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Abstract— This paper presents the first steps towards the the automatic evaluation of collision avoidance, which is a

evalqation of obstacle avoidance techniques for mobile raiis. particular subtask involved in many applications of mobile
The idea is to create a methodology to evaluate the performae robots

of the methods given a wide range of work conditions. The work . ) . ) L
conditions usually include scenarios with very different rature This work is a part of a Spanish project. The objective is
(dense, complex, cluttered, etc). The performance is measd in  the evaluation of robots for mobility aid (like electric \als
terms of robotic parameters (robustness, optimality, safty, etc).  or robotic wheelchairs). There are two main research axgs:
We describe in this paper the overall methodology that we intnd e eyaluation of robot motion from a robotic perspective an
to apply and the first steps in the scenario characterization .. . .
(7i) the evaluation of robot motion from a human-centered

. INTRODUCTION point of view. This paper describe the first steps towards

the automatic evaluation of motion in the first axis, and the

The rationale of the workshop explains very well the . .
complete overview of the methodology that we will try to use.

objective of this research:

Current practice of publishing research results in
robotics makes it extremely difficult not only to
compare results of different approaches, but also to
asses the quality of the research presented by the
authors. Though for pure theoretical articles this may
not be the case, typically when researchers claim This work focusses in one of the fundamental modules
that their particular algorithm or system is capable of sensor-based motion schemes: reactive obstacle aweidan
of achieving some performance, those claims are This module is the responsible of moving a vehicle to a
intrinsically unverifiable, either because it is their  given goal location while avoiding collisions with the segio.
unique system or just because a lack of experimental Usually, it is the last responsible of the motion.

details, including working hypothesis. (...). From a robotic perspective, there are many techniques

It is clear that to overcome this issue, we have to finithat have been designed to address autonomous colligen-fr
ways or processes to automatically evaluate the reseatbh wnotion (sensor-based motion with obstacle avoidance)efor
methodologies accepted by the community. Research on tamaple [3], [1], [2], [9], [5] among many others. It is cleamath
topic forks into atop-downor bottom-upperspectives. On under the same conditions each technique generates aediffer
the one hand, the top-down manner consists in evaluating thetion. Nevertheless, questions like: which is the mostisbb
complete robot performance when developing a given tagk (sme? or which of them behaves better in a determined context
[?], [?] and the majority of the speakers in thest European or condition? cannot be answered neither from a scientific
Workshop on Benchmarks in Robotics Resear@006 Euron nor technological point of view. In other words, once we
meeting). The advantage of this strategy is that it resuksce a mobile robotics application, the selection of a mmtio
straightforward to asses whether the robot has accomglisiiechnique among all the existing ones is a matter of spetsali
a given task. However, the disadvantage is that this regjuind not accessible to everybody. This is because there are
a strong experimental validation with the real robots. Thusot objective comparisons of methods neither quantitdiive
rigorous protocols of experimentation have to be develdpedterms robustness or action parameters of such as the time or
deal with the repeatability problem of real experiments tnd the total distance traveled) nor qualitative (in terms afusity
guarantee the checking of all possible situations. of the motion). At present, there is only one experimental

On the other hand, the bottom-up manner deals with tkemparison [4]. Nevertheless, this comparison is very sl
evaluation of each single subtask individually. The aim idus, it does not include the advances in this subject inabte |
to explain the robot performance developing a task as thé years. Furthermore it is based on the observation and does
synergy of each particular performance in each of the irealvnot present a rigorous and objective methodology to address
subtasks. This paper follows this direction and focusses tims objective.

II. RoBOT OBSTACLE AVOIDANCE AND EVALUATION
PERSPECTIVE



I1l. OVERVIEW OF THE EVALUATION FRAMEWORK Obstacle Trajectory Scenario

An obstacle avoidance technique is a mechanism that giVeAvoidanceZ Generation Generatian
anobstacle configuratioand ainitial andgoal configurations
computes the best motion to drive the vehicle to the goalevhil {} {}
avoiding collisions with the obstacles. This process iseted X .
until the goal is reached. The result igrajectory that joins @%{ﬁgﬁ% Cr?gg(]:?grci)z
the initial and the goal but generated online (since theykviror
an iterative process). Thus, timputs of the problem are(q)

obstacle distribution andi:) initial and goal configurations.
The output is successf a collision free trajectory that joins
the initial and goal has been computédilure: collision or the

goal is not reached (usually referred as local minima). Tanos

evaluation of an obstacle avoidance mechanism should cover -« Scenariogs———>
all the possible inputs (obstacles and initial and goaltioos) Result | &
and must be done on the basis of the quality of the output Tables 5
(collision free trajectory). =

The methodology that we propose is to build a system able
to generate random obstacle, initial and goal distribgtiand
to evaluate the output of the method (trajectory) as a foncti
of quantitative descriptors of the inputs and the outpute T
framework has the following modules (Figure 1):

1) Scenario generatiarrandom generator of obstacle dis- The scenario is a unitary ball with Euclidean metric. The
tributions and initial and goal locations. obstacles are spheres within the unit ball. This is because

2) Scenario characterizatiorextraction of the quantitative SPheres are a base Bf' and many shapes can be constructed
descriptors of the environment (e.g. density, clearned4th spheres (e.g. general polygons can be represented by
etc). circles [8]). In other words, the selection of circular @idés

3) Collision Avoidance this is the technique to evaluatdS Not a limitation. The number of ob_stacles is random.
and is a “black-box” in the framework. Furthermore, for each obstacle the location of the centdr an

4) Robot Simulatarsimulates the next state of the robot!® radius are also random. Figure 2 shows two examples.
given the motion computed by the collision avoidance The initial and goal locations are also randomly generated
technique. To simplify the problem, in this work wewithin the unit ball. If any of the locations is within an obst
assume that the robot is circular (with radi@ and cle, this location is recomputed. Furthermore, for any atist
holonomic without dynamic constraints. The sensor istribution and initial and goal locations, it is importaio
assumed to measure range. check the existence of a collision free path. Otherwiseether

5) Trajectory Evaluationextraction of the quantitative de-!S N0 solution for the obstacle avoidance technique. This is
scriptors of the trajectory (e.g. optimality, safety, etc) Performed through a complete planner.

Fig. 1. This figure shows the modules of the evaluation fraamkw

) : . B. nario Char rization
The final step is to describe the performance of the method Scenario Characterizatio

as a function of this quantitative parameters. Notice that t This module extracts a quantitative evaluation of some
evaluation measures how a given technique behaves for diescriptors of the environment. The aim of the scenario
ferent environmental conditions. The environmental ctodg ~Characterization is to extract numerical values that regre
are expressed in terms of density, Conﬁnement, C|earn$3, gualitative scenario features with a quantitative infdngl-

The behavior is described in terms of the success ratiotysaféd€s. The descriptors must be both related to the common
and optimality, etc.

The validation is performed exploring as much as possi
ble the variability of the scenario. This forces the prombse
validation methodology to work only on simulation, since th
cost of evaluation on real environments is prohibitive. it
that this process extrapolates for different methods gian
adequate framework for comparison.

We next describe the modules in detail.

A. Scenario generator

The scenario generator module creates a random obsta

distribution and goal and initial locations. These entitare
represented geometrically as follows. Fig. 2. Two examples of random scenarios with six and seveteoles.




intuition of the qualitative variables that they define, ahéir ¢) Confinement:The notion of confinement is related
values must be correlated with the performance of the olestawith the lack of space to manoeuvre (the distance between
avoidance algorithms. Table | describe the parameterstand obstacles). This notion depends on the robot size reason why

human intuition qualitative descriptors. we useC'. A measure is:
n . -
Human Descriptor| Mathematical Parameter (€)= 1— % Z dspn (Ci *QNN(CE‘)) n>1 (3
Density Density =1
cl Di [ . . .
Cc‘f,f}{,’}gfem N§§;§°ﬁeighbo, Metric whered,n is the Euclidean distance between twq spheres
Uniformity Discrepancy and NN(C;) is the closest sphere t0; (nearest neighbor-
Clutterness Aleatory hood). Notice that the confinementsse [0,1). High values
Structure Convex Hull . . .
Others... of confinement explain obstacles which are very close among
them, while low values are due to far obstacles.
TABLE | d) Uniformity: The uniformity in the obstacle distribu-
DESCRIPTORS OF THE SCENARIO tion refers to the match with a uniformly distributed set of

obstacles. In fact this is measured by the discrepancy. éet b

) ) C, the set of balls with radiugs in the unit circleC,. The
We define these descriptors next. Some of them have b%%brepancy is:

already developed while others need a deeper study.

a) Density: The density measures the amount of space ACNC,)  AC)
occupied by obstacles. This is an intrinsic and global priype n(€) = sup { G A ! } 4)
of the environment, independent of the robot shape and r€[0.1] ©) T

size. Let beC, the unitary sphere and lets assume a given

distribution of sphere€ = {C;}. The density of occupied Notice that the discrepanay € [0, 1]. When there are no

obstacles bottd(C) = 0 and A(€ N C,) = 0 (discrepancy

space Is. is not defined). Low values of discrepancy represent well
AU, C)) distributed obstacle points. The discrepancy tends to Gne a
p(€) = —— (1) the obstacles are closed and not equally distributed &

in the space. Table Il depicts some examples.
e) Cluttering: The cluttering refers to the order of the

h ds i lized. O hand. wier- (0} th distribution. The disorder on a obstacle distribution isted

ot er words 's normﬁmg - On _onel an ,WO ﬁ:h{ }r: eh with the randomness. We plan to use information theory to
area Is zero, hence t.e ensity is also zero. n.t e other hgdasure the randomness of sequences by using the tests of
if €= {C\y} the density of obstacles is one, which makes tI-:‘\EI

\ letel ied and | ¢ P artin-Lof [?] or Kolmogorov complexity of constructive
scenario comp etely occupied and leaves no 1ree Spaceeor o 5. rement. Other works use the entropy as a descrifjtor [
robot motion. Table Il depicts some examples.

to measure the disorder. However, from our point of view

b) Clearness:The clearness is _relgteq to the_ maXiml,”Bntropy is a local descriptor that needs to approximate a
open space among the obstacle distribution. This descn;:g‘.|

where(; is thei-th circle, and function4(.) computes the
area of a set of circles. Notice that the density is [0, 1]. In

: , obability distribution, which seems difficult to obtairofm
depends on the size of the robot. One way of measuring o obstacle distribution.
areas in distributions is the dispersion [6], since it measu

. T f) Structure: The structure of the scenario measures the
the biggest obstac!e free baII_ among the d'St”bUt_'on' reot the tendency of the scenario to approximate a polygonalidwvor!
words, the value is the radius of the largest circle on tk{

~ . . Mfhan-made scenarios). The measure is, for all clusters, the
free space. Let b€ = C& C'n, whereg is the Minkovski normalized difference between a cluster of obstaclégset

sum of sets and’x is the sphere with radiug. This set is o connected spheres) and its convex hull. The measure of the
the obstacle distribution enlarged the radius of the robbe structure is

dispersion ofC is:

N
1 A .
: % C)=1-— A(C7) — A(CY 5
5(€) = sup { min{|lp— C;ll}} 7 €)= 1= 55D (A7) ~ A7) )
peCly C;ec 7j=1
where ||.|| is the Euclidean distance from poiptto the whereC the convex-hull o0/ and N the number of clusters.

sphereC; (C; = C; & Cx). Notice that the dispersion Notice thaty € [0,1]. This measure gives an idea of the
d € [0,1]. When there are no obstacles the value of the distructure underlying the cluster. For example the valuenis o
persion is one. However, as the number of obstacles and tHeira perfect line and zero for sparse non intersecting cleta
radius increase the dispersion drops to zero. This chaistate We have notice that there are still some issues to fix with this
captures the notion of clearness (open space) since its@piee measurement since it fails to represent well aligned nomeon
the maximum allowable distance for the robot to maneuvgmolygons. We are trying to correct it by sub-clustering each
Table Il depicts some examples. cluster with alignment criteria.
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Density

Clearness
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Cluttering

Structure

Environment

Density

Clearness

Confinement

Uniformity

Cluttering

Structure ? ? ?

TABLE I
CHARACTERIZATION OF SCENARIOS THE SYMBOL ? MEANS THAT THE VALUE HAS NOT BEEN COMPUTED YET



C. Robot Simulator q

This module emulates the sensory and motion process
the motion:

1) Sensory process: given the obstacle distribution
the current vehicle location, this module computes
generalized visibility polygoms generic range senso
measurement.

2) Motion process: given the motion computed by
obstacle avoidance method, this module computes
next robot state in a given period of tinde.

(b)

D. Trajectory Evaluation

This module extracts quantitative descriptors of quality
the trajectory. The aim of this characterisation is to et
numerical values that represent a qualitative measure
of the trajectory. We denote the trajectory generated by
method:

X[Ovl] = Cu*
¢ = x(¢)=4q

(6)

wherex (0) = ginit andx (1) = ggoar. We describe next some (c) (d)
of the parameters. Fig. 3. This figures display the optimality function and therahoi function,
a) SuccessThis is the most important parameter sincend real trajectory generated with a PFM method on scenadm fiwo
it describes the success of the task. Notice that the anilisiSce"a"°s
avoidance techniques are local techniques, and thus they
could get trapped in local minima (not reaching the goapor
or even to have collisions. In both casegX) # dgoal OF
3¢ such thaty(¢) € C) the result isfailure. Then the success
is 7(C, Qinit, dgoa1) = [{0},{1}]. If the obstacle avoidance
mechanism fails) = 0 otherwisen = 1. From now on the
rest of the parameters are defined whesa 1.

) that takes values in all the space. The function is the
Iength of the path with minimum length that joinsand the
Voronoi diagram (without lying inC).

Then there are some concepts that give the “difference”
with the safest path (the path on the Voronoi diagram) like th
difference oflengthsof the trajectories, or how the trajectory

b) Optimality: This parameters measures how the traje8~ﬁer from the safest by inteqratin We plan to
tory matches the optimal path. In order to compute the opti #lplesment both Zarasmetyerls gratingor (x(¢))- P

trajectoryx.op: we have adapted the visibility graph technique Figure 3b,d show two different scenarios, the trajectory

][7] t? Wc()jrkf_m dSphe”Ct?]I worlds  Let Eeﬂ? tant optlrlg)allty computed by an obstacle avoidance method (potential field
unction detined over the space, suc at at eqckb(q) method) and an approximation of th&r function.

is the length of the path with minimum length that joigs d) Other Characteristics: Other parameters could be

and the optimal trajectory (W'tho‘jt lying in (3) Then there defined to characterize the trajectories, but they need to be
are some concepts that give the “difference” with the optima
Mmatched against a ground truth. In general a good avoidance
path like the difference ofengthsof the trajectories, or how
) . . . . algorithm must display a tradeoff over the above mentioned
the trajectory differs from the optimal by integratigx(¢)). I . .
; characteristics, since for instance safety and path leagth
We plan to implement both parameters.
timality are usually a tradeoff. The characteristics haeerb
Figure 3a,c show two different scenarios and the tramztorl
tricted to the cinematic domain, other parameters iike t
computed by an obstacle avoidance method (potential f|e
optimality of a path are clearly dependent on the dynamics of

method) and the optimal trajectory to the problem. the robot, and cannot be directly expressed under the gresen
c) Safety: The safety measures how close the trajecto é'ssumptl ons

matches the safest trajectory. Notice that usually sagefdri . . . .
While the scenarios considered here are static, another
different from optimal (an optimal trajectory usually geaz.
interesting characteristic to take into account for dyrami

g;)emo?J?:itﬂsséa}lgs“ti?a!zcttr;? uvr;esgfﬁjt ltjrtijfr?(teo\%)rb::)i(:ig err environments is the speed of the response to an unexpected
b ! Y, b 9 change. The latency of the algorithm is indeed an important

of the obstacle distribution. Then, we define a Voronoi fiorct . : . . o
issue in dynamic environments, which is related to the arhoun

1The path is a sequence of straight lines and circular artsadf straight of hlS'[OI’y m_formatlor_l 'nterr_‘a”y stored on the algomhm'
lines purely reactive algorithm will show a better latency equal t



Density ) VS | [0,0.25) | [0.25,0.5) | [0.5,0.75) | [0.75,1] Density VS [0,0.25) | [0.25,0.5) | [0.5,0.75) | [0.75,1]
Success Optimality Param.
Success 95% 30% 68% 41% [0,0.25) 65% 50% 40% 25%
Failure 5% 20% 32% 59% [0.25,0.5) 20% 25% 10% 10%
[0.5,75) 10% 5% 5% 5%
TABLE IlI [0.75,1] 5% 10% 3% 1%
METHOD 1: DENSITY VERSUSSUCCESSRATE.
TABLE V
METHOD 1: DENSITY VERSUSOPTIMALITY.
Density ) VS | [0,0.25) | [0.25,0.5) | [0.5,0.75) | [0.75,1]
Success
Success 95% 95% 60% 20%
Failure 5% 5% 40% 80% is a matter of understanding the working conditions of the
TABLE IV application, but not the technical details of each techaiqu

The project that includes this work is currently starting,
hence only first steps results are presented. Even the bveral
evaluation methodology has been depicted, only parts of the
scenario characterization has been actually obtained. ré/e a

the computation time. This delay in the response is alstagla2Vare that more characteristics must be defined as this is an
with a parameter that can be measured on the framewdfkually ongoing project. However the defined characiesist
even it has not been yet mentioned, the execution time of thgeM 0 Properly catch intuitive concepts about envirorigmen

METHOD 2: DENSITY VERSUSSUCCESSRATE.

avoidance cycle. which is a key element of obstacle avoidance evaluation.

E. Final evaluation "
The above mentioned process is repeated for a significant

number of scenarios (obstacle distributions, initial amdlg 2
locations) for each of the methods; to evaluate. The final
results should express the working conditions of each naetho
For each pair of descriptors (scenario / trajectory) thechen [
mark procedure produces a table. 4]
We next describe some examples based on imaginary data
Table Il and Table IV represent the scenario density vettsels 5]
success ratio for methods; and X,. These tables describe
how the algorithms behave for a different range of scenario

density (as usual, the robustness of the method decreaseflal

the density increases). This is very useful for comparison
and selection. For example, if in the application the randgd
of density is low, Method® is more robust than Methodl.
However, if the density is larger, the Methadbecome more g
robust. If the density of the scenario can be a priori esthat
the selection is clear from these tables (even for non exper

Table V represents the normalized optimality parameter
for different density ranges. This table describes how the
optimality in length of the paths generated change as aifumct
of the density of the scenario.

Notice that from this evaluation one can extract conclusion
about a given method and compare the performance of the
methods among them.

IV. CONCLUSIONS AND FURTHER WORK

This paper presents the first steps towards the evaluation
of obstacle avoidance algorithms for mobile robots. We un-
derstand that the benefits of this evaluation are twofold. On
the one hand, it is useful for researchers and developers to
have rigorous evaluation tools as a objective feedbackedf th
designs. On the other hand, for non technical experts, the
decision of what method is well suited for a given applicatio
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