
Syllable-Based Speech Recognition Using EMG

Eduardo Lopez-Larraz, Oscar M. Mozos, Javier M. Antelis, Javier Minguez

Abstract— This paper presents a silent-speech interface based
on electromyographic (EMG) signals recorded in the facial
muscles. The distinctive feature of this system is that it is
based on the recognition of syllables instead of phonemes or
words, which is a compromise between both approaches with
advantages as (a) clear delimitation and identification inside a
word, and (b) reduced set of classification groups. This system
transforms the EMG signals into robust-in-time feature vectors
and uses them to train a boosting classifier. Experimental
results demonstrated the effectiveness of our approach in three
subjects, providing a mean classification rate of almost 70%
(among 30 syllables).

I. INTRODUCTION

The most natural and powerful way of communication
for humans is the spoken language. For this reason there
has been vast research in learning the design principles of
systems able to understand human speech and expressions.
Natural language communication with machines is typically
done using automatic speech recognition (ASR) systems. The
usual setting is a user that speaks to a microphone, and then,
the ASR recognizes the speech and the integrated application
behaves according to the established dialogue.

One of the main drawbacks of traditional speech inter-
faces is their limited robustness in the presence of am-
bient noise [1], [2]. To overcome this limitation, several
electromyographic (EMG) approaches have been proposed
in which the acoustic speech recognition is substituted by
silent-speech recognition. The classification is based on the
myoelectric signals produced in the facial muscles during
speech [3], [4], [5], [6], [7], [8]. This solution overcomes
the ambient noise but also provides an alternative to human-
machine communication for people with speech disabilities
such as laryngectomy, as well as elderly or convalescent
people. In these cases there is no acoustic signal coming
from the user, or the signal is distorted or very weak.

Focusing in existing and natural EMG speech recognition
systems, there are mainly three possible approaches to the
problem. The first one is based in phoneme recognition. This
problem has about 30 classes (approximately the number
of letters in Spanish language) but the main difficulty is
to delimit where begins and finishes a phoneme inside a
word. Examples of these systems and limitations can be
seen in [4], [5], [6] (vowel recognition) and [7]. Another
possibility is to use complete words recognition [1], [2], [8],
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Fig. 1. The image shows the two steps of our EMG-based speech
recognition system: calibration (top sequence), and online operation (bottom
sequence).

[9]. Here, the difficulty emerges as the number of words to
classify increases dramatically (they cover the full language).
Thus existing systems reduce the search to a very limited
set of words. This paper proposes a halfway solution to
obtain a natural speech recognizer, which is the recognition
of the syllables (common and natural way to divide words in
Spanish language). Syllables are easier to identify inside a
word than phonemes due to the fact that they are simply
voice hits and correspond to abrupt muscle movements.
Additionally, they are several orders of magnitude smaller
in number than words (a person uses about 3000 words in
his/her day by day speech), so it provides a trade off between
the two opposite methods.

This paper presents a silent-speech interface based on
EMG signals recorded from the facial muscles. The prosthe-
sis prototype is displayed in Fig. 1 where it has a calibration
step and then an online step. The calibration step uses
EMG signals recorded during speech to train a classifier.
The second step classifies the online EMG to detect the
intended syllable of the user. As a previous step, this paper
proposes a study of applicability based on offline recognition
of a representative number of Spanish syllables and different
classification strategies.

II. METHODS

This section describes the methodology followed in the
work: the definition of the vocabulary, the anatomic location
and instrumentation issues of the EMG system, and the
feature extraction and classification.

A. Definition of the Vocabulary

The objective of the present recognition system is to rec-
ognize isolated syllables from the Spanish language, which
are usually composed by a consonant followed by a vowel.
All the syllables are divided into five groups according to the



Fig. 2. Selected facial muscles for EMG recording: Levator labii superioris
(EMG1) , Zygomaticus major (EMG2), Risorius (EMG3), Orbicularis oris
(EMG4), Depressor anguli oris (EMG5), Depressor labii inferioris (EMG6),
Platysma (EMG7) and Anterior belly of the digastric (EMG8).

anatomical articulation origin [10]: labials, dentals, palatals,
velars, and alveolars. In order to have a representative set of
syllables for the system that cover all groups, it was selected
one representative consonant of each group combined with
the five vowels plus the vowels separately. The final set was
composed by 30 syllables, presented in Table I.

TABLE I
COMPLETE SET OF SYLLABLES

Vowels /a/ /e/ /i/ /o/ /u/
Labials /pa/ /pe/ /pi/ /po/ /pu/
Dentals /ta/ /te/ /ti/ /to/ /tu/
Palatals /ya/ /ye/ /yi/ /yo/ /yu/
Velars /ka/ /ke/ /ki/ /ko/ /ku/

Alveolars /la/ /le/ /li/ /lo/ /lu/

B. Facial Electromyography for Speech Recognition

Electromyography signals reflect the electrical activity of
the muscles during a movement. In the case of speech,
EMG signals are generated in the facial muscles responsible
for pursing the lips, lifting the corners of the mouth, or
opening the jaw. Additionally, EMG signals also appear in
the extrinsic muscles of the tongue, which are responsible for
relaxing the tongue up and forward. According to previous
anatomical studies [11], the number of muscles involved
in speech production is very high. This makes the record-
ing of all possible facial EMG-signals almost impractical.
Furthermore, there exists no standard selection of the most
appropriate muscles for EMG-based speech recognition, thus
this selection is typically done in a heuristic way.

In this work, the EMG electrodes were placed on the facial
muscles according to their distinctive movements during
the pronunciation and articulation of speech utterances in
Spanish [10]. To reduce the posterior complexity of the
system, EMG electrodes were placed on muscles only on
one side of the face, since they are symmetric. The final
muscles selection and EMG locations are shown in Fig. 2.

C. Facial EMG Recording

The preparation of the EMG electrodes followed the
guidelines proposed in [12]. Face skin areas over the site
of the facial muscles were previously cleaned with alcohol-
wetted swabs. Conductive electrode gel was added to the
electrodes to minimize the impedance at the skin-electrode
surface contact. Bipolar electrodes were placed in the same
direction of the fibers of the facial muscle and the distance
was fixed to be 1 cm. The ground electrode (GND in Fig. 2)
was placed on the forehead, and the reference electrode (REF
in Fig. 2) was placed on the left earlobe. The impedance at
each electrode was checked to be below 10 kΩ. The eight
bipolar EMG signals were acquired and digitized (using a
gUSBamp amplifier from gTec) at a sampling frequency of
2400 Hz, power-line notch-filtered to remove the 50 Hz line
interference, and band-pass filtered between 5 and 500 Hz
to remove different noise sources out of the EMG signals
frequency band. The general instrumentation was a commer-
cial gTec amplifier, and eighteen gold-made EMG surface
electrodes (diameter: 10 mm). The recording system and
software was developed under the BCI2000 platform [13].

D. Experimental Protocol and Data Collection

Three healthy male students of our university with no
known speech impediments or disorders, and whose native
language is Spanish participated in the experiments. The par-
ticipants were duly informed about the whole protocol of the
study. In the experimental recording sessions, the participants
were sitting in front of a computer screen and the EMG
sensors were placed over the skin surface according to Fig. 2.
In each experimental session, the EMG signals corresponding
to 50 examples of each of the Spanish syllables listed in
Table I were recorded, yielding a total of 1500 collected
examples per subject. One session was divided in 75 trials
(the inter-trial time was 60 seconds), where in each trial 20
syllables were randomly shown to the subject. During the
execution of a trial, a dark screen was first displayed during
10 seconds to rest the participant before the visual stimuli
presentation. Subsequently, an image with the required syl-
lable was shown and the participants articulated the syllable
without producing voice. Each image was displayed during
1 second, and followed by a grey screen of 1 second in order
to relax the facial muscles before the next syllable.

In order to test the robustness of the classifier across time,
one subject repeated a session articulating only the vowels.
Each vowel was repeated 50 times following the previous
protocol.

E. EMG Feature Extraction and Classification

The recorded EMG data was used to train a classifier
for these syllables. There are two steps in this process:
the feature extraction and the classification. On the one
hand, the signal representation is the set of features selected
to represent the raw signals (examples) and to train the
classifier. A relevant selection criterion is that they have to
be robust to time shifts. This is because the user does not
pronounce all the syllables at the same point in time. Thus,



Fig. 3. True positive classification rates for each of the three subjects.

all the selected features were time-shift invariant to have
a classification process not sensitive to the pronunciation
time. The following features were selected according to
previous works in silent speech recognition [1], [4], [5],
[7], [8], [9]: Fast Fourier Transform (20 components), Root
Mean Square, Average amplitude of the signal, Maximum
amplitude, Kurtosis, Mel-frequency cepstral coefficients (13
values, as in [8]), Mean absolute value, Zero-crossing points,
Sum of all the signal values and Sum of all the rectified signal
values. Each raw signal of an EMG channel is transformed
into a feature vector whose 41 components are the character-
istics listed before. The final feature vector of the complete
signal (representing one syllable example) is obtained by
the concatenation of the different features vectors for each
channel. Notice that the dimension of the final feature vector
is much lower than the dimension of the original signal
(41 × 8 ¿ 2400 × 8), which is a significant reduction in
complexity of the problem without loss in the classification
results (as we will see in the experiments).

On the other hand, a classifier is trained to distinguish
the examples (represented by the previous feature vectors)
from the different syllables. The classifier selected was
the boosting algorithm AdaBoost.M1 [14], using the J4.8
decision tree [15] as the weak classifier. This tree is a
variation of the C4.5 decision tree [16] and applies a post-
pruning method to improve the classification performance of
the final model. The training and classification processes was
carried out using the software Weka [17].

III. EXPERIMENTS

This section describes the classification results of the
30 syllables using an offline 10-fold cross validation, a
validation in different sessions, and an evaluation of different
classifiers.

A. Results with the Complete Set of Syllables

The first experiment validated the recognition system
individually for each subject using 10-fold cross validation.
The true positive classification rates for the three subjects are
depicted in Fig. 3 (a true positive is a syllable that has been
correctly classified). The mean recognition rates for the three
subjects were 78.07%, 66.00% and 62.94% respectively,
and the global mean rate was 69%. Additionally, all the
classes obtained accuracies higher than 40% (notice that
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Fig. 4. Confusion matrix for the classification of the 30 syllables. Dark
values indicate a high classification rate. To increase the visibility, we used
a logarithmic scale. The classifications rates are calculated using the mean
of the classification rates for the three subjects.

a random classifier would provide a 3.33%). Furthermore,
the confusion matrix of the mean classification results for
the three subjects is shown in Fig. 4. Notice that the most
salient confusions in the classification form groups (see
Section II-A and Table I), in which the initial phoneme is
the same (e.g. a clear group of confusions appeared among
the syllables starting with /y*/), or in terminations with
the same letter (e.g. /ta/ and /ya/, /te/ and /ye/...). These
behaviors are not that bad because there are clear patterns
behind the confusions (the most frequent confusions for one
classification inside a group is restricted most of the time to
four or five possibilities). In general, these results suggest
a high performance and potential of the recognition system
given the large number of classes involved in the problem.

B. Training Data from Different Sessions

The second issue is to study the influence of the data
recorded in different days. Table II shows the performance
of the classifier using the articulated vowels of the first
session only. Then, the 50 recorded vowels of the first
session were added to the 50 vowels of a second session
to train the classifier. The performance of the new resulting
classifier is shown in Table III, where can be noticed that
the performance is highly similar. This indicates that, for



the same user, the trained system has a certain degree
of invariance with respect to different points in time and
possible small variations in the electrodes placement.

TABLE II
CONFUSION MATRIX FOR THE CLASSIFICATION OF THE VOWELS IN THE

FIRST SESSION

/a/ /e/ /i/ /o/ /u/
/a/ 90% 10% 0% 0% 0%
/e/ 8% 60% 30% 0% 2%
/i/ 0% 22% 76% 0% 2%
/o/ 2% 0% 0% 84% 14%
/u/ 0% 0% 0% 14% 86%

TABLE III
CONFUSION MATRIX FOR THE CLASSIFICATION OF THE COMBINED

VOWELS FROM TWO DIFFERENT SESSIONS

/a/ /e/ /i/ /o/ /u/
/a/ 92% 4% 4% 0% 0%
/e/ 5% 71% 23% 1% 0%
/i/ 3% 24% 72% 0% 1%
/o/ 0% 1% 0% 85% 14%
/u/ 0% 2% 1% 19% 78%

C. Comparison of Different Learning Approaches

The last issue is to study the application of four different
strategies to create the final classifier. They are formed
by the combination of two possible representations of the
examples and two learning approaches. The signals could
be represented by the original raw sampled data or by the
computed feature vector introduced in Sect. II-E. Besides,
the classifier could be in one case the J4.8 decision tree, and
in the other a combination of Adaboost.M1 and J4.8 decision
trees (cf. Sect. II-E). The resulting performances are shown
in Table IV.

TABLE IV
CORRECTLY CLASSIFIED INSTANCES GIVEN BY TWO DIFFERENT

ALGORITHMS AND TWO DIFFERENT SIGNAL REPRESENTATIONS.

Decision Tree AdaBoost + Decision Tree
Raw sampled signal 42.2% 61.9%
Computed Features 69.5% 80.2%

According to Table IV, the use of feature vectors improves
the performance of the algorithms in approximately 20%
over the raw sampled signals. Moreover, the use of boosting
augments the classification rates in more than 10%. These
results justify the selection of feature vectors to represent
the signals, and the boosting process to improve the final
performance of the decision trees.

IV. CONCLUSIONS AND FUTURE WORKS
This paper presents a prototype of a silent-speech recog-

nition system based on electromyographic signals recorded
in facial muscles. The approach focussed on syllables of the

Spanish language. The signals from each articulated syllable
were transformed into a feature vector whose components
represented different global characteristics. A classifier based
on boosting was trained using these feature vectors as
input. Experiments carried out with three different subjects
demonstrated the effectiveness of the proposed system when
recognizing new articulated syllables.

The future work focuses on the usage of the current
syllable classifier as basis to build a recognition system of
complete Spanish words. The interest is in using techniques
to classify sequences of observations such as hidden Markov
models.
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en el léxico, 4th ed. Laboratorio de Lingüı́stica Informática de la
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