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Dpto. de Inforḿatica e Ing. de Sistemas

Universidad de Zaragoza, Spain
irano@unizar.es

J. Minguez
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Abstract— This paper presents the first steps towards the
evaluation of obstacle avoidance techniques for mobile robots.
The idea is to create a methodology to evaluate the performance
of the methods given a wide range of work conditions. The work
conditions usually include scenarios with very different nature
(dense, complex, cluttered, etc). The performance is measured in
terms of robotic parameters (robustness, optimality, safety, etc).
We describe in this paper the overall methodology that we intend
to apply and the first steps in the scenario characterization.

I. I NTRODUCTION

The rationale of the workshop explains very well the
objective of this research:

Current practice of publishing research results in
robotics makes it extremely difficult not only to
compare results of different approaches, but also to
asses the quality of the research presented by the
authors. Though for pure theoretical articles this may
not be the case, typically when researchers claim
that their particular algorithm or system is capable
of achieving some performance, those claims are
intrinsically unverifiable, either because it is their
unique system or just because a lack of experimental
details, including working hypothesis. (...).

It is clear that to overcome this issue, we have to find
ways or processes to automatically evaluate the research with
methodologies accepted by the community. Research on this
topic forks into a top-down or bottom-upperspectives. On
the one hand, the top-down manner consists in evaluating the
complete robot performance when developing a given task (see
[?], [?] and the majority of the speakers in theFirst European
Workshop on Benchmarks in Robotics Researchin 2006 Euron
meeting). The advantage of this strategy is that it results
straightforward to asses whether the robot has accomplished
a given task. However, the disadvantage is that this requires
a strong experimental validation with the real robots. Thus,
rigorous protocols of experimentation have to be developedto
deal with the repeatability problem of real experiments andto
guarantee the checking of all possible situations.

On the other hand, the bottom-up manner deals with the
evaluation of each single subtask individually. The aim is
to explain the robot performance developing a task as the
synergy of each particular performance in each of the involved
subtasks. This paper follows this direction and focusses on

the automatic evaluation of collision avoidance, which is a
particular subtask involved in many applications of mobile
robots.

This work is a part of a Spanish project. The objective is
the evaluation of robots for mobility aid (like electric walkers
or robotic wheelchairs). There are two main research axes:(i)
the evaluation of robot motion from a robotic perspective and
(ii) the evaluation of robot motion from a human-centered
point of view. This paper describe the first steps towards
the automatic evaluation of motion in the first axis, and the
complete overview of the methodology that we will try to use.

II. ROBOT OBSTACLE AVOIDANCE AND EVALUATION

PERSPECTIVE

This work focusses in one of the fundamental modules
of sensor-based motion schemes: reactive obstacle avoidance.
This module is the responsible of moving a vehicle to a
given goal location while avoiding collisions with the scenario.
Usually, it is the last responsible of the motion.

From a robotic perspective, there are many techniques
that have been designed to address autonomous collision-free
motion (sensor-based motion with obstacle avoidance). Forex-
ample [3], [1], [2], [9], [5] among many others. It is clear that
under the same conditions each technique generates a different
motion. Nevertheless, questions like: which is the most robust
one? or which of them behaves better in a determined context
or condition? cannot be answered neither from a scientific
nor technological point of view. In other words, once we
face a mobile robotics application, the selection of a motion
technique among all the existing ones is a matter of specialists
and not accessible to everybody. This is because there are
not objective comparisons of methods neither quantitative(in
terms robustness or action parameters of such as the time or
the total distance traveled) nor qualitative (in terms of security
of the motion). At present, there is only one experimental
comparison [4]. Nevertheless, this comparison is very old,and
thus, it does not include the advances in this subject in the last
15 years. Furthermore it is based on the observation and does
not present a rigorous and objective methodology to address
this objective.



III. OVERVIEW OF THE EVALUATION FRAMEWORK

An obstacle avoidance technique is a mechanism that given
anobstacle configurationand ainitial andgoal configurations
computes the best motion to drive the vehicle to the goal while
avoiding collisions with the obstacles. This process is repeated
until the goal is reached. The result is atrajectory that joins
the initial and the goal but generated online (since they work in
an iterative process). Thus, theinputs of the problem are:(i)
obstacle distribution and(ii) initial and goal configurations.
The output is successif a collision free trajectory that joins
the initial and goal has been computed.Failure: collision or the
goal is not reached (usually referred as local minima). Thus, an
evaluation of an obstacle avoidance mechanism should cover
all the possible inputs (obstacles and initial and goal locations)
and must be done on the basis of the quality of the output
(collision free trajectory).

The methodology that we propose is to build a system able
to generate random obstacle, initial and goal distributions and
to evaluate the output of the method (trajectory) as a function
of quantitative descriptors of the inputs and the outputs. The
framework has the following modules (Figure 1):

1) Scenario generation: random generator of obstacle dis-
tributions and initial and goal locations.

2) Scenario characterization: extraction of the quantitative
descriptors of the environment (e.g. density, clearness,
etc).

3) Collision Avoidance: this is the technique to evaluate
and is a “black-box” in the framework.

4) Robot Simulator: simulates the next state of the robot
given the motion computed by the collision avoidance
technique. To simplify the problem, in this work we
assume that the robot is circular (with radiusR) and
holonomic without dynamic constraints. The sensor is
assumed to measure range.

5) Trajectory Evaluation: extraction of the quantitative de-
scriptors of the trajectory (e.g. optimality, safety, etc).

The final step is to describe the performance of the method
as a function of this quantitative parameters. Notice that the
evaluation measures how a given technique behaves for dif-
ferent environmental conditions. The environmental conditions
are expressed in terms of density, confinement, clearness, etc.
The behavior is described in terms of the success ratio, safety
and optimality, etc.

The validation is performed exploring as much as possi-
ble the variability of the scenario. This forces the proposed
validation methodology to work only on simulation, since the
cost of evaluation on real environments is prohibitive. Notice
that this process extrapolates for different methods giving an
adequate framework for comparison.

We next describe the modules in detail.

A. Scenario generator

The scenario generator module creates a random obstacle
distribution and goal and initial locations. These entities are
represented geometrically as follows.
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Fig. 1. This figure shows the modules of the evaluation framework

The scenario is a unitary ball with Euclidean metric. The
obstacles are spheres within the unit ball. This is because
spheres are a base ofR2 and many shapes can be constructed
with spheres (e.g. general polygons can be represented by
circles [8]). In other words, the selection of circular obstacles
is not a limitation. The number of obstacles is random.
Furthermore, for each obstacle the location of the center and
the radius are also random. Figure 2 shows two examples.

The initial and goal locations are also randomly generated
within the unit ball. If any of the locations is within an obsta-
cle, this location is recomputed. Furthermore, for any obstacle
distribution and initial and goal locations, it is important to
check the existence of a collision free path. Otherwise there
is no solution for the obstacle avoidance technique. This is
performed through a complete planner.

B. Scenario Characterization

This module extracts a quantitative evaluation of some
descriptors of the environment. The aim of the scenario
characterization is to extract numerical values that represent
qualitative scenario features with a quantitative intrinsic val-
ues. The descriptors must be both related to the common

Fig. 2. Two examples of random scenarios with six and seven obstacles.



intuition of the qualitative variables that they define, andtheir
values must be correlated with the performance of the obstacle
avoidance algorithms. Table I describe the parameters and the
human intuition qualitative descriptors.

Human Descriptor Mathematical Parameter

Density Density
Clearness Dispersion
Confinement Nearest Neighbor Metric
Uniformity Discrepancy
Clutterness Aleatory
Structure Convex Hull
Others... ...

TABLE I

DESCRIPTORS OF THE SCENARIO.

We define these descriptors next. Some of them have been
already developed while others need a deeper study.

a) Density: The density measures the amount of space
occupied by obstacles. This is an intrinsic and global property
of the environment, independent of the robot shape and
size. Let beCu the unitary sphere and lets assume a given
distribution of spheresC = {Ci}. The density of occupied
space is:

ρ(C) =
A(

⋃

i Ci)

π
(1)

whereCi is the i-th circle, and functionA(.) computes the
area of a set of circles. Notice that the density isρ ∈ [0, 1]. In
other words is normalized. On one hand, whenC = {∅} the
area is zero, hence the density is also zero. On the other hand,
if C = {Cu} the density of obstacles is one, which makes the
scenario completely occupied and leaves no free space for the
robot motion. Table II depicts some examples.

b) Clearness:The clearness is related to the maximum
open space among the obstacle distribution. This descriptor
depends on the size of the robot. One way of measuring open
areas in distributions is the dispersion [6], since it measures
the biggest obstacle free ball among the distribution. In other
words, the value is the radius of the largest circle on the
free space. Let bẽC = C ⊕ CR

2

, where⊕ is the Minkovski
sum of sets andCR

2

is the sphere with radiusR2 . This set is
the obstacle distribution enlarged the radius of the robot.The
dispersion ofC is:

δ(C) = sup
p∈Cu

{

min
Ci∈C

{||p − C̃i||}
}

(2)

where ||.|| is the Euclidean distance from pointp to the
sphere C̃i (C̃i = Ci ⊕ CR

2

). Notice that the dispersion
δ ∈ [0, 1]. When there are no obstacles the value of the dis-
persion is one. However, as the number of obstacles and their
radius increase the dispersion drops to zero. This characteristic
captures the notion of clearness (open space) since it represents
the maximum allowable distance for the robot to maneuver.
Table II depicts some examples.

c) Confinement:The notion of confinement is related
with the lack of space to manoeuvre (the distance between
obstacles). This notion depends on the robot size reason why
we useC̃. A measure is:

κ(C) = 1 −
1

n

n
∑

i=1

dsph(C̃i − NN(C̃i))

2
, n > 1 (3)

wheredsph is the Euclidean distance between two spheres
and NN(Ci) is the closest sphere toCi (nearest neighbor-
hood). Notice that the confinement isκ ∈ [0, 1). High values
of confinement explain obstacles which are very close among
them, while low values are due to far obstacles.

d) Uniformity: The uniformity in the obstacle distribu-
tion refers to the match with a uniformly distributed set of
obstacles. In fact this is measured by the discrepancy. Let be
Cr the set of balls with radiusr in the unit circleCu. The
discrepancy is:

η(C) = sup
r∈[0,1]

{
∣

∣

∣

∣

∣

A(C ∩ Cr)

A(C)
−

A(Cr)

π

∣

∣

∣

∣

∣

}

(4)

Notice that the discrepancyη ∈ [0, 1]. When there are no
obstacles bothA(C) = 0 and A(C ∩ Cr) = 0 (discrepancy
is not defined). Low values of discrepancy represent well
distributed obstacle points. The discrepancy tends to one as
the obstacles are closed and not equally distributed distributed
in the space. Table II depicts some examples.

e) Cluttering: The cluttering refers to the order of the
distribution. The disorder on a obstacle distribution is related
with the randomness. We plan to use information theory to
measure the randomness of sequences by using the tests of
Martin-Lof [?] or Kolmogorov complexity of constructive
measurement. Other works use the entropy as a descriptor [?]
to measure the disorder. However, from our point of view
entropy is a local descriptor that needs to approximate a
probability distribution, which seems difficult to obtain from
an obstacle distribution.

f) Structure: The structure of the scenario measures the
the tendency of the scenario to approximate a polygonal world
(man-made scenarios). The measure is, for all clusters, the
normalized difference between a cluster of obstaclesCj (set
of connected spheres) and its convex hull. The measure of the
structure is

γ(C) = 1 −
1

N

N
∑

j=1

(A(Ĉj) − A(Cj)) (5)

whereĈj the convex-hull ofCj andN the number of clusters.
Notice that γ ∈ [0, 1]. This measure gives an idea of the
structure underlying the cluster. For example the value is one
for a perfect line and zero for sparse non intersecting obstacles.
We have notice that there are still some issues to fix with this
measurement since it fails to represent well aligned non convex
polygons. We are trying to correct it by sub-clustering each
cluster with alignment criteria.



Environment

Density 0.0287 0.0287 0.0252
Clearness 0.840 0.381 0.307

Confinement ? ? ?
Uniformity 0.138 0.447 0.184
Cluttering ? ? ?
Structure ? ? ?

Environment

Density 0.086 0.107 0.166
Clearness 0.840 0.377 0.307

Confinement ? ? ?
Uniformity 0.137 0.139 0.244
Cluttering ? ? ?
Structure ? ? ?

Environment

Density 0.020 0.020 0.020
Clearness 0.757 0.552 0.431

Confinement ? ? ?
Uniformity 0.390 0.390 0.425
Cluttering ? ? ?
Structure ? ? ?

Environment

Density 0.251 0.189 0.210
Clearness 0.374 0.437 0.400

Confinement ? ? ?
Uniformity 0.461 0.379 0.444
Cluttering ? ? ?
Structure ? ? ?

TABLE II

CHARACTERIZATION OF SCENARIOS. THE SYMBOL ? MEANS THAT THE VALUE HAS NOT BEEN COMPUTED YET.



C. Robot Simulator

This module emulates the sensory and motion processes of
the motion:

1) Sensory process: given the obstacle distribution and
the current vehicle location, this module computes the
generalized visibility polygonas generic range sensory
measurement.

2) Motion process: given the motion computed by the
obstacle avoidance method, this module computes the
next robot state in a given period of timeδt.

D. Trajectory Evaluation

This module extracts quantitative descriptors of quality of
the trajectory. The aim of this characterisation is to extract
numerical values that represent a qualitative measurement
of the trajectory. We denote the trajectory generated by the
method:

χ : [0, 1] 7→ Cu − C

φ 7→ χ(φ) = q

(6)

whereχ(0) = qinit andχ(1) = qgoal. We describe next some
of the parameters.

a) Success:This is the most important parameter since
it describes the success of the task. Notice that the collision
avoidance techniques are local techniques, and thus they
could get trapped in local minima (not reaching the goal)
or even to have collisions. In both cases (χ(1) 6= qgoal or
∃φ such thatχ(φ) ∈ C) the result isfailure. Then the success
is η(C,qinit,qgoal) = [{0}, {1}]. If the obstacle avoidance
mechanism failsη = 0 otherwiseη = 1. From now on the
rest of the parameters are defined whenη = 1.

b) Optimality: This parameters measures how the trajec-
tory matches the optimal path. In order to compute the optimal
trajectoryχopt we have adapted the visibility graph technique
[7] to work in spherical worlds1. Let be Φ an optimality
function defined over the space, such that at eachq, Φ(q)
is the length of the path with minimum length that joinsq

and the optimal trajectoryχ (without lying in C). Then there
are some concepts that give the “difference” with the optimal
path like the difference oflengthsof the trajectories, or how
the trajectory differs from the optimal by integratingΦ(χ(φ)).
We plan to implement both parameters.

Figure 3a,c show two different scenarios and the trajectories
computed by an obstacle avoidance method (potential field
method) and the optimal trajectory to the problem.

c) Safety:The safety measures how close the trajectory
matches the safest trajectory. Notice that usually safest is far
different from optimal (an optimal trajectory usually graze
the obstacles, which is the un-safest trajectory). In orderto
compute the safest trajectory, we compute the Voronoi diagram
of the obstacle distribution. Then, we define a Voronoi function

1The path is a sequence of straight lines and circular arcs instead of straight
lines

(a) (b)

(c) (d)

Fig. 3. This figures display the optimality function and the Voronoi function,
and real trajectory generated with a PFM method on scenario from two
scenarios.

V or(q) that takes values in all the space. The function is the
length of the path with minimum length that joinsq and the
Voronoi diagram (without lying inC).

Then there are some concepts that give the “difference”
with the safest path (the path on the Voronoi diagram) like the
difference oflengthsof the trajectories, or how the trajectory
differs from the safest by integratingV or(χ(φ)). We plan to
implement both parameters.

Figure 3b,d show two different scenarios, the trajectory
computed by an obstacle avoidance method (potential field
method) and an approximation of theV or function.

d) Other Characteristics: Other parameters could be
defined to characterize the trajectories, but they need to be
matched against a ground truth. In general a good avoidance
algorithm must display a tradeoff over the above mentioned
characteristics, since for instance safety and path lengthop-
timality are usually a tradeoff. The characteristics have been
restricted to the cinematic domain, other parameters like time
optimality of a path are clearly dependent on the dynamics of
the robot, and cannot be directly expressed under the present
assumptions.

While the scenarios considered here are static, another
interesting characteristic to take into account for dynamic
environments is the speed of the response to an unexpected
change. The latency of the algorithm is indeed an important
issue in dynamic environments, which is related to the amount
of history information internally stored on the algorithm.A
purely reactive algorithm will show a better latency equal to



Density (ρ) VS [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]
Success

Success 95% 80% 68% 41%
Failure 5% 20% 32% 59%

TABLE III

METHOD 1: DENSITY VERSUSSUCCESSRATE.

Density (ρ) VS [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]
Success

Success 95% 95% 60% 20%
Failure 5% 5% 40% 80%

TABLE IV

METHOD 2: DENSITY VERSUSSUCCESSRATE.

the computation time. This delay in the response is also related
with a parameter that can be measured on the framework,
even it has not been yet mentioned, the execution time of the
avoidance cycle.

E. Final evaluation

The above mentioned process is repeated for a significant
number of scenarios (obstacle distributions, initial and goal
locations) for each of the methodsXi to evaluate. The final
results should express the working conditions of each method.
For each pair of descriptors (scenario / trajectory) the bench-
mark procedure produces a table.

We next describe some examples based on imaginary data.
Table III and Table IV represent the scenario density versusthe
success ratio for methodsX1 and X2. These tables describe
how the algorithms behave for a different range of scenario
density (as usual, the robustness of the method decreases as
the density increases). This is very useful for comparison
and selection. For example, if in the application the range
of density is low, Method2 is more robust than Method1.
However, if the density is larger, the Method1 become more
robust. If the density of the scenario can be a priori estimated,
the selection is clear from these tables (even for non experts).

Table V represents the normalized optimality parameter
for different density ranges. This table describes how the
optimality in length of the paths generated change as a function
of the density of the scenario.

Notice that from this evaluation one can extract conclusions
about a given method and compare the performance of the
methods among them.

IV. CONCLUSIONS AND FURTHER WORK

This paper presents the first steps towards the evaluation
of obstacle avoidance algorithms for mobile robots. We un-
derstand that the benefits of this evaluation are twofold. On
the one hand, it is useful for researchers and developers to
have rigorous evaluation tools as a objective feedback of their
designs. On the other hand, for non technical experts, the
decision of what method is well suited for a given application

Density VS [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]
Optimality Param.

[0, 0.25) 65% 50% 40% 25%
[0.25, 0.5) 20% 25% 10% 10%
[0.5, 75) 10% 15% 5% 5%
[0.75, 1] 5% 10% 3% 1%

TABLE V

METHOD 1: DENSITY VERSUSOPTIMALITY .

is a matter of understanding the working conditions of the
application, but not the technical details of each technique.

The project that includes this work is currently starting,
hence only first steps results are presented. Even the overall
evaluation methodology has been depicted, only parts of the
scenario characterization has been actually obtained. We are
aware that more characteristics must be defined as this is an
actually ongoing project. However the defined characteristics
seem to properly catch intuitive concepts about environments,
which is a key element of obstacle avoidance evaluation.
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