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Abstract. Brain-Machine interfaces and neural prosthesighese&lectrical activity generated by cortical
neurons in the brain for controlling external degicuch as robotic arms. While many research edbas
on the invasive recording of the brain electricahaty, very few studies have addressed the pdigib

of generating the control from non-invasive measunets. In this work we study the 3D decoding of
the fingertip motion based on non-invasive EEG aligmuring self-selected and self-initiated reaghin
movement task. Several strategies of decodingtatkesl, temporal or time-frequency information of
the EEG signals, position or velocity data of timgértip motion and the partial least squares Egoa
and support vector regression algorithms. The mieéry results reveal positive correlation between
the observed and the reconstructed velocitieseofitigertip.
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1. Introduction

Previous studies have demonstrated that electrostiagbrain signals contain sufficient and
reliable information that encodes motor informatetsout arms dynamics such as direction, position
and velocity. These results have revealed a gretnpal of use for brain-machine interfaces and
neural prosthesis. On the one hand, most of thesksvare based on invasive techniques to record the
brain electrical activity [Andersena et al., 2008 the other hand, the decoding of motor infororati
using non-invasive electroencephalographic sigfREG) is mainly based on the classification of
different imagined or executed discrete movemettepss. However, a more natural control of a non-
invasive neural prosthesis requires the full cardirs decoding of the movement trajectories. Regentl
some studies have revealed the feasibility of retranting 3D trajectories of the hand from EEG
signals [Bradberry et al., 2010] and the relatiogmétetween hand speed and EEG activity [Yuan et al.
2010].

This work proposes an EEG-based trajectory decogiémgdigm for self-selected and self-initiated
reaching movements of the hand. During the experiatien protocol the EEG activity and the arms
joints and fingertip motion data were simultanepustcorded while the participants performed
movements of the hand form an initial point to sal/éixed and free target points. The decoding rhode
was trained with temporal or time-frequency infotima of the EEG activity and with position and
velocity information of the fingertip. The prelingry results indicate that the decoding model is &bl
reconstruct, not only movements of the hand towgrdsdefined fixed targets points, but also
movements of the hand towards self-chosen freetsmpints.

2. Materialsand Methods

2.1. Experimental protocol

Seven right-handed male healthy subjects partietpdtiring a reaching task in which the fingertip
is moved from an initial point to several targeint® within the 3D field vision. The subjects were
instructed to perform random natural movement$iefitand from the start point @ eight fixed target
points (fixed target task) and (ii) any self-chosen 3D point in the continuous spacthefnear field
vision (free target task). The targets were self-selected and the movemeas self-initiated. Subjects
were asked to maintain the gaze at a fixed pomtat blink and do not move the eyes and the body
during the mental target selection and movementugian.



Fig. 1 shows a snapshot of the experimental setdmaime diagram of the realization of one trial.
~200 trials per target were acquired in the fixadyét task while ~80 trials were recorded in tlee fr
target task.

2.2. Datarecording and preprocessing

EEG signals from 28 electrodes and vertical andzbotal EOG were recorded at a sampling
frequency of 256Hz and band-pass filtered from 6ablz. A 3D VICON motion recording system was
used to simultaneously record the position of Visnarkers placed in the head, shoulder, arms joints
and in the right fingertip at a sampling frequenéy.00Hz (see Fig. 1a). Push bottoms in the strttp
and in the eight fixed target points serve as ex@rkers for both recording systems.

In the preprocessing, the EEG data was re-sampl&@édz, noisy trials were discharged by visual
inspection and an ICA-based EEG artifact rejectias performed. Position data was referenced to the
head center and the velocity was then calculatetuyerical integration.
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Figurel. (a) Snhapshot of the experimental setup. (b) Time sequence of the task execution.

2.3. Decoding model

In order to reconstruct the motion of the fingeftipm the EEG information, a decoding model has
to be trained, where the predictor is the EEG mfmion and the prediction is the motion information
of the fingertip.

Two different types of characteristics of the EE€revstudied as predictor data, first, the temporal
information of the EEG signals (following ), andcead, the time-frequency representations of the EEG
signals based on wavelet transform (following Ckaal., 2010]). Two types of prediction data were
also studied, first, the position, and secondy#iecity of the fingertip. Finally, the partial Isiasquares
regression (PLS) [Wold et al., 1984] and suppodtaeregression (SVR) [Smola and Bernhard, 2003]
algorithms were used as decoding techniques.

Several schemes of decoding model have been stydigutediction data is the position of the
fingertip and the predictor data is either the terapinformation or the time-frequency informatiof
the EEG signalg(ji) prediction data is the velocity of the fingertipdathe predictor data is either the
temporal information or the time-frequency inforinatof the EEG signals, ar{di) when the decoding
technique is either the PLS or the SVR algorithmateNthat, an individual decoding model is
constructed for each of the three variables ofitigertip position or velocity.

This work focuses in two schemes of decoding matlhel, prediction data is the velocity of the
fingertip, the decoding technique is PLS algorittunal the predictor data is the temporal information
the time-frequency information of the EEG.

3. Results

For the two selected schemes of decoding modd);fald cross validation process was performed
with data from the fixed targets task. The perfaroegawas evaluated in terms of the correlation
coefficient between the predicted and observedcittds. The mean and standard deviation of the
correlation coefficient was computed across thédatibn folds. Fig. 2 shows the decoding accuracy
for both schemes. These results reveal two chairstits, the positive correlation between the obsér
and the reconstructed velocities and the high acguin the decoding of some velocities trials
(revealed by the large values in the standard tenia

In order to study the proportion of trials reconsted with high or low decoding accuracy, the
percentage of trials versus different ranges ofedation coefficient was computed in both decoding
models and Fig. 3 shows these results. For the afadecoding model based on temporal information



of the EEG, the mayor percentage of trials is retosted with accuracy below 0.2; on the contrary,

for the case of decoding model based on time-fregguenformation of the EEG, the mayor percentage

of trials is reconstructed with accuracy betweeh #dhd 0.4. Note that in both cases, some trials are
reconstructed with high accuracy.
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Figure 2. Decoding accuracy of the fingertip vel ocity components from temporal characteristics of the EEG (red
bars) and time-frequency representations of the EEG (green bars). Mean and standard deviation
results of the ten-fold cross validation process with data from the fixed targets task.
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Figure 3. Percentage of trias versus correlation coeficient for the case of (a) decoding model based on temporal
information of the EEG and (b) decoding model based on time-frequency information of the EEG.
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In addition, the importance of the sensors in theoding process was measured in terms of the
magnitude of the regression coefficients. This ysialshowed that sensors placed over the left motor
cortex (contralateral to the moving hand) havegiteatest contribution in the decoding process.

In order to study the generalization capabilitye thecoding model was trained with the entire
information of the temporal EEG and velocity da¢garded from fixed targets task, and then it was
validated with the data recorded from free tardatk. Results indicate that decoding accuracy in a
continuous space when the training is performeal diiscrete space is lower. Further studies habe to
done to better generalize velocity profiles in atewous space.
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