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Abstract

This paper describes two innovative brain-actuated 
applications for rehabilitation developed in the 
University of Zaragoza: the first one is a brain-
actuated wheelchair with automated navigation, and 
the second one is a brain-actuated robot to carry out 
teleoperation tasks between remote places. Briefly, 
the subject faces a real-time virtual reconstruction of 
the scenario (wheelchair) or video captured by a 
camera merged with augmented reality items (robot) 
and concentrates on the area of the space to reach. 
First, a visual stimulation process elicits the 
neurological phenomenon (evoked P300 response), 
the EEG signal processing detects the target, and 
given then to the autonomous navigation system that 
drives the device to the desired place while avoiding 
collisions with every obstacle detected. These 
systems have been validated with ten healthy users 
(five for each application). The overall result is that 
all the users successfully used the device with 
relative ease and adaptability. 

1. Introduction 

Nowadays, it exists different degenerative 
diseases that gradually provoke the incapacity of use 
of any kind of muscular activity, as amyotrophic 
lateral sclerosis (ALS). So, common interaction 
between patients with these diseases and machines 
become impossible, making the brain the unique 
communication channel available. Furthermore, this 
idea is also applicable to patients without an arm or a 
leg, to whom it may be possible to implant a robotic 
arm or leg.  

Brain-Computer Interfaces (BCI from now on) 
are those interfaces that allow an interaction with the 
user using only cerebral signals of him/her. In other 

words, it allows the control of applications with the 
thoughts, avoiding any use of muscular activity from 
the user. In this way, recently a new field of research 
has emerged. 

One of the aspects that makes the difference in 
this field is the type of technique used to measure the 
cerebral activity. In United States, research is 
dominated by invasive techniques in animals, where 
a sensor is introduced directly into the brain. The 
advantage is the purity of the signal, at the expense 
of the ethic problems that this entails. Because of 
this reason, researchers in Europe tend to use 
techniques denominated non-invasive (concretely the 
electroencephalogram or EEG), which are based on 
the collocation of several electrodes on a cap situated 
on the head of the user. The principal disadvantage is 
that the signal measured is much worse, however, it 
can be used without risk in humans. 

In this context, emerges the idea of the 
development of applications that make use of this 
technology, developed for users with several 
physical diseases. Nowadays, it exist numerous 
interfaces that these people can use in order to 
control assisted devices. However, all of these 
approximations requires, in one way or another, 
some kind of muscular activity. The advantage of 
BCI technologies is, as explained before, the 
elimination of that requirement, offering the user the 
possibility of controlling these devices only with 
their mind. The range of applications that merges 
with this idea is vast, from a wheelchair control to a 
prosthetic robotic arm controlled in a natural way. 
So far, systems based on human’s EEG have been 
used to control a mouse on the screen [1], for 
communication like an speller [2], an internet 
browser [3], etc. Regarding brain-actuated robots, 
the first control was demonstrated in 2004 [4], and 
since then, the research has focused on manipulators 



[5], small-size humanoids [6] and wheelchairs [7], 
[8], [9]. 

From this base, the University of Zaragoza has 
developed two systems that present applications with 
different improvements: the first one, a new 
approximation of a wheelchair controlled by 
thought; the second one, a robot controlled by 
thought and situated remotely, i.e. a teleoperation. A 
rigorous methodology of experiments’ design and a 
exhaustive evaluation of posterior results obtained 
with five healthy users has been followed for both 
applications. The overall result is that every user was 
able to use correctly and efficiently the prototypes 
designed, demonstrating also a great adaptation 
against changes in the environment, and also a great 
robustness of developed systems. 

2. Design of wheelchair’s system 

The research on brain-machine devices applied to 
the human control of physical devices has been 
broadly directed mainly in two directions: 
neuroprosthetics and brain-actuated wheelchairs. 
Wheelchairs focus on the facilitation of assistance in 
mobility to accomplish complex navigational tasks. 
These devices have been demonstrated to improve 
the quality of life and the independence and self-
esteem of the users. 

Here we describe a new brain-actuated 
wheelchair concept that relies on a synchronous 
P300 neurophysiological protocol integrated in a 
real-time graphical scenario builder, and that 
incorporates advanced autonomous navigation 
capabilities (Figure 1). In operation, the subject faces 
on a screen a real-time virtual reconstruction of the 
scenario constructed using a laser scanner. Over the 
base of this representation, the user concentrates on 
the area of the space to reach. A visual stimulation 
process elicits the neurological phenomenon and the 
signal processing detects the target area. Then, this 
location is given to the autonomous navigation 
system that drives the wheelchair to the desired place 
while avoiding collisions with the obstacles detected 
by the laser scanner. 

From the navigation point of view, in this system 
the user selects freely destinations of the 
environment (over the base of a real-time 
reconstruction), which are safely and autonomously 
reached by the navigation system. This concept gives 
great flexibility to the user since the wheelchair can 
autonomously navigate in unknown and evolving 
scenarios using the onboard sensors. Furthermore, 
once the user sets the location he can relax, which 
avoids exhausting mental processes. 

System’s design is composed by two main 
modules: (i) the brain-computer system that decodes 
the user intention, and (ii) the navigation system that 
executes the user’s desired decisions. Finally, there 

is a communication system between them that 
performs all the exchange of data needed. 

Figure 1: This figure displays the design of the brain-
actuated wheelchair, the main modules and the 
information flow among them. 

2.1. Brain-computer system 

The neurophysiological protocol followed in our 
study is based on an event-related response, the P300 
visually evoked potential [10]. This potential 
manifests itself as a positive deflection in voltage at 
latency of roughly 300 msec in the EEG after the 
target stimulus is presented (within a random 
sequence of non-target stimuli) (see Figure 2). 

Figure 2. (Left) Topographical plot of the EEG 
distribution in the scalp at 300 msec. The area with 
more activity (mid-low part of the scalp) is in the 
parietal lobe, where the P300 potential is elicited.  
(Right) Typical P300 response. The red line shows 
the EEG activity on one channel (elicited by the target 
stimulus), and the green line corresponds to the non-
target one. 

Apart from the signal processing unit, it includes 
a graphical interface. In order to command the 
wheelchair, the user selects destinations or motion 
primitives by concentrating on the possibilities 
displayed on the computer screen (Figure 3). The 
graphical interface has two functionalities: displays 
information of the real-time reconstruction of the 
environment and additional information for the order 
selection; and develops the stimulation process to 
elicit the P300 visually-evoked potential. The 
graphical aspects of this module are based on a 
previous study involving a robotic wheelchair 



adapted for cerebral palsy users [11] with a tactile 
screen.

The information displayed on the screen is a 
reconstruction of the real scenario for the user’s 
command selection. The environment 3D 
visualization is built from the 2D map constructed in 
real-time by the autonomous navigation technology. 
In other words, the visual information of the screen 
is a simplified reconstruction of the user’s 
perception. The use of an online map instead of an a 
priori one endows the system with the flexibility to 
work in unknown scenarios. This is because online 
maps rapidly reflect changes in the environment, 
such as moving people or unpredictable obstacles 
like tables or chairs. The rest of the displayed 
information is used for command selection: the 
obstacles are depicted by walls; the grid over the 
floor maps the possible goal locations, where the 
first grid row is the one that has the farthest 
destinations. The walls hide the unreachable 
destinations of the grid. The arrow buttons turn the 
vehicle around ±90º its current position; the traffic 
light buttons (i) validate the user’s commands or (ii) 
stop the vehicle; and the rubber represents the 
“remove selection” option. In the current version of 
the interface the stop and “remove selection” options 
are not used, but they have been taken into account 
for the next interface prototype. All the elements of 
the visual display can be customized in terms of 
color, texture, shape, size and location. This was 
important in the screening sessions to equilibrate the 
user capabilities and preferences with the 
performance of the system (recall that the elicitation 
of P300 potential is affected by these issues). 

The other aspect of the visual display is the 
stimulation process to elicit the P300 visual evoked 
potential when the user is paying attention to a given 
option. An option is “stimulated” by displaying a 
circle on the selection (Figure 3). One sequence of 
the stimulation process is a stimulation of all the 
options in a random order as required by the P300 
oddball paradigm. In order to reduce the duration of 
a sequence and the dimension of the pattern 
recognition problem, we follow here the Farwell and 
Donchin [12] stimulation paradigm. In this 
paradigm, the flashing of the stimuli is done by 
means of rows and columns instead of flashing each 
option individually. Thus, in our interface there are 9 
stimulations (rows plus columns) and two 
classification problems of 5 and 4 classes (the target 
option is the intersection of the target row and the 
target column). The number of sequences and all the 
scheduling of the stimulation process (time of 

exposition of each stimulus, inter-stimulus duration 
and inter-sequence duration) can be modified to 
equilibrate the user capabilities and preferences with 
the performance of the system. 

Figure 3: graphical interface designed.

2.2. Navigation system 

The other system consists of the navigation system 
integrated in the wheelchair. The robotic wheelchair 
was constructed based on a commercial electric 
wheelchair that complied with basic user mobility 
and ergonomic requirements. It has two computers: 
The first computer performs the control of the back 
wheels, and the second computer performs the 
navigation computations and managing the 
communications between the wheelchair and the 
BCI system. 

The second computer is used for medium-level 
control, performing the navigation computations and 
managing the communications between the 
wheelchair and the BCI system. The main sensor is a 
SICK planar laser placed in the frontal part of the 
vehicle. This sensor provides information about the 
obstacles in front of the vehicle. We have 
incorporated to the robot an autonomous navigation 
technology that is able to drive the vehicle to a given 
destination while also avoiding the obstacles, both 
static and dynamic, detected by the laser sensor [13]. 
This module has two functionalities. On the one 
hand, a modeling module integrates the sensor 
measurements to construct a local model of the 
environment and track the vehicle location. On the 
other hand, a local planner computes the local 
motion based on the hybrid combination of tactical 
planning and reactive collision avoidance.  



Figure 4: Snapshots of different subjects during the experiments.

Once developed each unit and linked between 
them with a communication system, the global 
system is fully functional for the user to use. Briefly, 
the execution protocol works as explained next. 
Initially, the user observes an screen with the 
graphical interface explained before. In this phase, 
wheelchair’s system is stopped, waiting orders from 
the user. When the visual stimulation begins, the 
user concentrates on desired option, and after that on 
the validation option. Once the order is validated, it 
is sent to the wheelchair, and the stimulation process 
stops. In that moment, the wheelchair plans the 
movement and starts moving in order to reach the 
destination. Once the wheelchair reaches it, it will 
send a response to the graphical interface informing 
that the movement is finished, and then the 
stimulation process will start again. 

3. Methodology and evaluation 

In order to execute the experiments, several users 
were selected to perform the experiments according 
to inclusion criteria. Specifically, five healthy, 22 
years old, male and right-handed students of the 
University participated in the experiments. None of 
them had ever utilized an electric wheelchair before. 
The study was accomplished in three phases in the 
BCI laboratory of the University of Zaragoza. We 
summarize next the first two phases, and focus on 
the third phase since it involves the rehabilitation 
device. 

The first phase was the screening session. The 
objective of this session was to screen the subjects 
for the next stage and to come up with a graphical 
interface that equilibrates the user capabilities and 
preferences with the performance of the system, in 
terms of color and brightness of the stimulus and 
environment textures. The second phase consisted on 
a training subphase and on a test in a wheelchair 
simulator, which emulates the underlying 
mechanisms of the user interface and the wheelchair 
navigation. 

The last phase consisted of real-time navigation 
with the wheelchair along pre-established circuits. 
The objective of this battery of experiments was to 
create the basis for a technical and coherence 

evaluation of the brain-actuated wheelchair: to 
explore the navigation capabilities of the system and 
to assess the performance of the subjects in real 
settings. We designed two circuits that the user had 
to solve by autonomously navigating with the 
wheelchair. The first circuit was designed to 
accomplish complex maneuverability tasks and 
avoidance of obstacles in constrained spaces. The 
second circuit involved navigation in open spaces. 

Regarding the results of the experiments, the 
reader is directed to [14] for more details about the 
first two evaluations, and we focus on the evaluation 
of the brain-actuated device itself. The overall result 
is that all the users were able to successfully use the 
device with relative ease showing a great adaptation, 
and also a high robustness and coherence (Figure 4). 
Next is detailed a general evaluation of the brain-
actuated wheelchair, a particular evaluation the 
brain-computer interface and a coherence analysis. 

1) Overall performance: we follow here the 
metrics proposed in [11] to evaluate the performance 
of autonomous wheelchairs: 

• Task success: degree of accomplishment of the 
task. 

• Path length: distance traveled to accomplish the 
task. 

• Time: time taken to accomplish the task. 
• Collisions: number of collisions. 
• BCI accuracy: accuracy of the pattern 

recognition. 
• Number of missions: a mission is defined as a 

selection of goal + validation. 

The results are summarized in tables I and II. 

Table I: Overall performance, task 1 

Table II: Overall performance, task 2 

min max Mean Std

Path length (m) 12.8 19.
0 15.7 2.0 

Time (sec) 448 834 571 123
Practical BCI accuracy 0.88 1 0.95 0.04 
# missions 8 14 9.6 1.9 



All the subjects succeeded to autonomously 
navigate along the two circuits, which is the best 
indicator of the device utility. No collisions occurred 
during the experiments. The path length, time taken 
and number of missions was very similar for all the 
subjects indicating a similar performance across 
subjects. The interaction with the device was also 
satisfactory since the accuracy on average was 
always above 94%. We understand that all these 
results are very encouraging since the experiments 
were carried out in scenarios carefully designed to 
cover many of the typical real navigation situations 
of these devices. 

2) BCI performance: there have been some metrics 
proposed to evaluate BCI performances [15]. Based 
on them, we propose the following measures: 

• Theoretical BCI accuracy: BCI correct selections 
vs total. 

• Total errors: number of incorrect selections. 
• Useful errors: incorrect selections of the BCI that 

the user decided to reuse. 
• Practical BCI accuracy: correct selections plus 

useful errors vs total. 

The results are summarized in tables III and IV. 

Table III: Performance of BCI, task 1 

Table IV: Performance of BCI, task 2 

The theoretical accuracy on average was almost 
always greater than 92%, indicating a high accuracy. 
We have distinguished between theoretical and 
practical accuracy. This is because in some 
situations, although the BCI system did not 
recognize the user’s selection, the BCI selection was 
used by the subject to achieve the mission. These 
useful errors were almost 20% of the total errors 
making the practical accuracy greater than the 
theoretical one. Furthermore, they reduced the 
number and the time for selections and validations. 

3) Coherence Analysis: we outline next the main 
results of a coherence analysis of the 
experimentation sessions, related to how coherent 
the execution of the trials was and how coherent the 
execution of the tasks among subjects was. We 
propose the number of selections, missions, distance 
and BCI failures normalized in time as the basis for 
this coherence study. To measure the coherence we 
use Pearson’s correlation coefficient: values close to 
one indicate strong coherence while values far from 
one indicate weak coherence. 

Firstly, the coherence between trials indicates the 
grade of similarity between the two trials executed 
for each subject in each task. For all the subjects, this 
coherence was always greater than 0.98 indicating 
that the coherence among trials is very high. We 
understand from this result that all the subjects used 
the device to solve each navigation task in a coherent 
way. 

Secondly, the coherence between subjects 
represents the grade of similarity between the trials 
executed by the subjects against the trials executed 
by the other subjects. Results of this analysis are 
shown in tables V and VI. 

Table V: Coherence between subjects, task 1 
S1 S2 S3 S4 S5

S1 1 0.962 0.984 0.953 0.981 
S2 - 1 0.941 0.951 0.976 
S3 - - 1 0.977 0.975 
S4 - - - 1 0.984 
S5 - - - - 1

Table VI: Coherence between subjects, task 2 
S1 S2 S3 S4 S5

S1 1 0.960 0.916 0.953 0.998 
S2 - 1 0.963 0.987 0.970 
S3 - - 1 0.989 0.925 
S4 - - - 1 0.959 
S5 - - - - 1

The coherence values are always greater than 0.92 so 
coherence between subjects is very high. This result 
suggests that all the subjects used the device to solve 
the navigation tasks coherently and in an analogous 
way. 

4. Design of the teleoperation system 

The ability to brain-teleoperate robots in a remote 
scenario opens a new dimension of possibilities for 
patients with severe neuromuscular disabilities: these 
rehabilitation devices provide the patients – unable 
to leave their clinical environments – with a physical 
entity embodied in a real environment (anywhere in 
the world) ready to perceive, explore, manipulate 
and interact; only controlled with the brain activity, 
which could be their only degree of freedom. 

min max mean std

Path length (m) 37.5 41.
4 39.3 1.3 

Time (sec) 507 918 659 130
Practical BCI accuracy 0.81 1 0.94 0.07 
# missions 7 12 9.2 2.9 

min max mean std
Theoretical BCI accuracy 0.85 1 0.93 0.05 
Practical BCI accuracy 0.88 1 0.95 0.04 
# Total errors 0 4 1.6 1.35 
# Useful errors 0 1 0.3 0.48 

min max mean std
Theoretical BCI accuracy 0.77 1 0.92 0.07 
Practical BCI accuracy 0.81 1 0.94 0.07 
# Total errors 0 7 1.9 2.13 
# Useful errors 0 1 0.4 0.52 



Here we report the first EEG-based human brain-
actuated teleoperation system. This brain-actuated 
teleoperation system relies on a user station (patient 
clinical environment) and a robot station (placed 
anywhere in the world), both remotely located but 
connected via internet (Figure 5). The underlying 
idea of the system is that in the user station, the 
brain-computer system decodes the user intentions, 
which are transferred to the robotic system via 
internet. The user can alternate between a robot 
navigation mode (to control the robot motion) and 
camera control (to control the camera orientation). 
Furthermore, the camera sends live video of the 
robot station environment, which is used by the user 
as visual feedback for decision making and control 
process.

Figure 5: This figure displays the design of the brain-
actuated robot, the two stations, the main systems 
and the information flow among them. 

The brain-actuated teleoperation system is 
composed by two main modules: (i) the brain-
computer system that decodes the user intentions, 
and (ii) the robotic system that executes the user’s 
decisions. Furthermore there is a communications 
system among them via internet. 

4.1. Brain-computer system 

The neurophysiological protocol followed in our 
study is based on the P300 visually-evoked potential 
as in the wheelchair system (see section 2). 
Furthermore, it incorporates a graphical interface 
with two functionalities: (i) it visually displays a 
predefined set of options that the user can select to 
control the robotic system, and (ii) it develops the 
stimulation process to elicit the P300 visual-evoked 
potential and therefore, enables the pattern 
recognition system to decode the user’s intents.  

Regarding the first functionality, the basis of the 
visual display is the live video received by the 
camera placed on the robot. This video is augmented 
by overlapped information related to the two 
teleoperation modes: the robot navigation mode and 
the camera control mode. 

The robot navigation mode allows the user to 
control the robot motion (Figure 6). Overlapped to 
the video, the environment obstacles are displayed 
by semitransparent walls. Furthermore, there is a 
grid of destinations over the floor that the operator 
can select. The obstacles hide the unreachable 
destinations of the grid. The icons in the bottom part 
represent the following actions, from left to right: (i) 
turn the robot 45º left; (ii) refresh the live video to 
perform a selection based on a more recent visual 
information of the environment; (iii) change to the 
camera exploration mode; (iv) validate the previous 
selection; and (v) turn the robot 45º right. 

Figure 6: Visual display in the robot navigation mode. 

The camera control mode allows the user to 
control the orientation of the camera to perform a 
visual exploration of the environment (Figure 7). 
Overlapped to the video there is a grid of locations, 
uniformly placed in a 2D plane in front of the 
camera, that the user can select to orientate the 
camera in that direction. The icons in the bottom of 
the screen represent the following actions, from left 
to right: (i) align the robot with the horizontal 
camera orientation and change to the robot 
navigation mode; (ii) refresh the live video; (iii) 
change to the robot navigation mode; (iv) validate 
the previous selection; and (v) set the camera to its 
initial orientation. 

Regarding the second functionality, the 
stimulation process must elicit the P300 visual-
evoked potential when the user is concentrated on a 
given option. The options of the visual display are 
“stimulated” by flashing a circle on a grid 



intersection or icon in the visual display. The 
Farwell&Donchin paradigm is followed [12] as in 
the wheelchair system; thus, the flashing of the 
stimulus is done by means of rows and columns 
instead of flashing each option individually, 
obtaining 9 stimulations (4 rows plus 5 columns) per 
sequence. We keep constant the topology of the 
augmented reality items in both teleoperation modes 
to maintain a uniform stimulation pattern. All the 
elements of the display can be customized in terms 
of color, texture, shape, size and location; and all the 
scheduling of the stimulation process (time of 
exposition of each stimulus, inter-stimulus duration 
and inter-sequence duration) can be modified to 
equilibrate the user capabilities and preferences with 
the performance of the system. 

Figure 7: Visual display in the camera exploration 
mode.

The overall system works as follows. The user 
concentrates in a given option of the visual display 
(described above). Initially, the robot is stopped, 
waiting for the user decisions, and the visual display 
starts in the navigation mode. Then, a stimulation 
process starts and an option is selected. A new 
stimulation process starts and, if the option selected 
is the validation one, the previous option is 
transferred to the robotic system; otherwise the 
process starts again. When the robotic system 
receives an option, the stimulation process stops and 
the robot executes the relevant action. Meanwhile 
the graphical interface receives the video 
information of the robot camera. Once the execution 

of the action finishes, the video transfer stops and the 
process starts again. 

4.2. Robotic system 

The robot is a commercial Pioneer P3-DX
equipped with two computers. The low-level 
computer controls the back wheels that work in 
differential-drive mode and the high-level one 
manages with the rest of the computational tasks. 

The main sensor is a SICK planar laser placed on 
the frontal part of the vehicle. It works at 5 Hz, with 
a field of view of 180º and 0.5º resolution (361 
points). This sensor provides information about the 
obstacles located in front of the vehicle. The robot is 
also equipped with wheel encoders (odometry), with 
a wireless network interface card that allows 
connecting the vehicle to a local network during 
operation, and with a pan/tilt/zoom camera Canon 
VC-C4 placed on the laser, which allows performing 
a visual exploration of the environment. 

We have incorporated to the robot the same 
autonomous navigation technology of the 
wheelchair. This technology is able to drive the 
vehicle to a given destination while also avoiding the 
obstacles, both static and dynamic, detected by the 
laser sensor [13]. This module has two 
functionalities. On the one hand, a modelling module 
integrates the sensor measurements to construct a 
local model of the environment and track the vehicle 
location. On the other hand, a local planner 
computes the local motion based on the hybrid 
combination of tactical planning and reactive 
collision avoidance. 

5. Methodology and evaluation 

In order to execute the teleoperation experiments 
and to assess the performance and adaptability of the 
brain-teleoperated robot by able-bodied users in real 
settings, several users were selected according to 
inclusion criteria in order to maintain a 
homogeneous sample as possible. Specifically, five 
healthy, 22 years old, male and right-handed 
students of the University of Zaragoza participated 
in the experiments All of these users were not the 
same from the ones of the wheelchair’s experiments, 
and none of them had ever utilized any similar 
device. The study was accomplished in two phases: 
screening and training evaluation, and teleoperation 
evaluation. 



The objective of the first session was to screen 
and to train the subjects for the next stage, and to 
come up with the graphical interface that better 
equilibrated the user capabilities and preferences 
with the performance of the system.  

The objective of the second session was to test 
the teleoperation between remote places (two cities) 
and to record the data for a posterior evaluation. The 
experiments were accomplished the week of June, 
23th 2008, between the BCI laboratory at the 
University of Zaragoza (Spain) and the University of 
Vilanova i la Geltrú (Spain), at a distance of 260km. 
We designed two tasks in two different circuits that 
combined jointly navigation and visual exploration 
to evaluate the boundaries of the system and to 
assess its performance: task 1 addresses navigation 
in constrained spaces with an active search of two 
visual targets, task 2 addresses navigation in open 
spaces with an active search of one visual target. 

Concretely, next is detailed a general evaluation 
of the teleoperated robot, a particular evaluation of 
the brain-computer system and a coherence analysis. 

Regarding the results of the experiments, we 
outline here the results obtained in the experimental 
sessions (Figure 8). The reader is directed to [16] for 
more details on the evaluation. 

1) Overall performance: following [11] the 
subsequent metrics are proposed for the study: 

• Collisions: number of collisions. 
• Path length (m): distance travelled by the robot. 
• Time (sec): time taken to accomplish the task. 
• Missions: number of missions to complete the 

task, i.e. selection of goal + validation. 
• BCI accuracy: recognition rate of the BCI 

system. 

The results are summarized in tables VII and 
VIII.

Table VII: Overall performance, task 1 

Table VIII: Overall performance, task 2 

All the subjects solved two times each task 
demonstrating that they were able to combine the 
navigation and camera control capabilities of the 
device. There were no collisions. The path length 
and the number of missions were similar for all the 
subjects in the two tasks, which indicate a similar 
performance. The variability of the total time across 
subjects is significative since the number of 
stimulation sequences of the BCI changed among 
them. This is because the number of sequences had 
to be customized for each subject to achieve a 
minimum of BCI accuracy (more sequences involves 
more accuracy, but also more stimulation duration). 
The BCI accuracy was very high, on average about 
90%.

In conclusion, the results suggest a high 
performance of the brain-teleoperated robot. Notice 
that both tasks were designed to test the combination 
of both teleoperation modes in different working 
conditions (navigation in constrained and open 
spaces; and visual search of one or two targets that 
do not fit in the initial camera field of view). 

2) BCI performance: Based on [15], the next 
metrics were proposed to assess the BCI 
performance: 

• Real BCI accuracy: BCI correct selections vs 
total. 

• Practical BCI accuracy: correct selections plus 
useful errors vs total. 

• Total errors: number of incorrect selections. 
• Useful errors: incorrect selections that the user 

decided to reuse to accomplish the task. 

min max mean Std

Path length (m) 10.9
9

13.5
3 11.84 0.90 

Time (sec) 685 1249 918 163
# missions 12 19 13.9 2.3 
Practical BCI acc 0.83 1.00 0.92 0.07 

min max mean Std

Path length (m) 19.6
8

21.8
3 20.68 0.63 

Time (sec) 706 1126 910 154
# missions 10 15 11.7 1.6 
Practical BCI acc 0.78 1.00 0.89 0.07 

Figure 8: Snapshots of different moments during the experiments. 



The results are summarized in tables IX and X. 

Table IX: BCI system performance, task 1 

Table X: BCI system performance, task 2 

The convention [17] used to assess that a person 
is able to use a BCI is when his accuracy is above 
80%. In our experiments, the real accuracy was 90% 
and 86% (on average). We have distinguished 
between the real and the practical accuracy, since in 
some situations, although the BCI system failed, the 
selection was reused by the subject to achieve the 
task. These useful errors turn the practical accuracy 
(92% and 89%) greater than the real one. The BCI 
system set two incorrect missions to the robotic 
system in all the executions (representing in total a 
0.78%), which is twice the theoretical probability of 
this situation (0.3%). 

3) Coherence Analysis: We outline next the main 
results of a coherence analysis of the experimental 
sessions. The first one is related to how coherent was 
the execution of the trials of each one of the tasks, 
and the second one is related to how coherent was 
the execution of the tasks among subjects. We 
propose as metrics the number of selections, the 
number of missions, and the distance traveled (all of 
them normalized in time). The coherence is 
described by Pearson’s correlation coefficient, 
whose values close to one indicate strong coherence 
while values far from one indicate weak coherence. 

On the one hand, the coherence between trials 
indicates the similitude grade among the two trials 
executed for each subject in each task. For all 
subjects, we computed the correlation of the 
previous metrics across trials. The result was that the 
coherence across subjects in the tasks is always 
greater than 0.98, indicating a strong coherence 
among trials. Thus, these results suggest that all the 
subjects used coherently the device to solve each 
task. 

On the other hand, the coherence between 
subjects indicates the similitude grade between the 
executions of the tasks. For all subjects, we 
computed the correlation of the previous metrics. 

Results of this analysis are shown in tables XI and 
XII. The coherence values are very high (always 
greater than 0.87). These results suggest that all the 
subjects used the device to solve the tasks coherently 
and in an analogous way. 

Table XI: Coherence between subjects, task 1 

Table XII: Coherence between subjects, task 
2

S1 S2 S3 S4 S5

S1 1 0.96 0.98 0.96 0.93 
S2 - 1 0.97 0.97 0.95 
S3 - - 1 0.92 0.99 
S4 - - - 1 0.87 
S5 - - - - 1

6. Conclusions 

This paper describes two EEG-based human 
brain-actuated robotic devices for rehabilitation. On 
the one hand, we describe a new brain-actuated 
wheelchair concept that relies on a synchronous 
P300 brain-computer interface integrated with an 
autonomous navigation system. This combination 
gives great accuracy in the interaction and flexibility 
to the user, since the wheelchair can autonomously 
navigate in unknown and evolving scenarios using 
the onboard sensors. On the other hand, we describe 
a brain-actuated robotic system to carry out 
teleoperation tasks between remote places via 
internet. In operation the user can combine two 
teleoperation modes (robot navigation and camera 
control) to solve visual exploration tasks where the 
robot must also navigate in the environment. 

The wheelchair was used and validated by five 
healthy subjects in three consecutive steps: 
screening, virtual environment driving and 
wheelchair driving sessions. The teleoperation 
system was validated with five healthy subjects, 
which performed pre-established navigation and 
visual exploration tasks for one week between two 
cities 260km far away. During the real experiments, 
both systems showed high performance since all the 
subjects accomplished two different tasks with 
relative easiness. Notice that the experiments were 
carried out in settings designed to cover typical 
navigation situations, such as open spaces and 
complex maneuverability; combined with 
exploration tasks in the case of the teleoperation 
system. The overall result is that all the subjects 
successfully used the devices with relative ease 
showing a great adaptation and coherence. This 

min max mean std

Real BCI accuracy 0.81 1.0
0 0.90 0.08 

Practical BCI accuracy 0.83 1.0
0 0.92 0.07 

# Total errors 0 6 2.90 2.56 
# Useful errors 0 2 0.60 0.84 

min max mean std

Real BCI accuracy 0.73 1.0
0 0.86 0.09 

Practical BCI accuracy 0.78 1.0
0 0.89 0.07 

# Total errors 0 11 4.90 3.70 
# Useful errors 0 5 1.20 1.81 

S1 S2 S3 S4 S5

S1 1 0.962 0.984 0.953 0.981 
S2 - 1 0.941 0.951 0.976 
S3 - - 1 0.977 0.975 
S4 - - - 1 0.984 
S5 - - - - 1



study shows the feasibility of these technologies in 
humans and using non invasive techniques. 

As future work, we are working on the 
improvement of the wheelchair system to reduce the 
recognition time by developing a P300 continuous 
control of the system. Although the BCI accuracy is 
high, we are also working on the integration of BCI-
based online error detection system to improve it. In 
the teleoperation system we are now working in the 
incorporation of high level tasks to improve the 
navigation (e.g. with tasks like people tracking and 
following), and the exploration (e.g. tracking and 
aligning the camera with the location of specific 
sounds or voices); and in the integration of this 
system in small, low-cost robots. 

An interesting future work would be to perform 
experiments of both rehabilitation devices with 
patients with neuromuscular disabilities to evaluate 
the real usefulness of them. 
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