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Abstract— In the last years, there has been an increasing
interest in using Brain Computer Interfaces (BCI) within motor
rehabilitation therapies that use robotic devices or functional
electro stimulation to help or guide the efforts of the patient to
move her body. A crucial step of these therapies is to provide
help to the user just when she is actually trying to accomplish a
certain motion or task One of the most promising applications
of BCI systems in this context is its ability to measure the
user intentions and actions to trigger the rehabilitation devices
accordingly. This paper studies the single-trial classification
based on EEG measurements of three basic states during the
execution of self-initiated motion: rest, motion preparation (or
anticipation) and motion. We conducted an experiment where
the participants had to reach at their will eight different
locations from a fixed starting position. Results for seven healthy
subjects show that it is possible to achieve good classification
rates given that features are carefully selected for each subject
and for each pair of states.

I. INTRODUCTION

One of the application contexts of brain-computer inter-
faces is in robotic related rehabilitation programs, where they
could provide a medium to decode the human intentions to
modulate the robot intervention. For instance, this is the case
in motor rehabilitation programs in stroke patients where it
has been suggested that the brain-computer interface could
play a key role by providing human cognitive aspects such as
motor intention, perception of the feedback, and higher level
motivational states as the attention [1]. These are important
factors with a key role in any seamless integration between
the human and the rehabilitation robot with potential to favor
a natural compliance and adherence of the patient in the
therapy process.

Many motor therapies are based on the development of
repetitive analytical movements of the targeted limb. Within
this movement process there are at least three macro-states
of interest: the rest state, the preparation of motion, and
the motion execution. The on-line monitoring with a brain-
computer interface of these states could provide a valuable
information to design any robot-mediated therapy for control
(triggering of events), for monitoring of the process, and
as a measure of compliance and engagement in fully au-
tomated therapies. The decoding of these three macro-states
simultaneously from EEG has not been addressed yet and
it is the objective of this paper. An important observation
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is that although the rest and the movement states could be
decoded from other sensory modalities such as the EMG,
the preparation of motion is the only state with anticipatory
information of the intention of the subject and can only be
decoded from brain activity. In addition to this, the on-line
decoding of this state is gaining attention in brain-computer
interfaces since it is also present during motor imagery [2]
(which is one of the key mental tasks for operation).

Although there is not research in decoding the three states
simultaneously, there is significant research in differentiating
between the rest state from the movement (and imagination
of the movement), and in between the rest state and the motor
preparation. It is well known that during the movement exe-
cution there is an event-related de-synchronization in motor
areas (12-15Hz) [3] and also there is slow cortical activity
involved (motor-related potentials) [4]. Usually the sensory-
motor synchronization/desynchronization is the key feature
used to differentiate between the rest and movement states in
real or motor imagery [5]. In addition to this, several studies
have demonstrated the appearance of EEG activity preceding
human voluntary movement. These signals are associated
to motor task preparation and are dissimilar from those
during the actual execution. Similar to the movement, there
is the event-related (de)synchronization (ERD/ERS) and a
slow activity denoted the readiness potential. Several studies
have focused in distinguishing between the anticipation of
movement of limbs [6], [7], [8], [9] in time or frequency
domains. An important point of these last works that report
decoding of anticipatory motor rhythms is that they are not
self-paced and the subject is always cued. The contribution
of the present paper is a simultaneous decoding of the three
states in a self-paced context (i.e. the subjects decides when
to start the motion and choose among different types of
motion), which is the ecological working setting.

II. METHODOLOGY

A. Experiment

Seven right-handed male students of the University partic-
ipated voluntary in the experiments (age range 25−32 years)
after the protocol was approved by the Institutional Review
Board of the University of Zaragoza. Subjects were seated in
a comfortable chair in front of the reaching apparatus (Figure
1a). They were instructed to move the right arm from the
homing location to a self-chosen location among eight pos-
sible locations and then come back to the homing position.
This process was self-paced approximately every 7.5 secs on
average (minimum 2.8 and maximum 9.7 secs). During the
reaching operation, subjects were asked to maintain a natural,
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Fig. 1. (a) Experimental setup. The user sits in front of the reaching
apparatus with a fixed start position and set of eight predefined positions.
(b) Sensor placement. (c) Trajectories executed by the users. (d) Acquired
signals including synchronization signal obtained from the buttons at the
positions. The blue rectangles illustrate the extracted examples of each class
(rest, preparation, motion) for each trial.

relaxed and constant posture; and to minimize blinking while
maintaining the gaze fixed in the appropriate point of the
apparatus. In the remaining time they were allowed to blink
and relax. The first condition was executed in five blocks
of 5 minutes each, where the subjects executed around 130
reaching operations to the eight locations (minimum after
removing non valid examples 75 and maximum 196). Figure
1(c) shows the trajectories executed by subject 1.

B. Data recording

EEG activity was recorded with a gTec system (2 gUS-
Bamp amplifiers synchronized) with 28 electrodes distributed
according to the 10/10 international system (Figure 1b), with
the ground on FPz and the reference on the left earlobe.
Vertical and horizontal EOG were also recorded. The EEG
and EOG signals were digitalized with a sampling frequency
of 256Hz, power-line notch-filtered and lowpass-filtered at
60Hz.

In addition to EEG measurements, the system also
recorded time markers corresponding to the beginning and
end of the arm reaching motion. This information was ob-
tained using buttons both at the home and the target positions
that were synchronized with the EEG measurements. Based
on the motion markers, each trial was segmented in three
different parts corresponding to rest, preparation and motion
conditions with a fixed duration of 0.3 seconds each (see
Figure 1(d)). Thus, each trial provides one example of each
class.

C. Feature extraction and classification

Let X ∈ RC×T correspond to the acquired EEG signal of
a class example where C is the number of channels and T the
number of samples. One of the key aspects to distinguish rest,
preparation and motion conditions is to select features from
the EEG measurements that have the relevant information
to distinguish between the classes. According to previous
studies, this information is the event-related desynchroniza-
tion/synchronization (ERD/ERS) in motor areas (12-15Hz)
[3]. There is also important activity in lower frequencies
corresponding to slow cortical potentials involved in the
motor preparation (motor-related potentials) [4]. In principle,
this type of information should be discriminative enough
to distinguish between the three classes of interest (rest,
preparation and motion). Firstly, as mentioned in the in-
troduction ERD/ERS has been used to distinguish between
rest and either motion or preparation. Secondly, the slow
potentials are different for the preparation (or anticipation)
of the motion and the motion execution.

In addition to the raw data X , the feature selection
process applied two different filters to the raw data. This
pre-processing step is common to improve the classification
performance. The filters were:
• Re-referencing filter: The EEG measurements are re-

referenced to one specific channel. By repeating this
process for all the channels, we obtain a total of C filters
that generate signals XBi ∈ RC×T , with i ∈ 1..C.

• Laplacian filter: The EEG signal X was filtered using a
3× 3 discrete Laplace operator to obtain XL ∈ RC×T .

Once X, XBi, XL, The selection of the best filter for each
subject was based on the r2 test of the spectral density
between pairs of classes (i.e. rest vs. preparation, rest vs.
motion and preparation vs. motion). For each trial and chan-
nel, we estimated the spectral density of the different filtered
signals using the periodogram. Then, for each pair de classes
we selected just one filtered signal among X, XBi, XL based
on the r2 maximum value of channel C3 (which is one of the
most representative electrodes related to motion of the right
arm). The final selection was done by visual inspection based
on the periodograms (see Section III). Based on r2 values, we
also selected the range of frequencies fr of the periodogram
with the highest value for the filtered channel C3. In addition
to this channel, all the channels of the selected filter that were
above a certain threshold were also included in the feature
vector.

The last step before training the classifier consisted in
processing the selected channels in the time domain. First, a
Butterworth band-pass filter was applied in the selected range
fr. This filtered temporal signal was rectified and smoothed
(which empirically has shown to be a good way to obtain
signals, and then characteristics, to increase the statistical
difference between conditions). As in the frequency domain,
an r2 test was used to select the best signal among the four
different types resulting from applying sequentially to the
filtered signal, the band-pass filter, the rectification and the
smoothing.
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Fig. 2. Selected features. (a) r2-test values of the periodogram of the selected filters for each pair of classes (rest vs. motion, rest vs. preparation,
preparation vs. motion) for subject one. The red boxes indicate the range of frequencies and channels used for classification, (b) Signals in the temporal
domain for channel C3 of the filter selected for each pair of classes. Signals are averaged over all the examples of each class. From top to bottom, (i)
selected features, (ii) filtered in the selected frequency band, (iii) rectified and (iv) smoothed. The corresponding r2-test is shown for each case. The red
box indicates the final features fed to the classifier. (c) r2-test values of the periodogram for subject 4. (d) Final features fed to the classifier for subject 4.

The final selected features, subsampled to 64Hz, were
used to train a (multi-class) LDA classifier. Since the feature
vector dimension can be larger or close to the number of
examples of each class, we used a shrinkage estimator for
the covariance matrix [10]. When classifying between two
classes, the feature vector was formed by the temporal signal
of that specific pair (e.g. rest and motion). For the simultane-
ous classification of the three conditions, the feature vector
was the concatenation of the filters selected for each pair of
classes.

III. RESULTS

A. Selected Features

We first analysed the selected features for each user. Recall
that filters were selected independently for each subject and
for each pair of conditions. Table III-A shows the selected
filters, where Bi indicates re-referenced with respect to
channel i. The first remark is that in all cases (subjects
and pairs of classes), re-referenced filters were the ones with
best r2 compared to raw measurements X and to Laplacian
filtered channels XL. Second, for every pair of classes
and every subject there were multiple filtered channels that
contained discriminative information. The table shows that
the best selected filters vary significantly among subjects as
well as the corresponding frequency ranges.

Figures 2(a) and 2(c) show the r2-test values of the
periodogram for the selected filters for the subjects one and
four who had the largest and smallest statistical differences,
respectively. Recall that they correspond to different filters
as indicated in Table III-A. For the best subject, subject
one, the information selected to separate rest and preparation
corresponds to an ERD de-synchronization in high beta
bands (around 25 Hz) at the central and parietal zones. In the
case of rest versus motion, the figure shows a similar pattern
to the previous one plus some relevant statistical difference in
low frequencies [0-5]Hz. The latter is probably due to slow
potentials related to motion as described in [11]. Finally, the
r2 values between preparation and motion show a completely
different structure where the most useful information appears
in low frequencies around 5Hz. As in the previous case,
these differences are probably caused by slow potentials such
as the lateralized readiness potentials. Figure 2(b) show the
averaged signal features in the time domain for channel C3.

The results for subject four shows that his best selected
features have quite a different structure and indicated that the
different conditions are not as different as those for subject
one (see Fig. 2(c)). Furthermore, the channels and frequency
bands are not as consistent with the literature as the ones
from other subjects such as subject one. Consequently, the
temporal signals shown in Fig. 2(d) are also less discrimina-
tive (as we will corroborate when analyzing the classification
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TABLE I
FILTERS AND FREQUENCY RANGE SELECTED FOR EACH SUBJECT AND

PAIR OF CLASSES

Subj. Rest VS Antici. Rest VS Motion Antici. VS Motion
1 BFC1, [20-30]Hz BFC1, [20-30]Hz BP3, [0-10]Hz
2 BFZ , [25-30]Hz BFC2, [10-20]Hz BFC2, [10-20]Hz
3 BCP3, [20-30]Hz BF7, [0-5]Hz BCP3, [20-30]Hz
4 BCPz , [20-25]Hz BCP1,[10-15]Hz BCPz ,[10-15]Hz
5 BP4, ,[10-15]Hz BO1, ,[15-25]Hz BO1, [17-20]Hz
6 BP8, [5-10]Hz BFP1, [0-10]Hz BFP1, [0-10]Hz

TABLE II
CLASSIFICATION RESULTS FOR EACH PAIR OF CONDITIONS PER SUBJECT

Subject Rest VS Antici. Rest VS Motion Antici. VS Motion
1 69.59 67.86 80.78
2 67.30 81.01 75.01
3 72.01 72.57 68.47
4 58.63 55.39 63.18
5 50.88 48.70 58.36
6 66.93 56.54 61.15

Mean 64.22 63.68 67.70

results).

B. Classification results

Here we present the classification results and discuss
two different cases: (i) the classification of pairs of classes
independently; and (ii) the joint classification of the three
classes.

Table III-B summarizes the classification results of each
pair of classes. The mean accuracy for each pair is around
64%. There is very little variation between the different
pairs of classes. However, subjects behave differently with an
average of 74% and 72% for the two best subjects (subject 2
and subject 1) and an average of 52% and 59% for the two
worst cases (subject 5 and 4).

We now analyze the results of the LDA classifier in the
multi-class case. Table III-B shows the confusion matrix
averaged for the six subjects. The classification rates for each
class are similar to the ones obtained in the previous case
with a degradation of almost 10% on average from 65%
in the two class case to 55% in the three class one. In the
latter, the subject one is the best with a mean recognition rate
of 72% (68%, 69%, 78% for rest, preparation and motion,
respectively). The worse subject is subject 4 with a mean
recognition rate of 40% (32%, 41%, 47% for each class).
These results are as expected since the analysis of the fea-
tures already revealed that there were important differences
between the subjects in terms of statistical difference among
the classes of the best features. Indeed, a deeper analysis
of the EEG measurements of subjects 4 and 5 suggest that

TABLE III
MEAN CONFUSION MATRIX AVERAGED FOR ALL SUBJECTS

Rest Anticipation Motion
Rest 54.9937 23.5145 21.4918

Anticipation 23.6410 54.7408 21.6182
Motion 22.6296 20.4804 56.8900

the ERD/ERS could not be clearly identified and there was
no statistical difference in the frequency bands of the slow
potentials in any of the filters. It is also worth to mention
that those subjects that had the best classification rates (e.g
subjects 1 and 2) kept their performance in the three classes
case, while those with the lower rates (e.g. subjects 4 and 5)
degraded their performance considerably.

IV. CONCLUSIONS

This paper addresses the classification of the basic phases
(rest, preparation and motion) involved in self-paced motion
using EEG measurements obtained through a BCI system.
The method explicitly builds and selects features for each
pair of classes according to their statistical difference based
on the r2-test. The results show that it is possible to achieve
reasonable classification rates around 70% by appropriately
selecting the features for each of the six subjects.

Planned future work explores two different directions.
First, we are currently working on more automatic feature se-
lection processes that does not require any visual inspection
by the therapist. Second, although motion is self-initiated by
the user, classification still requires synchronized markers
to segment the signal. We plan to investigate structured
prediction techniques to label the full sequence as recorded
from the BCI system.
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