display: The basis of the visual display is the
live video received by the robot camera, which is used by
the user as visual feedback for decision-making and process
control. This video is augmented by overlapped items related
to the two teleoperation modes: the robot navigation mode
and the camera exploration mode.

The robot navigation mode allows the user to control the
robot motion (Upper section of Figure 3). Overlapped to
the video, the real environment obstacles are depicted by
semitransparent walls. These walls are a 3D reconstruction



built from the 2D map constructed in real-time by the au-
tonomous navigation technology (section III). Furthermore,
there is a 3D grid over the floor that maps the possible
destinations that the operator can select to order the robot
to reach the specific location. The possible destinations are
at distances (1.5m, 2.5m, 4m)× (−20◦,−10◦, 0◦, 10◦, 20◦).
The obstacles hide the unreachable destinations of the grid.
The icons in the lower part of the display represent the
following options, from left to right: (i) turn the robot 45◦

left; (ii) refresh the live video to perform a selection based on
a more recent visual information of the environment; (iii)
change to the camera exploration mode; (iv) validate the
previous selection; and (v) turn the robot 45◦ right.

The camera exploration mode allows the user to control
the pan/tilt orientation of the robot camera to perform an
active visual exploration of the environment (Lower section
of Figure 3). Overlapped to the video, there is a 2D grid
uniformly placed in the display that maps the possible
locations that the operator can select to orientate the camera
in that direction. The icons in the lower part represent the
following options, from left to right: (i) align the robot with
the horizontal camera orientation and change to the robot
navigation mode; (ii) refresh the live video; (iii) change
to the robot navigation mode; (iv) validate the previous
selection; and (v) set the camera to its initial orientation.

2) Stimulation process: This process must elicit the P300
visual-evoked potential when the user is concentrated on a
given option of the visual display. The options are “stimu-
lated” by flashing a circle on a grid intersection or icon in the
visual display. A sequence is a stimulation of all the options
in random order as required by the P300 oddball paradigm. In
order to reduce the magnitude of the posterior classification
problem (subsection II-C) and the duration of a sequence,
the Farwell & Donchin paradigm [13] was followed. Thus,
the flashing of the stimulus is accomplished by means of
rows and columns instead of flashing each option individu-
ally, obtaining 9 stimulations (4 rows plus 5 columns) per
sequence. The topology of the augmented reality items is
constant in both teleoperation modes to maintain a uniform
stimulation pattern. All the elements of the display can
be customized in terms of color, texture, shape, size and
location; and all the scheduling of the stimulation process
(time of exposition of each stimulus, inter-stimulus duration,
inter-sequence duration and number of sequences) can be
modified to equilibrate the user’s capabilities and preferences
with the performance of the system.

C. Pattern recognition strategy

Pattern recognition is a supervised learning module to
recognize the P300 evoked potential, and thus, to infer the
stimulus that the user is attending to in the stimulation
process. The first step is to train the system via offline
experiments, where the user faces the graphical interface
with the stimuli described above. In this process, the user
concentrates on a predefined sequence of selections that
covers all the classes. The EEG is recorded and used to

train the classification algorithm using a two-step supervised
learning technique described next.

1) Feature extraction: The P300 signals are characterized
in the time domain, so the information is in its waveform
and latency times. Following [11], for each EEG channel
1 sec of samples are recorded after each stimulus onset.
Then, these segments of data are filtered using the moving
average technique, and decimated by a factor of 16. The
resulting signals are plotted and the channels with the best
P300 response are selected by visual inspection. Finally, the
data segments of each channel are concatenated creating a
single feature vector for the next stage.

2) Classification algorithm: In our system, the P300
signal is elicited for one of the four rows and the five
columns during one sequence of the stimulation. Thus, there
are two classification problems of 4 and 5 classes. For
each problem, the StepWise Linear Discriminant Analysis
(SWLDA) is used, extensively studied for P300 classification
problems [11], and well-known for its good results obtained
in online communication using visual stimulation. In our
system, higher performances than 90% were achieved with
SWLDA in less than an hour of training.

Fig. 4. Finite state machine that models the execution protocol.

D. Execution protocol

The users interact with the brain-computer system by
means of its graphical interface according to the execution
protocol, which is modeled by a finite state machine (Figure
4). Initially, the system starts in the navigation mode and
in the state Waiting for an option. Then, the BCI develops
a stimulation process, and if there are no errors in the
pattern recognition, the option the user was concentrated on
is selected (recall that there are different options according to
the teleoperation mode). When the selected option is different
than the refresh one (that simply refreshes the live video),
the state turns to Waiting for validation. In this state, the BCI
develops a stimulation process and a new option is selected.
If the validation is selected, the last option is transferred to
the robotic system and the state turns to Robotic system:
performing mission; otherwise the stimulation process starts
again until the validation is selected. In the state Robotic
system: performing mission, the robot performs the relevant
action (referred to as a mission) and meanwhile, the graphical



interface displays live video captured by the robot camera
and the BCI stops developing stimulation processes. Once
the mission finishes, the robot remains waiting for another
decision of the user, the video transfer stops (in order to
perform the next stimulations over a static image), the BCI
system receives an external flag coming from the robotic
system and the state turns to Waiting for an option.

III. ROBOTIC SYSTEM

The robot is a commercial Pioneer P3-DX equipped with
two computers. The low-level computer controls the back
wheels that work in differential-drive mode and the high-
level computer manages the rest of the computational tasks.
The main sensor is a SICK planar laser placed on the frontal
part of the vehicle. It operates at a frequency of 5Hz, with a
180◦ field of view and a 0.5◦ resolution (361 points). This
sensor provides information about the obstacles located in
front of the vehicle. The robot is also equipped with wheel
encoders (odometry), with a wireless network interface card
(to connect the vehicle to a local network during operation)
and with a camera. The camera, placed on the laser, is a
pan/tilt Canon VC-C4 with a ±100◦ pan field of view and a
+90◦/−30◦ tilt field of view. The initial camera orientation
(which is a customizable parameter) was set to 0◦ pan and
−11.5◦ tilt, which provides a centered perspective of the
environment starting roughly one meter in front of the robot.

The robot has been equipped with an autonomous navi-
gation technology that drives the vehicle to the given desti-
nations while also avoiding static and dynamic obstacles,
detected by the laser sensor [14]. This module has two
functionalities. On one hand, a modeling module integrates
the sensor measurements to construct a local model of the
environment and to track the vehicle location. We chose a
binary occupancy grid map to model the static obstacles
and the free space, and a set of extended Kalman filters
to track the moving objects around the robot. We used
a given technique [15] to correct the robot position, to
update the map and to detect and track the moving objects
around the robot. The static map travels centered in the
robot. This map has a limited size, which is enough for
presenting the required information to the user as described
in the previous section and for computing the path so as to
reach the selected goal. On the other hand, a local planner
computes the local motion based on the hybrid combination
of tactical planning and reactive collision avoidance. An
efficient dynamic navigation function (D∗Lite planner [16])
was used to compute the tactical information (i.e. main
direction of motion) required to avoid cyclic motions and
trap situations. This function is well suited for unknown and
dynamic scenarios because it works based on the changes
in the model computed by the model builder. The final
motion of the vehicle is computed using the ND technique
[17], which uses a “divide and conquer” strategy based on
situations and actions to simplify the collision avoidance
problem. This technique has the distinct advantage of being
able to cater to the complex navigational tasks such as

maneuvering in the environment within constrained spaces
(i.e. passage through a narrow doorway).

IV. COMMUNICATIONS SYSTEM AND INTEGRATION

The communications system links the brain-computer sys-
tem and the robotic system (Figure 5). It is composed of two
clients (for the BCI and the robotic system) and a link server
that concentrates the information flow and confers scalability
to the system. All the connections among logical components
are based on the client/server paradigm over TCP/IP.

The BCI client is multiplexed in time with the BCI system,
with a period of roughly 30 msec and communicates with
the link server through an internet connection. The robot
client communicates with the link server by means of an
ad-hoc wireless connection, encapsulating the autonomous
navigation system as a thread, and synchronizing the orders
to the camera and to the navigation system.

Regarding the information transfer, on one hand the nav-
igation system transfers to the BCI the map model (400
bytes) and the robot location within the map (12 bytes).
Furthermore, the images are captured by the camera with
a resolution of 640x480 and are compressed in the jpeg
standard format, obtaining an image size of approximately
30 kbytes (in our experiments 10 images per second were
transferred). On the other hand, the BCI sends the goal loca-
tion when it is computed (8 bytes). In execution, the upper
boundary of the information transfer is close to 300 kbytes
per second, adequate for the typical order of bandwidth of
internet networks.

Regarding the time critical tasks in this integration, the
robot motion controller is encapsulated in a dedicated com-
puter (low-level computer) with a real-time operative sys-
tem. The autonomous navigation system is encapsulated
in another dedicated computer, and integrated into a task-
based system to preserve the computation cycle. Both tasks
communicate within a synchronous periodical task of 200
msec, where the navigation system reads from the client
the goal location, the laser measurement, and requests the
odometry to the low-level computer. Then, it executes the
mapping and planning module and sends the translational
and rotational velocity computed to the low-level computer.

V. EXPERIMENTAL METHODOLOGY

The objective of this study was to assess the performance
and adaptability of the brain-actuated teleoperation system
by able-bodied subjects in real settings. In the following
subsections the recruitment of the participants for the study
will be discussed, followed by a detailed account of the
experimental protocol.

A. Participants

Participation recruitment for the study began after obtain-
ing the protocol approval by the University of Zaragoza Insti-
tutional Review Board. Selection was made by the research
team. A set of inclusion and exclusion criteria were applied
for the recruitment of subjects in order to draw conclusions
for the study over a homogeneous population. The inclusion



Fig. 5. The figure shows the abstraction layers: the first row represents the two stations, the second row the computer hardware and the links between
them, whereas the third row represents the logical components. Below them, a typical event trace of a goal selection in the robot navigation mode is shown.
The flow of information and its direction are illustrated by arrows. Vertically, time increases downward, and the vertical rectangles below boxes stand for
a code execution. The dark boxes enveloping certain portions of code and information exchange represent an iterative execution task.

criteria were: (i) subjects within the age group 20 − 25
years of age; (ii) gender (either all women or all men);
(iii) laterality (either all left-handed or all right-handed);
and (iv) students of the engineering school of the University
of Zaragoza. The exclusion criteria were: (i) subjects with
history of neurological or psychiatric disorders; (ii) subjects
under any psychiatric medication; and (iii) subjects with
episodes of epilepsy, dyslexia or experiencing hallucination.

Five healthy, 22 year-old, male and right-handed students
of the University participated in the experiments. None
of them had utilized the teleoperation system before. The
participants were duly informed about the entire protocol
of the study before signing the consent forms. Permission
to reproduce video recording and photographic images was
duly granted by the subjects.

B. Experiment Design and Procedures

The study was accomplished in two phases: (i) screening
and training evaluation, and (ii) brain-actuated teleoperation
evaluation.

1) Screening and Training Evaluation: The objectives of
this session were: (i) to come up with the aesthetic factors
of the graphical interface that equilibrated the subject’s
capabilities and preferences with the performance of the
system (recall that the elicitation time and the amplitude
of the P300 potential are correlated with the saliency of
the stimulus in terms of color, contrast, brightness, duration,
etc. [10]; which affects the accuracy of pattern recognition);

and (ii) to evaluate whether the subjects were ready to
participate in the next phase. Regarding the first objective,
the aesthetic factors of the visual display were selected based
on the results of a parallel study [18], and an experimental
session was designed with 8 screening trials to study whether
this interface elicited the desired neurological phenomenon.
Regarding the second objective, the system was trained with
the previously recorded EEG and a session was designed to
check whether the accuracy of the system was greater than
a threshold value set to 90%, qualifying the subject for the
second phase. For each subject, this session lasted 3 hours.

2) Teleoperation Evaluation: The objective of this battery
of experiments was to test the brain-actuated teleoperation
technology between two cities, recording data for a posterior
evaluation. The experiments were accomplished the week of
June 23, 2008, between the BCI laboratory at the University
of Zaragoza (Spain) and the University of Vilanova i la
Geltrú (Spain), separated by 260km. Two tasks were de-
signed, which combined navigation and visual exploration in
unknown scenarios and under different working conditions:
the first task involved navigation in constrained spaces with
an active search of two visual targets, and the second task
involved navigation in open spaces with an active search of
one visual target (Figure 6). Notice that the only information
of the remote scenarios shown to the subjects was the plans
referenced above, and that the subjects had never visited the
locations. Each subject had to perform two trials per task.



(a) Task 1 (b) Task 2

Fig. 6. (a) The objective of Task 1 was to drive the robot from the start location to the goal area. In the exploration area (E.A. in the figure), the subject
had to search for two signals located in the yellow cylinders 2.5m above the floor. Then, if both signals were equal, the subject had to avoid the yellow
triangle by turning to the right-hand side, or if otherwise, by turning to the left-hand side. (b) The objective of Task 2 was to drive the robot from the
start location to the goal area. In the exploration area, the subject had to search for one signal located in the yellow cylinder 2.5m above the floor. The
subject then had to continue navigation to the right or left direction of the two cylinders, as specified by the signal. All measures are in meters and the
robot is to scale.

(a) User station (b) Robot station
Fig. 7. (a) The user is lied down, concentrated on the options shown in
the visual display and connected to the BCI system. (b) The robot is placed
in a remote environment.

For each subject, this session lasted 4 hours.

VI. RESULTS AND EVALUATION

This section reports the results of the experiments previ-
ously described, focusing on the evaluation of the teleoper-
ation system.

The first phase was a screening and training session.
Regarding its first objective, it was found by visual inspection
of the EEG data recorded in the screening trials that the
P300 potential was elicited for all subjects. Then, the pattern
recognition strategy was trained and the subjects performed
the online tests. All of them achieved more than 93% BCI
accuracy; and thus, all of them were qualified to carry out
the next phase.

The second phase consisted of the execution of the previ-
ously defined tasks, jointly combining navigation and visual
exploration (Figure 7 shows the experimental settings). On
the basis of these experiments a technical evaluation of the
teleoperation system and its two main functionalities (the
brain-computer system and the robotic system) are next
described. The overall result is that all the subjects were
able to successfully operate the device, reporting no failures
and showing a hight robustness.

A. Overall Brain-Teleoperation System Evaluation

Following [19], [18] the subsequent metrics are proposed
for the study:

• Task success.
• Number of collisions.
• Time (sec): total time taken to accomplish the task.
• Path length (m): distance traveled by the robot.
• Number of missions to complete the task1.
• BCI accuracy: accuracy of the pattern recognition.
The results are summarized in table I.

TABLE I
METRICS TO EVALUATE THE OVERALL SYSTEM PERFORMANCE

Task 1 Task 2
min max mean std min max mean std

Task success 1 1 1 0 1 1 1 0
# collisions 0 0 0 0 0 0 0 0
Time (sec) 685 1249 918 163 706 1126 910 154
Path length (m) 10.99 13.53 11.84 0.90 19.68 21.83 20.68 0.63
# missions 12 19 13.9 2.30 10 15 11.70 1.64
BCI accuracy 0.83 1.00 0.92 0.07 0.78 1.00 0.89 0.07

All subjects succeeded in solving the tasks with no colli-
sions, which is the best indicator of the device utility. The
path length and the number of missions were similar for
all subjects indicating a similar performance between them.
The interaction with the device was satisfactory since the
lowest BCI accuracy was of 78% when the average was
approximately of 90%. The variability of the total time
between subjects is significant since the BCI accuracy and
the number of sequences in the stimulation process changed
from subjects to subjects (a higher number of sequences
involves a higher BCI accuracy, but also a higher duration of
the stimulation process; thus, the number of sequences was
customized for each subject).

In summary, these results are very encouraging since they
showed the feasibility of this technology to solve tasks (cov-
ering many of the typical real situations) in which navigation
and visual exploration were needed. Recall that both tasks
were designed to test the combination of both teleoperation
modes under different working conditions (navigation in
constrained and open spaces; and visual search of one or
two targets that do not fit in the initial camera field of view).

1Missions are defined in subsection II-D.



B. Brain-Computer System
This evaluation was divided into two parts: an evaluation

of the pattern recognition strategy and of the visual display
design. Based on [20], [19], the following metrics were
proposed to assess the pattern recognition strategy:
• Real BCI accuracy: BCI recognition rate.
• Useful BCI accuracy: ratio of good selections plus

useful errors per total number of selections.
• Total BCI errors: incorrect selections.
• Useful BCI errors: incorrect selections that were reused

to accomplish the task.
• Number of selections per minute.
• Usability rate: number of selections per mission.
• Number of missions per minute.
• Number of sequences in the stimulation process.
• Information transfer rate (ITR): number of bits per

minute transferred from the user to the machine.
The results are summarized in the upper section of table

II.

TABLE II
METRICS TO EVALUATE THE BRAIN-COMPUTER SYSTEM

Task 1 Task 2
min max mean std min max mean std

Real BCI acc. 0.81 1.00 0.90 0.08 0.73 1.00 0.86 0.09
Useful BCI acc. 0.83 1.00 0.92 0.07 0.78 1.00 0.89 0.07
# total errors 0.00 7.00 3.50 2.88 0.00 11.00 4.9 3.7
# useful errors 0.00 2.00 0.60 0.84 0.00 5.00 1.20 1.81
# selections/min 3.39 5.49 4.41 0.72 3.40 4.77 4.16 0.46
Usability rate 2.11 3.08 2.54 0.34 2.36 3.40 2.80 0.39
# missions/min 1.17 2.27 1.77 0.39 1.00 2.02 1.53 0,33
# sequences 6 10 8 1.33 8 10 8.4 0.84
ITR (bits/min) 9.97 21.73 16.05 3.83 9.86 20.62 14.32 3.33
# misunderstandings 0 0 0 0 0 1 0.10 0.32
# far goals 0 2 1.40 0.84 2 6 4.70 1.16
# turns 2 6 3.70 1.57 0 3 0.80 1.03

According to convention [21], a person is able to use
a BCI when the achieved accuracy is above 80%. In the
experiments, an average BCI accuracy higher than 80% was
obtained for both tasks; the real accuracies were of 90%
and 86%, respectively. There is a distinction between real
and useful accuracy because in some situations, although the
BCI detection fails, the selections are reused to achieve the
tasks. These BCI errors, referred to as useful errors, made
the useful accuracy (92% and 89%) greater than the real
accuracy count percentage, thus obtaining a higher accuracy.
The BCI system set only two incorrect missions in all the
executions, representing 0.78% of the missions (the theoret-
ical probability of this situation is 0.3%). The stimulation
process followed in this study set the number of selections
per minute depending on the number of sequences (it was
the only scheduling value that changed among subjects). On
average, 4.41 and 4.16 selections per minute were carried
out, respectively. These values establish an upper boundary
for the number of missions per minute since a mission can be
set with 2 selections if there are no BCI detection errors. In
practice, the usability rate was slightly greater than 2 due to
BCI detection errors and interface misunderstandings; thus,
the number of missions per minute turned out to be lower
than the middle of the average selections per minute (an
average of 1.77 and 1.53, respectively).

The second part of the brain-computer system evaluation is
the visual display design. Based on [19], [18] the following
metrics were proposed:
• Number of errors caused by misunderstanding in the

interface.
• Number of far goals and turns in the navigation mode.
The results are summarized in the lower section of table

II.
In general, the design of the interface was acceptable since

all subjects were able to solve the tasks using the function-
alities provided. There was only one incorrect selection due
to misunderstandings, which arose at the very end of one
trial (the subject set an unreachable mission, located behind
the goal wall). The frequency of usage of some commands
(far goals and turns) suggests that the subjects perform the
driving tasks in a different way, as reported in similar studies
[19]. Regarding the BCI in general, an important aspect
is the information transfer rate. A common problem of all
event-related potential approaches is the low ITR values (on
average the transfer rate was approximately 15 bits/min). In
this system, low ITR values are not very harmful since the
automation facilities provided by the robotic system (mainly
the autonomous navigation system) avoids the need of a large
amount of information transfers to complete difficult tasks.

In summary, these results indicate that the integrated
design of the brain-computer system was suitable for con-
trolling the brain-actuated teleoperation system.

C. Robotic System

Based on [19], a set of metrics was proposed to evaluate
the robot navigation system of the robot: number of nav-
igation missions, number of collisions, length traveled per
mission, time per mission, mean velocity of the robot, and
the minimum and mean distance to the obstacles (obstacle
clearance). Moreover, the following metrics were proposed
to evaluate the camera exploration system: number of
exploration missions, and the total angle explored by the
camera. All the results are summarized in table III.

TABLE III
METRICS TO EVALUATE THE ROBOTIC SYSTEM

Task 1 Task 2
min max mean std min max mean std

# missions nav. 7 12 9.00 1.6 7 11 8.7 1.2
Length(m)/mission 1.06 1.61 1.34 0.18 1.90 2.81 2.41 0.29
Time(s)/mission 58.75 95.50 72.99 11.42 70.25 98.63 81.74 8.30
Velocity (m/sec) 0.05 0.07 0.06 0.01 0.08 0.10 0.10 0.01
Clearance min (m) 0.89 1.12 1.03 0.07 1.09 1.19 1.14 0.03
Clearance mean (m) 2.22 2.47 2.40 0.07 3.16 3.23 3.20 0.02
# missions exp. 4 7 4.9 1.2 2 5 3 1.1
Exploration (rad) 1.21 6.37 2.79 1.56 0.16 0.88 0.37 0.25

In total, the navigation system successfully carried out
177 missions without collisions, traveling a total of 325
meters with a mean velocity of 0.08 m

sec (10 times less
than usual human walking velocity). The average velocity
and the length traveled per mission were greater in Task 2
than in Task 1, which indicates that the navigation system
adapted to the different conditions of the tasks, obtaining a
velocity increase in open spaces (Task 2) and a reduction



when maneuverability became more important (Task 1). The
mean and minimum clearances show that the robot avoided
obstacles within safety margins, which is one of the typical
difficulties in autonomous navigation [14].

The camera system performance was very high since all
the exploration tasks were solved (all the subjects identified
the correct path in the circuits). A total of 79 missions
were carried out, exploring a total angular distance of 32
radians. The explored angle was greater in Task 1 than in
Task 2, which also indicates that this system adapted to the
conditions of the tasks.

In general, the performance of the navigation and explo-
ration systems was remarkable since all tasks were success-
fully solved by the combination of both systems, reporting
no failures.

VII. CONCLUSIONS

This paper describes an EEG-based human brain-actuated
robotic system to carry out teleoperation tasks between
remote places via internet. In operation the user can combine
two teleoperation modes: robot navigation and camera con-
trol. Both modes turn to be crucial to solve visual exploration
tasks where the robot must also navigate in the environment.
This brain-actuated robot teleoperation has been validated
with five healthy subjects, which performed pre-established
navigation and visual exploration tasks for one week between
two cities 260km far away. The overall result is that all
the subjects were able to successfully solve all the tasks
reporting no failures, showing a high robustness of the
system. This study shows for the first time the feasibility of
this technology in humans and using non invasive techniques.

In near future, the researchers are working on the im-
provement of the system to address the common problem of
all event-related potential approaches: the low information
transfer rate. In this direction, a P300 continuous control
of the system is being developed, in an attempt to reduce
the total time to solve the tasks. Another shortcoming of
these systems is that with the synchronous operation, the
user has to be continuously concentrated in the task. An
interesting improvement the researchers would like to work
is the adoption of asynchronous P300 control to support
an idle state, as in [22]. Although the BCI accuracy was
high, the integration of BCI-based online error detection
system is being worked on also. Furthermore, the researchers
are working on the incorporation of high level tasks in
teleoperation to improve navigation (e.g., with tasks such as
people-tracking and following), camera control (e.g., tracking
and aligning the camera with the location of specific sounds
or voices); and the integration of this system in small, low-
cost robots.
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