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Abstract— One fundamental limitation of EEG-based brain-
computer interfaces is the time needed to calibrate the system
prior to the detection of signals, due to the wide variety of issues
affecting the EEG measurements. For event-related potentials
(ERP), one of these sources of variability is the application
performed: Protocols with different cognitive workloads might
yield to different latencies of the ERPs. In this sense, it is still
not clear the effect that these latency variations have on the
single-trial classification. This work studies the differences in
the latencies of error potentials across three experiments with
increasing cognitive workloads. A delay-correction algorithm
based on the cross-correlation of the averaged signals is
presented, and tested with a single-trial classification of the
signals. The results showed that latency variations exist between
different protocols, and that it is feasible to re-use data from
previous experiments to calibrate a classifier able to detect the
signals of a new experiment, thus reducing the calibration time.

I. INTRODUCTION

EEG-based brain-computer interfaces (BCIs) rely on clas-
sifiers that are trained during a calibration phase, to build
a translation algorithm that transforms EEG features into
the control signals for a device (see [1] for a review). One
fundamental limitation of current BCI technology is the
duration of the calibration phase, as it represents a long
period before the usage of the device. This calibration is user-
and application-specific due to the wide variety of issues that
affect the EEG measurements.

On one hand, for asynchronous BCIs (i.e., those not
relying on external cues, usually based on motor imagery
of body limbs), these issues are session-dependent –both
within one session and among different sessions–, such as
the intrinsic non-stationarity nature of the EEG [2], or the
motivation of the user [3]; and they are user-dependent, such
as the EEG spectral power of specific frequency bands during
resting periods [4]. Some studies have designed machine
learning techniques to cope with this variability in the EEG
signals to either reduce the calibration time [5] or improve
the classifier performance [2].

On the other hand, synchronous BCIs (i.e, those relying on
external cues, usually based on event-related potentials, ERP)
need to deal with other sources of variability in the EEG,
which are observed in the amplitude and the latency of the
ERP components. For instance, early components (< 200 ms
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after the stimulus presentation) of the ERP can be affected
by factors such as the spatial attention [6]; the arousal or
the valence [7], and the stimuli contrast [8]. In turn, late
components (> 200 ms) of the ERP are affected by the
probability of appearance of the expected stimulus [8]; the
inter-stimulus interval [9]; user-dependent factors such as the
age and the cognitive capabilities [10], and cognitive aspects
such as the stimulus evaluation time (i.e., the amount of time
required to perceive and categorize a stimulus) [8], [11].
Although studies have demonstrated that existing machine
learning techniques are rather robust to small variations in
the amplitudes of the ERPs [12], it is still not clear the
effect that the latency variations of the ERP components
have on the single-trial classification. In fact, if the effect
of the latency variations of the ERPs is large on the single
trial classification, this could explain why in BCI it is always
necessary to build a new classifier from scratch for each new
application (as the ERPs are highly dependent [6]–[11] on
the experiment). We hypothesize that by dealing with the
latency variations among ERPs it could be possible to re-use
information from previous experiments to train a classifier
for a new experiment, thus reducing the calibration time.

This paper describes an algorithm to deal with the latency
differences between ERPs of different experiments, which
allows for the use of ERPs from one protocol to be used for
training classifiers for a new protocol. The algorithm was
tested on observation error potentials (ErrP) [12], in three
different experiments with increasing cognitive workloads
(including an experiment involving a real robotic arm). The
results illustrate how the different protocols affect the latency
of the potentials. Furthermore, we show that the use of the
delay correction allowed for the reduction of the calibration
time by using a classifier trained with the potentials from a
previous experiment to detect the potentials from a new one.

II. METHODS

A. Data Recording

The instrumentation used to record the EEG was a gTec
system with 16 active electrodes located at Fz, FC3, FC1,
FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2,
and CP4 according to the 10/10 international system. The
ground and reference were placed on the forehead and the
left earlobe, respectively. The EEG was digitized at 256 Hz,
power-line notch filtered at 50 Hz, and zero-phase band-pass
filtered at [1, 10] Hz. The EEG was recorded by a custom-
made C++ application running under Linux. Synchronization
of the stimuli onset with the EEG was made with a hardware
trigger to assure a good time-event resolution.



Fig. 1. Experiments performed (from left to right: experiments 1 to 3).

B. Experimental Setup

Six participants (five males and one female, mean age
27.33 ± 2.73 years) performed the experiments, always in
the same order as presented below. Each participant executed
each experiment in one session of ∼ 2.5 hours, and the time
elapsed between experiments was 17.58± 10.09 days.

Three experimental conditions were designed (see Figure
1) to elicit the error potentials. The experiments presented
different setups (and devices) with progressively higher cog-
nitive workloads in order to assess changes in the potentials.
The goal of the device was to reach a target by moving along
different positions. The device executed random actions with
approximately 20% probability of performing an erroneous
movement. The time between two actions was random and
within the range [1.7, 4.0] s. The target position was ran-
domly changed after 100 actions. The participants were in-
structed to observe the device movements and evaluate them
as correct when they were towards the target position, and as
incorrect otherwise, thus eliciting correct and error potentials.
The participants were asked to restrict eye movements and
blinks to specific resting periods.

1) Experiment 1, Virtual Moving Square [12]: This exper-
iment consisted of a one-dimensional space with 9 possible
positions (marked by a horizontal grid), a blue square (de-
vice) and a red square (target). The device could execute two
actions: move one position to the left or to the right. For each
subject, approximately 600 trials were acquired.

2) Experiment 2, Simulated Robotic Arm: This experi-
ment consisted of a two-dimensional space with 13 possi-
ble positions (marked in orange), a simulated robotic arm
(Barrett WAM) with 7 degrees of freedom (device) [13] and
a green square (target). The robot was situated behind the
squares pointing at one position, and could perform four
possible actions: moving one position to the left, right, up, or
down. The device’s movements between two positions were
continuous, lasting ∼ 500 ms. For each subject, approxi-
mately 800 trials were acquired.

3) Experiment 3, Real Robotic Arm: This experiment
followed the configuration of Experiment 2 but using a real
Barret WAM. The user was seated two meters away from the
robot. A transparent panel was used to mark the positions,
and the distance between two neighbor positions was 15 cm.
For each subject, approximately 800 trials were acquired.

C. Delay Correction for Error-Related Potentials

As stated before, different experimental protocols could
yield different latencies of the ERP components [8]. The
objective of the delay correction algorithm was to remove
latency variations of the potentials between two experimental
conditions. The algorithm worked as follows: Let P and Q
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Fig. 2. Delay correction of two difference averages. The cross-correlation
function of gP and gQ, CQ

P , is computed by applying different delay shifts
to gQ. The delay d∗PQ is computed as the maximum value of CQ

P . Three
time points of the correlation are shown as an example, where the black
line represents gQ for the window [0, 1000] ms, and the blue and red lines
are gP and gQ for x ∈ [1, T ] ms, with T = 500 ms.

be the datasets from both experimental conditions including
trials from both error and correct potentials. Firstly, the aver-
aged signals from both datasets were computed for the error
and correct potentials, for channel FCz. Then, the difference
average (error minus correct averages) was calculated for
each condition, and denoted gP (x) and gQ(x). Finally, the
cross-correlation of gP (x) and gQ(x) was computed as:

CQ
P (d) =

∑T
x=1

[(
gP (x)− gP

)(
gQ(x+ d)− gQ

)]√∑T
x=1

(
gP (x)− gP

)2√∑T
x=1

(
gQ(x+ d)− gQ

)2
where x ∈ [1, T ] is the time range used to perform the

correlation, and d the delay. Thus, it was assumed that there
was a positive delay between P and Q (i.e., the difference
average was elicited earlier on P ). Once the correlation was
computed, the delay was calculated as d∗PQ = max(CQ

P )
(note that ideally d∗PQ = −d∗QP ). Figure 2 shows an example
of correlation between two difference grand averages.

D. Feature Extraction

Feature extraction was based on a spatio-temporal filter
[14]. The filter input was a dataset including trials from
error and correct potentials, and the output were the features.
The filter presented the following steps: Firstly, the input
EEG data were common-average-reference (CAR) filtered.
Then, for each trial, eight fronto-central channels (Fz, FC1,
FCz, FC2, C1, Cz, C2, and CPz) within a time window of
[200, 800] ms were downsampled to 64 Hz, and concatenated
to form a vector of 312 features. The feature vectors of all
trials were normalized, and then decorrelated using PCA,
retaining 95% of the explained variance. Finally, the k-most
discriminant features were selected based on the r2 metric
[15] by a ten-fold cross-validation.

E. Methods for the Single-Trial Classification Study

The objective of the classification study was to analyze
whether the delay correction allowed for the use of data
from a previous experiment i to train a classifier able to
detect data from another experiment j (and thus reducing
the calibration time of the experiment j). Single-trial classi-
fication was carried out using a linear discriminant analysis
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Fig. 3. (a-c) Grand averages in channel FCz, averaged for all subjects for experiments 1 to 3. (d) Difference grand average for experiments 1 to 3. Time
0 ms indicates when the device started the action.

(LDA) [2]. The analysis was performed by comparing three
different classifiers. The first one, denoted baseline classifier,
followed the standard calibration approach of current BCIs,
where the classifier was trained with a subset from the new
experiment j (denoted Ej). The classifier was evaluated with
training subsets of different sizes (from 10 to 200 trials
with increments of 10 trials) to assess the accuracy of the
classifier for different calibration times. The second classifier
was trained using all data from experiment i (denoted Ei)
without correcting the delay, and the same subsets of Ej

as in the baseline classifier. The third classifier was trained
as the previous one, but using the delay-corrected dataset
Ei. To compute the delay d∗EiEj

, the window for the cross-
correlation function was fixed to T = 500 ms. Note that
the delay was calculated using only the train datasets Ei

and Ej . Then, the classifier was trained with the dataset
Ei using the time window [200, 800] − d∗EiEj

ms, and the
dataset Ej using the original time window of [200, 800]
ms (c.f. subsection II-D). These three classifiers were tested
on a fixed number of trials (400 trials) from experiment j
not included in the training dataset. The combinations of
experiments tested were E1E2, E1E3, and E2E3.

III. RESULTS

A. Error Potentials Analysis
Figure 3a-c shows the error, correct and difference grand

averaged potentials in channel FCz for the three experiments.
The difference grand averages obtained were in agreement
with previous studies on ErrPs [12], with two early positive
and negative peaks (denoted here P2 and N2, see Fig. 3a),
and two broader positive and negative peaks (denoted P3
and N4). Despite the fact that the signals from the three
experiments elicited error potentials, the time latency of the
difference average changed across experiments (Fig. 3d).

A one-way within-subjects ANOVA was performed to
analyze the differences among experiments in the most
prominent peaks of the difference average (P3 and N4).
For each component (P3 and N4), two separate ANOVAs
were computed, with the dependent variable being the peak
latency and the peak amplitude. When needed, the Geisser-
Greenhouse correction was applied to data to assure spheric-
ity. No statistical differences were found on the peak ampli-
tudes for the P3 component (F (2, 10) = 0.621, p = 0.557)
or the N4 component (F (2, 10) = 1.376, p = 0.297). On the
other hand, statistical differences were found for the delays
of both the P3 component (F (2, 10) = 43.845, p = 0.00001)
and the N4 component (F (1.05, 5.25) = 11.198, p = 0.018).
Thus, the main differences of the error processing activity

among experiments were due to latency variations of the
components, while the amplitudes remained similar.

B. Delay Correction and Single-Trial Classification

Figure 4 displays the mean accuracy and the classifier bias
(defined as the difference between error and correct accura-
cies) obtained for the three classifiers, for each experiment
combination. The results are averaged across all subjects.

For the E1E2 case (Fig. 4 left), the baseline classifier
increased as more trials were added to the training set,
reaching a mean accuracy of 69.34% after 200 trials. The
use of data from experiment 1 without correcting the delay
did not improve the accuracy or time, and always produced
worse accuracies (62.08% after 200 trials). In contrast, using
the delay-corrected data from experiment 1, only 20 trials
(around 1 minute of EEG) from experiment 2 were suffi-
cient to reach a better accuracy (70.04%) than the baseline
classifier after 200 trials. Furthermore, the accuracies of
the delay-corrected classifier were always better than the
baseline classifier, reaching 74.60% after 200 trials. Thus,
the delay-corrected data allowed for an improvement in both
calibration time and classification accuracy. Regarding the
bias of the classifiers, the delay-corrected classifier achieved
a very low bias even when using only a small amount of data
from experiment 2. In contrast, the baseline classifier had a
larger bias. After 200 trials, the bias of the delay-corrected
classifier was of 10.74% versus a 25.32% for the baseline.

For the E1E3 case (Fig. 4 center), the baseline classifier
reached an accuracy of 70.88% after 200 trials. Again, when
the delay was not corrected, the performance of the classifier
was worse, reaching 60.91% after 200 trials. On the other
hand, the delay-corrected classifier obtained better accuracies
than the baseline classifier for a low number of trials (for
instance, after 50 trials, the improvement with respect to the
baseline was 5.29%). However, after 200 trials the accuracies
of the delay-corrected and baseline classifiers were similar.
Thus, the delay-corrected data allowed for an improvement
in the calibration time but not in the classification accuracy.
Nonetheless, the bias of the delay-corrected classifier was
always lower than the bias of the baseline classifier (e.g.,
14.86% versus 41.34% for 50 trials).

For the E2E3 case (Fig. 4 right), the delay-corrected clas-
sifier also outperformed the baseline classifier. After 90 trials,
the delay-corrected classifier reached a 69.59% accuracy.
In this case, correcting the delay reduced the calibration
time to half of the baseline classifier time. However, in this
case the best results were obtained when not correcting the
delay, indicating that the classifier was not affected by delay
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Fig. 4. Mean accuracy (Top) and classifier bias (Bottom) when correcting the delay from E1E2, E1E3 and E2E3. The x-axis represents the number
of trials used for the Ej dataset. Blue-dashed, green-dotted and red-solid lines represent, respectively, the results for the baseline classifier, the classifier
trained without correcting the delay, and the classifier trained when correcting the delay.

differences as in the previous cases. For this case, the bias
of the delay-corrected and the baselines classifiers remained
similar (∼ 26%) with more than 90 trials.

Finally, Table I shows the estimated delays between exper-
iments when using 200 trials from Ej . The delay between the
experiments was always positive, indicating that all subjects
needed more time to evaluate the stimulus when moving to
more complex experiments. However, there were substantial
variations across subjects. For instance, for the E2E3 case,
the delays ranged from 23.44 ms to 89.84 ms.

TABLE I
DELAY BETWEEN EXPERIMENTS (MS)

s1 s2 s3 s4 s5 s6 mean

d∗E1E2
82.03 54.69 31.25 70.31 46.88 89.84 62.50± 22.23

d∗E1E3
152.34 113.28 101.56 121.09 66.41 140.63 115.89± 30.43

d∗E2E3
89.84 62.50 54.69 50.78 23.44 82.03 60.55± 23.79

IV. CONCLUSIONS AND FUTURE WORK

ERP-based BCI systems need a calibration phase to train
the system due to the large variability of the EEG. A
fundamental issue in these systems is the time needed for
this calibation phase, since it is necessary to build a classifier
from scratch for every new application. This paper has shown
that a source of variability of the ERPs are the latency varia-
tions among experiments with different cognitive workloads,
as confirmed by the statistical analysis (c.f. Section III-A).
In this sense, a delay-correction algorithm based on cross-
correlation was designed to remove these latency variations,
allowing for the re-use of data from previous experiments to
reduce the calibration time during a new one.

The proposed technique has been tested with an LDA
classifier. The use of delay-corrected potentials always re-
duced the calibration time and produced a lower bias between
the two classes. Furthermore, the technique always achieved
similar or better accuracies than the classifier calibrated
following the standard procedure. The delay correction was
crucial for a successful re-use of data from other experi-
ments, since the results without delay correction were worse
than or similar to other approaches.

As future work, the authors plan to test the delay correc-
tion algorithm on additional ERPs (such as P300 potentials)

and during online experiments.
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