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A Telepresence Mobile Robot Controlled With a
Noninvasive Brain–Computer Interface

Carlos Escolano, Javier Mauricio Antelis, and Javier Minguez

Abstract—This paper reports an electroencephalogram-based
brain-actuated telepresence system to provide a user with presence
in remote environments through a mobile robot, with access to
the Internet. This system relies on a P300-based brain–computer
interface (BCI) and a mobile robot with autonomous navigation
and camera orientation capabilities. The shared-control strategy
is built by the BCI decoding of task-related orders (selection of
visible target destinations or exploration areas), which can be au-
tonomously executed by the robot. The system was evaluated using
five healthy participants in two consecutive steps: 1) screening and
training of participants and 2) preestablished navigation and vi-
sual exploration telepresence tasks. On the basis of the results, the
following evaluation studies are reported: 1) technical evaluation
of the device and its main functionalities and 2) the users’ behavior
study. The overall result was that all participants were able to
complete the designed tasks, reporting no failures, which shows
the robustness of the system and its feasibility to solve tasks in
real settings where joint navigation and visual exploration were
needed. Furthermore, the participants showed great adaptation to
the telepresence system.

Index Terms—Brain computer interfaces, rehabilitation robot-
ics, telerobotics.

I. INTRODUCTION

B RAIN–COMPUTER interfaces (BCIs) provide users with
communication and control using only their brain activ-

ity. BCIs do not rely on the brain’s normal output channels
of peripheral nerves and muscles, opening a new valuable
communication channel for people with severe neurological
or muscular diseases, such as amyotrophic lateral sclerosis
(ALS), brain-stem stroke, cerebral palsy, and spinal cord injury.
The ability to work with noninvasive recording methods (the
electroencephalogram or EEG is the most popular method) is
one of the major goals for the development of brain-actuated
systems for humans. Some examples of EEG-based applica-
tions include the control of a mouse on a computer screen [1],
communication such as spellers [2], Internet browsers [3], etc.
The first noninvasive brain-actuated control of a physical device
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was demonstrated in 2004 [4], and since then, research has
been mainly focused on wheelchairs [5]–[8], manipulators [9],
[10], small-size humanoids [11], and orthosis operated with
functional electrical stimulation [12], [13], to name a few. All
these developments have a property in common: user and robot
are placed in the same environment.

Very recent research has focused on BCI applications where
the human and the robot are not colocated, such as in robot tele-
operation. Some examples include a museum guide robot [14],
the teleoperation of a manipulator robot [9], an aircraft [15], or
mobile robots [16], [17]. The ability to brain-teleoperate robots
in a remote scenario could provide severely disabled patients
with telepresence. Telepresence could be seen as an extension
of the sensorial functions of daily life by means of a physical
device, embodied in the real environment and placed anywhere
in the world, which could perceive, explore, manipulate, and
interact with the remote scenario, and controlled only by brain
activity. Furthermore, it has been suggested that the use of these
BCIs could have a neurorehabilitation effect and/or a mainte-
nance of neural activity, avoiding or delaying the extinction of
thought, hypothesized to occur in patients like ALS [18].

There are three major engineering problems in the design
of this type of systems: 1) Current noninvasive BCIs are slow
and uncertain; 2) BCIs when used as input interfaces are
highly cognitive demanding; and 3) the variable and uncertain
communication time delays in any development involving robot
teleoperation via the Internet. For these reasons, research works
have started to look at these systems from a shared-control
point of view, where the robot is equipped with a degree of
intelligence and autonomy that totally or partially manages the
task (alleviating the previous problems). This principle was
initially explored in the context of BCI control of wheelchairs
[5], [6], [19] and very recently applied to BCI telepresence [17].
This paper is in line with these works.

The present BCI telepresence system relies on a synchronous
P300-based BCI and a mobile robot with autonomous naviga-
tion and camera orientation capabilities (see [20] for reviews
on BCIs and [21] on navigation systems). During operation, the
user concentrates on the desired option on a computer screen,
which displays live video sent by the robot along with relevant
information related to robot motion or camera orientation tasks.
Following the typical P300 visual stimulation processes, the
BCI collects the EEG brain activity and decodes the user’s in-
tentions, which are transferred to the robot via the Internet. The
robot autonomously executes the orders using the navigation
system (implemented with a combination of dynamic online
grid mapping with scan matching, dynamic path planning, and
obstacle avoidance) or the camera orientation system. Thus, the
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shared-control strategy is built by means of the mental selection
of robot navigation or active visual exploration task-related
orders, which can be autonomously executed by the robot. In
principle, this shared-control design shapes the low information
transfer rates (ITRs) of existing BCIs, avoids the exhausting
mental effort of BCIs that require continuous control, and over-
comes the Internet delay problems in the control loop. In rela-
tion to the shared-control approach used in [17] to teleoperate
a mobile robot, which relies on a motor imagery BCI and low-
level robot motion primitives, the contribution of the present
engineering system is a shared-control design that incorporates
a much higher degree of autonomy in the robotic layer.

An added value of this research is the experimental method-
ology and validation protocol, which could guide future de-
velopments. The telepresence system was evaluated using five
healthy participants in two consecutive steps: 1) screening and
training of participants and 2) preestablished navigation and vi-
sual exploration tasks performed during one week between two
laboratories located 260 km apart. On the basis of the results,
the following analyses are reported: 1) technical evaluation of
the device and its main functionalities and 2) the users’ behavior
study. The overall result was that all participants were able to
complete the designed tasks, reporting no failures, which shows
the robustness of the system and its feasibility to solve tasks in
real settings where joint navigation and visual exploration are
needed. Furthermore, the participants showed great adaptation
to the system.

In relation to our previous work, partial results were outlined
in [22]. This paper reports the complete results of the inves-
tigation and is organized as follows: Section II describes the
brain-actuated telepresence technology, Section III describes
the experimental methodology, Section IV reports the results
and evaluations, and conclusions are drawn in Section V.

II. TELEPRESENCE TECHNOLOGY

The telepresence system consisted of a user station and a
robot station, both remotely located and connected via the
Internet (Fig. 1). At the user station, the BCI decodes the
user’s intentions, which are transferred to the robotic system
via the Internet. At the robot station, the user’s decisions are au-
tonomously executed using autonomous navigation and active
visual exploration capabilities. Furthermore, the robot station
provides live video (captured by the robot camera), which is
used by the user as visual feedback for decision making and
process control. From an interactional point of view, the user
can switch between two operation modes: 1) robot navigation
mode and 2) camera exploration mode. According to the oper-
ation mode, the graphical interface displays a set of augmented
reality locations to navigate to or visually explore. The user then
concentrates on the desired location, and a visual stimulation
process elicits the P300 visual-evoked potential enabling the
pattern-recognition strategy to decode the desired location. Fi-
nally, the target location is transferred to the robotic system via
the Internet, which autonomously executes the relevant orders:
1) In the robot navigation mode, the autonomous navigation
system drives the robot to the target location while avoiding col-
lisions with obstacles detected by its laser sensor, and 2) in the

Fig. 1. Design of the robotic telepresence system actuated by a noninvasive
BCI with main modules and information flow.

camera exploration mode, the camera is oriented to the target
location, performing a visual exploration of the environment.

The next sections outline the three main modules that com-
pose the global system: brain–computer system (protocol and
EEG acquisition, graphical interface, and pattern-recognition
strategy), robotic system, and integration between the systems.

A. BCI: Protocol and EEG Acquisition

The BCI was based on the P300 visual-evoked potential [23].
In this protocol, the user attends to one of the possible vi-
sual stimuli, and then, the brain–computer system detects the
elicited potential in the EEG. The P300 potential is character-
ized by a positive deflection in the EEG amplitude at a latency
of approximately 300 ms after the target stimulus is presented
within a random sequence of nontarget stimuli [Fig. 2(a) and
(b)]. Elicitation time and amplitude are correlated to fatigue of
the user and to saliency of stimulus (color, contrast, brightness,
etc.) [24]. This potential is always present as long as the user is
attending to the process, and its variability among users is rela-
tively low. BCIs based on this potential have been successfully
used in patients for long periods of time in different assistive
applications (see review in [25]).

EEG was acquired using a commercial gTec EEG system
(EEG cap, 16 electrodes, and a gUSBamp amplifier). The
electrodes were located at Fp1, Fp2, F3, F4, C3, C4, P3, P4, T7,
T8, CP3, CP4, Fz, Pz, Cz, and Oz, according to the international
10/20 system, as suggested in previous studies [26]. The ground
electrode was positioned on the forehead (position Fpz), and
the reference electrode was placed on the left earlobe. The EEG
was amplified, digitalized with a sampling frequency of 256 Hz,
power-line notch filtered, and bandpass filtered between 0.5 and
30 Hz. Graphical interface and signal recording and processing
were developed through the BCI2000 platform [27], placed on
an Intel Core2 Duo processor at 2.10 GHz with Windows XP
operating system (OS).
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Fig. 2. (a) Grand average of the P300 response. The dashed line is the
averaged EEG activity on Pz elicited by the target stimulus, and the solid line
is the averaged EEG for the nontarget stimuli. (b) Topographical plot of the
distribution of r2 values on the scalp at 300 ms. r2 indicates the proportion of
single-trial signal variance due to the desired target [27]. (c) r2 values for each
location in an interval of 0–800 ms after the onset of stimulus target. Values are
displayed in a color scale (higher values are found at a latency of approximately
300 ms).

B. BCI: Graphical Interface

The brain–computer system incorporated a graphical inter-
face with two functionalities: 1) to provide the user with the
functionalities to control the robot and visual feedback of the
robot environment and 2) to develop the visual stimulation
process to trigger the P300 potentials.

a) Visual Display: In both operation modes (robot navi-
gation and camera exploration), the visual display showed an
augmented reality reconstruction of the robot environment over-
lapped with live video background (Fig. 3). The reconstruction
displayed a predefined set of options, arranged in a 4 × 5 matrix
to favor the next pattern-recognition strategy. In the robot nav-
igation mode, a set of possible destinations was represented by
a (1.5 m, 2.5 m, 4 m) × (−20◦,−10◦, 0◦, 10◦, 20◦) polar grid
referenced on the robot. Destinations were selected as a com-
promise between utility and good visualization and represented
real locations in the environment that the user could select.
Obstacles were depicted as semitransparent walls built from a
2-D map constructed in real time by the autonomous navigation
technology, hiding unreachable destinations. The row of icons
in the lower part of the display represented the following
options, from left to right: 1) turn the robot 45◦ to the left; 2) re-
fresh option; 3) change to camera exploration mode; 4) validate
the previous selection; and 5) turn the robot 45◦ to the right.
In the camera exploration mode, destinations were uniformly
placed on a 2-D grid, which mapped a set of locations that the

Fig. 3. Visual display (upper section of the figure) in robot navigation mode
and (lower section of the figure) in camera exploration mode. An individual
visual stimulus represented by a blue circle is shown in both figures; however,
the real stimulation process was accomplished by means of rows and columns.

user could select to orientate the camera in that direction. The
row of icons in the lower part of the display represented the
following options, from left to right: 1) align the robot with
horizontal camera orientation and change to robot navigation
mode; 2) refresh option; 3) change to robot navigation mode;
4) validate the previous selection; and 5) set the camera to its
initial orientation. The refresh option allowed the user to receive
live video for 20 s, freezing the stimulation process in that inter-
val. Further information on an improved version of the present
visual display, which incorporates bidirectional communication
along the lines of a video conference, can be found in [28].

b) Stimulation Process: A visual stimulation process was
designed to elicit the P300 visual-evoked potential. The options
of the visual display were “stimulated” by flashing a circle on
them. The Farwell and Donchin paradigm [29] was followed
to reduce the magnitude of the posterior classification problem
and sequence duration (a sequence is a stimulation of all options
in a random order as required by the P300 oddball paradigm).
Flashing of stimulus was accomplished by means of rows and
columns instead of flashing each option individually, obtaining
9 stimulations per sequence (4 rows plus 5 columns) instead of 20.
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All visual aspects of the elements shown on the visual
display (color, texture, shape, size, and location) as well as all
scheduling of the stimulation process (mainly stimulus dura-
tion, interstimulus interval, and number of sequences) could be
customized to equilibrate the user’s capabilities and preferences
with the performance of the system. Note that the P300 poten-
tial is correlated to these aspects.

C. BCI: Pattern-Recognition Strategy

A supervised pattern-recognition technique was used to
recognize the P300 visual-evoked potential. This technique was
applied offline to previously recorded EEG, where the user
attends to a predefined sequence of targets. The technique
consisted of two steps: 1) feature extraction and 2) classification
algorithm.

a) Feature Extraction: In order to extract features, EEG
data were first preprocessed following the technique described
by Krusienski et al. [26]: 1-s vectors of data were extracted
after each stimulus onset for each EEG channel, and these
segments of data were then filtered using the moving average
technique and downsampled by a factor of 16. Selection of
input channels for the classifier was based on the r2 metric [27].
For each channel, this metric computes the variance between
target and nontarget feature vectors (note that each feature
vector could be labeled as target or nontarget according to
whether the stimulus was attended to or not by the user). Thus,
r2 values for each channel were plotted [Fig. 2(c)], and the
channels with higher r2 were selected through visual inspection
(a priori, those channels will be the best to discriminate through
a linear classifier). Finally, following the study of Krusienski
et al. [26] again, the feature vectors of selected channels were
normalized and concatenated, creating a single-feature vector
for the classification algorithm.

b) Classification Algorithm: Two classification subprob-
lems were obtained following the adoption of the Farwell and
Donchin paradigm in the stimulation process. The StepWise
Linear Discriminant Analysis (SWLDA) was used for each
subproblem. SWLDA is an extension of the Fisher linear
discriminant analysis (FLDA), which performs a reduction
in the feature space by selecting the most suitable features
to be included in a discriminant function. This classification
algorithm has been extensively studied for P300 classification
problems, obtaining very good results in online communication
using visual stimulation [30].

The P300 signal-to-noise ratio is low, but it can be improved
by averaging the responses through repetitions of the stimula-
tion process (number of sequences). This leads to higher classi-
fication accuracy at the cost of longer stimulation time (time of
a sequence in the stimulation process is approximately 2 s). The
number of sequences is usually customized per user (Fig. 4).

D. Autonomous Robotic System

The robot was a commercial Pioneer P3-DX, equipped with
a laser sensor, a camera, back wheels (working in a differential-
drive mode), wheel encoders (odometry), and a network inter-
face card. The main sensor was a SICK planar laser placed on

Fig. 4. BCI classification accuracy versus the number of sequences of the
stimulation process. Mean and standard deviation values are shown for all
the participants in the calibration trials of the evaluation of brain-actuated
telepresence (see methodology). Tenfold cross-validation was applied.

Fig. 5. Execution trace of the navigation system: Static model (free, obstacle,
and unknown space), tactical planning direction (obtained from the dynamic-
path-planning strategy), and direction solution of the obstacle avoidance.

the frontal part of the robot; the laser operated at a frequency
of 5 Hz with a 180◦ field of view and a 0.5◦ resolution (361
points). The camera, placed on the laser, was a pan/tilt Canon
VC-C4 camera with a ±100◦ pan field of view and a 90◦/ − 30◦

tilt field of view. The robot was equipped with a computer
with an Intel processor at 700 MHz with Linux OS (Debian
distribution). The computer managed all computational tasks,
provided access to the hardware elements through the player
robot device interface [31], and integrated the autonomous nav-
igation system. In the experiments, the maximum translational
and rotational velocities were set to 0.3 m/s and 0.7 rad/s,
respectively. The objective of the autonomous navigation sys-
tem was to drive the vehicle to a given destination, set by the
BCI, while avoiding obstacles detected by the laser sensor. The
general assumption is that the environment is unknown and dy-
namic (it can vary with time), which imposes a difficulty since
precomputed maps and trajectories cannot be used. To deal with
this problem, the navigation system implemented online model-
ing and dynamic planning capabilities [32], integrated into two
modules: the model builder and the local planner (Fig. 5).

a) Model Builder: The model builder integrates sensor mea-
surements to construct a local model of the environment (static
and dynamic parts) and to track the vehicle’s location. Free
space and static obstacles are modeled by a ternary occupancy
map. Dynamic objects are tracked using a set of extended
Kalman filters. In order to accurately build both models, a
technique is used to correct the robot’s position, update the map,
and detect and track the moving objects around the robot [32].
The static map travels centered on the robot. This map has a
limited but sufficient size to present the required information to
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the user (as described in the graphical interface section) and to
compute the path so as to reach the selected target destination.

b) Local Planner: The local planner computes the local mo-
tion based on the hybrid combination of tactical planning and
reactive collision avoidance [33], [34]. An efficient dynamic
navigation function (D∗Lite planner [35]) is used to compute
the tactical information (i.e., main direction of motion) required
to avoid cyclic motions and trap situations. This function is
well suited for unknown and dynamic scenarios because it
works based on the changes in the model computed by the
model builder. The final motion of the vehicle is computed
using the Nearness Diagra technique [36], which uses a case-
based strategy, based on situations and actions to simplify the
collision avoidance problem. This technique has the distinct
advantage that it is able to deal with complex navigational tasks
such as maneuvering in the environment within constrained
spaces (e.g., passage through a narrow doorway). In order to
facilitate comfortable and safe operation during navigation,
shape, kinematics, and dynamic constraints of the vehicle are
incorporated [37].

E. Integration Platform and Execution Protocol

The communication system performed the integration be-
tween the brain–computer system and the robotic system. The
software architecture was based on the Transmission Control
Protocol/IP and the client/server paradigm. It consisted of two
clients (one for the brain–computer system and one for the
robotic system) plus a link server that concentrated information
flow and conferred scalability to the system. This design allows
for teleoperation of the robot in any remote environment via
an Internet connection. The BCI client was integrated within
the BCI2000 platform [27], cyclically executed every 30 ms,
and communicated with the link server through an Internet
connection. The robot client encapsulated the navigation sys-
tem, synchronized the orders to the camera and to the naviga-
tion system, and communicated with the link server through
a peer-to-peer (ad hoc) wireless connection. This client also
communicated with the robot hardware controllers using the
player robot device interface [31]. Regarding the hardware
components, the BCI client operated in a computer executing
all the BCI software. The link server operated in a dedicated
computer, with an Intel Core2 Duo processor at 2.10 GHz with
Linux OS (Ubuntu distribution), equipped with an Ethernet
and wireless network card. The robot client operated in the
computer embedded in the robot. The autonomous navigation
system was a time-critical task, which was integrated in the
robot computer within a thread-based system with time-outs to
preserve the computation cycle (200 ms).

A typical execution of a navigation order is described next.
The BCI infers the user desired goal location (8 B of infor-
mation), which is transferred via the Internet from the BCI
client to the link server. The link server transfers the goal
location to the robot client via the ad hoc wireless connection.
The robot client makes the location available to the navigation
system. Within a synchronous periodical task of 200 ms, the
navigation system reads the location of the robot from the
motor control system and the laser sensor, requests the robot

odometry, executes the mapping and planning module, and
sends the computed translational and rotational velocities to
the robot controllers. While the robot is navigating, the robot
client iteratively requests images from the camera, which are
transferred to the BCI. Finally, when the robot reaches the final
location, the navigation system triggers a flag to stop the image
transfer process and sends three variables to the BCI to display
the reconstruction of the environment: the map model (400 B),
the model location (12 B), and the robot location within the
map (12 B). The upper boundary of the information transfer
was set by the video transfer rate. The images captured by the
camera were compressed to the jpeg standard format, obtaining
an image size of approximately 30 kB. In the experimental
sessions, ten images per second were transferred, resulting in
a transfer rate of approximately 300 kB/s, which is adequate
for the typical bandwidth order of Internet networks.

a) Execution Protocol: The way that the users interact with
the system is modeled by a finite-state machine with three
states: Selection, Validation, and Execution. Initially, the state is
Selection, and the BCI develops the stimulation process while
the robotic system is in an idle state. Then, the BCI selects
an option, and the state changes to Validation. In this state,
a new stimulation process is developed, and the BCI selects
a new option. Only when the selected option is validation
that the previous selection is transferred to the robotic system,
and the state changes to Execution. In this state, the robotic
system executes the order (this will be referred as a mission).
While the robot is executing the mission, the BCI is in an
idle state (no stimulation process is developed), and the live
video captured by the robot camera is sent to the graphical
interface. Once the robot accomplishes the mission, the state
turns to Selection, video transfer stops (no interference stimuli,
which could decrease BCI accuracy), and the BCI stimulation
process starts again. Note that the validation option reduces the
probability of sending incorrect orders to the robotic system, as
BCI is always an uncertain channel.

III. EXPERIMENTAL METHODOLOGY

An experimental methodology was defined to carry out a
technical evaluation of the system and to assess the degree of
user adaptability. The experimental sessions were performed by
healthy users in real settings. The recruitment of the participants
and the experimental protocol are discussed next.

A. Participants

Inclusion and exclusion criteria were defined in order to
obtain conclusions over a homogeneous population. The in-
clusion criteria are as follows: 1) users within the age group
of 20–25 years of age; 2) gender (either all women or all
men); 3) laterality (either all left-handed or all right-handed);
and 4) students of the Universidad de Zaragoza. The exclusion
criteria are as follows: 1) users with history of neurological
or psychiatric disorders; 2) users under any psychiatric med-
ication; and 3) users with episodes of epilepsy and dyslexia
or experiencing hallucination. Five healthy 22-year-old male
right-handed students of the Universidad de Zaragoza were
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Fig. 6. (a) Objective of Task 1 was to drive the robot from the start location to the goal area. In the exploration area (E.A. in the figure), the participant had to
search for two signals located on the yellow cylinders 2.5 m above the floor. If both signals were equal, the participant had to avoid the yellow triangle by turning
to the right, and if the signals were different, the participant had to turn to the left. (b) Objective of Task 2 was to drive the robot from the start location to the goal
area. In the exploration area, the participant had to search for one signal located in the yellow cylinder 2.5 m above the floor. The participant then had to continue
navigating to the right or left of the two cylinders, as specified by the signal. All measurements are in meters, and the robot is to scale. (c and d) Maps generated
by the autonomous navigation system (black zones indicate obstacles, white zones indicate known areas, and gray zones indicate unknown areas). The trajectories
of the robot for one trial per participant are shown. (a) Task 1. (b) Task 2. (c) Task 1 trajectories. (d) Task 2 trajectories.

recruited. They had neither utilized the telepresence system
nor participated in BCI experiments before. The study was ap-
proved by the Universidad de Zaragoza’s Institutional Review
Board. All participants signed informed consents after being
informed about the entire protocol.

B. Experiment Design and Procedures

The study was divided into two phases: 1) screening and
training phase and 2) a brain-actuated telepresence phase. Both
phases were carried out in the BCI Laboratory of the Universi-
dad de Zaragoza on different days.

1) Evaluation of Screening and Training: This phase con-
sisted of two tasks: 1) screening task to study the P300 response
and validate the graphical interface design and 2) training task
to calibrate the system and measure the BCI accuracy. Initially,
the visual aspects of the graphical interface were selected adapt-
ing the results of a parallel study [5]. Images were captured in
black and white to preserve high saliency of stimuli; the initial
camera orientation was 0◦ pan and −11.5◦ tilt to provide a
centered perspective of the environment starting approximately
1 m in front of the robot. The final aesthetic factors of the visual
display are shown in Fig. 3. Stimulation process schedules
were also set for both tasks according to Iturrate et al. [5].
The interstimulus duration was set to 75 ms, and the stimulus
duration was set to 125 ms.

The screening task consisted of eight offline trials to study
the P300 response in the EEG. In each trial, the participants
had to attend to a predefined sequence of ten targets. After ex-
ecution, participants were asked to fill out neuropsychological
and cognitive assessment forms. The training task consisted of

a battery of online tests (facing the graphical interface without
teleoperating the robot) to check whether the accuracy of the
system was greater than a threshold value of 90%, qualifying
the participant for the next phase. The duration of this phase
was 3 h per participant.

2) Evaluation of Brain-Actuated Telepresence: This phase
consisted of a battery of online experiments with the telep-
resence system in order to carry out a technical evaluation
of the system and to assess the degree of user adaptability.
The experiments were carried out between the BCI Laboratory
at the Universidad de Zaragoza (Spain) and the University
of Vilanova i la Geltrú (Spain), separated by 260 km. Two
tasks were designed, which combined navigation and visual
exploration in unknown scenarios and under different working
conditions. Each participant had to perform two trials for each
task. Task 1 involved complex navigation in constrained spaces
with an active search for two visual targets. Task 2 involved
navigation in open spaces with an active search for one visual
target. The maps of the circuits are shown in Fig. 6. The maps
were the only information of the remote environments shown
to the participants, which had never been physically there.
Regarding the stimulation process schedules, the interstimulus
duration was set to 75 ms, and the stimulus duration was set
to 125 ms. After each trial, the participants were asked to fill
out neuropsychological and cognitive assessment forms, one
for each operation mode of the system. The duration of this
phase was 4 h per participant. It should be noted that execution
of tasks was not counterbalanced (the two trials of Task 1
were performed before the trials of Task 2); thus, the obtained
results containing intertask comparisons (particularly in the
users’ behavior evaluation) may reflect learning effects.
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TABLE I
METRICS TO EVALUATE THE GLOBAL PERFORMANCE

IV. RESULTS AND EVALUATION

This section reports the results obtained during the exper-
imental phases. Phase 1 was composed of a screening and a
training task. Regarding the screening task, visual inspection
of the recorded EEG data showed that the P300 potential was
elicited for all participants. Furthermore, participants reported
high satisfaction in the psychological assessments. Thus, the
graphical interface design was validated. Regarding the training
task, the pattern-recognition strategy was trained, and the par-
ticipants performed the online tests. All participants achieved
more than 93% BCI accuracy, and thus, all were qualified to
carry out the next phase.

Phase 2 consisted of execution of the predefined teleop-
eration tasks, which combined navigation and visual explo-
ration. First, the participants performed four offline trials to
train the pattern-recognition strategy. The number of sequences
was customized for each participant according to the results
provided by the classifier in this calibration process (Fig. 4).
The number of sequences was set to the minimal number that
allowed the participant to achieve a theoretical accuracy higher
than 90%. Then, the experiments were performed. Technical
evaluation of the telepresence system and the behavior study
of users are described next. The overall result was that all
participants were able to complete the designed tasks, reporting
no failures, which shows the robustness of the system and its
feasibility to solve tasks in real settings where joint navigation
and visual exploration were needed. Furthermore, participants
showed great adaptation.

A. Technical Evaluation

The technical evaluation consisted of a global evaluation of
the brain-actuated telepresence system and a particular evalua-
tion of the brain–computer system and the robotic system.

1) Global Evaluation: Based on [5] and [38], the following
metrics are proposed: 1) task success; 2) number of collisions of
the navigation system; 3) time elapsed until completion of task;
4) length of path traveled by the robot; 5) number of missions1

to complete the task; 6) BCI accuracy; 7) BCI selection ratio,
which is the ratio between the time spent selecting orders and
the total time to complete the task; and 8) navigation ratio,
which is the ratio between the time spent in robot navigation
mode and the total time to complete the task, which is com-

1Missions are defined in the technology description (Section II) as an order
sent to the robotic system (selection plus validation).

plementary to the exploration ratio. Results are summarized in
Table I.

All participants succeeded to perform all trials, reporting no
collisions and highlighting the robustness of the system. Time
elapsed, path length, and number of missions were very similar
for all participants, indicating similar performances among
them (these metrics will be further discussed from the point
of view of the participants in the users’ behavior section). The
real robot trajectories are shown in Fig. 6. Although there were
variations in BCI accuracy, the BCI interaction was satisfactory
as the BCI accuracy was always higher than 78%, achieving a
mean performance of 90%. The BCI selection ratio was 52% on
average, which shows the great importance of BCI accuracy in
the global system performance. Regarding the ratio of usage
of the operation modes, both operation modes were used to
complete the tasks. It can also be inferred that the system
provided enough functionalities to the users, so that they were
able to adapt to the different working conditions of the tasks.
Task 1 presented a higher exploration ratio because it involved
more complex visual explorations. Task 2 presented a higher
navigation ratio because it involved navigation in open spaces
and simpler visual exploration.

In summary, results were very encouraging because they
showed the feasibility of the technology to solve tasks combin-
ing navigation and visual exploration under different working
conditions. Furthermore, participants were naïve to BCI usage
and received a short briefing on the system operation. The
system was calibrated in less than an hour.

2) Brain–Computer System: The evaluation of the brain–
computer system was divided into two parts: evaluation of the
pattern-recognition strategy performance (BCI accuracy) and
evaluation of the visual display design. Based on [5] and [38],
the following metrics are proposed: 1) total errors; 2) reusable
errors; 3) real BCI accuracy; 4) practical BCI accuracy, which
is the BCI accuracy computed using the correct selections
plus reusable errors; 5) selections per minute; 6) selections per
mission (usability rate); 7) missions per minute; 8) number of
sequences; 9) ITR according to the Wolpaw definition2 [39];
10) number of errors caused by interface misunderstandings;
and 11) option usage frequency. Results are summarized in
Table II, except for the option usage frequency, which is shown
in Table III.

2B = log2 N + P log2 P + (1 − P ) log2(1 − P/N − 1). B is the num-
ber of bits per trial (i.e., bits per selection), N is the number of possible
selections, and P is the probability that a desired selection will occur.
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TABLE II
METRICS TO EVALUATE THE BRAIN–COMPUTER SYSTEM

TABLE III
METRICS TO EVALUATE THE OPTION USAGE FREQUENCY

a) BCI accuracy evaluation: Participants were instructed
to report an error to the experimenter through a small movement
of the right-hand index finger. In some cases, although the BCI
detects an undesired target, the target is reused to complete the
task (common situation in open spaces, where a task can be
solved in many different ways). These errors are referred to
as reusable errors, and they do not increment the time to set
a mission to the system. The distinction between a reusable
error and a nonreusable error was made by the experimenter and
then verified with the participants at the end of the experiment
(when needed). Real BCI accuracy was high, above 85% on
average. Reusable errors result in a practical BCI accuracy
higher than real. Practical accuracy was 90% on average. The
BCI system set only two incorrect missions in all executions,
representing 0.78% of all missions (the theoretical probability
of this situation was 0.3%). The number of sequences was
customized per participant according to their accuracy, between
six and ten. The number of sequences determined the number
of selections per minute, which was approximately four. The
usability rate was slightly greater than two (ideally, it is equal to
two, i.e., a mission needs at least one selection plus validation)
due to BCI errors and interface misunderstandings by the user.
The number of missions per minute, determined by the number
of selections per minute and the usability rate, was 1.65 on
average. The ITR of the BCI system was 15 b/min on average.

b) Visual display design evaluation: The design of the
interface was valid, as participants achieved tasks with only a
short briefing on its functionalities. There was only one incor-
rect selection due to interface misunderstandings, which arose
at the very end of one trial (the participant set an unreachable

mission, located behind the goal wall). The usage frequency
for all options in the interface and participants shows that all
functionalities were used, thus indicating that there were no
useless options. Furthermore, it also suggests a usable visual
display design. The change mode option was used once per
trial in each operation mode due to the requirements of the
designed tasks (participants changed to the exploration mode
to visualize the targets and then switched to navigation mode
to complete the tasks). Note that alignment and change
mode options in the exploration mode were complementary,
since both options allowed the participant to change to the
navigation mode. The home option in the exploration mode
was used only once throughout all the experiments, probably
because, in the predefined tasks, the home option did not
provide an important advantage with regard to grid destinations.
The refresh option was little used because of the execution of
constrained tasks; this option could be useful in more uncon-
trolled tasks to increase the interaction capabilities.

In summary, these results show a satisfactory integration
between the visual display and the designed stimulation process
as the participants successfully completed all trials with high
BCI accuracies. Furthermore, the graphical interface was usable
and easy to understand. The system presents low ITRs, which
is a common problem of all event-related potential approaches,
but it is in part overcome by the adoption of a shared-control
approach.

3) Robotic System: Based on [5] and [38], the following set
of metrics is proposed to evaluate the two operation modes of
the robotic system: 1) number of navigation missions; 2) length
traveled per mission; 3) mean velocity of the robot; 4) mean



ESCOLANO et al.: TELEPRESENCE MOBILE ROBOT CONTROLLED WITH A NONINVASIVE BCI 801

TABLE IV
METRICS TO EVALUATE THE ROBOTIC SYSTEM

TABLE V
METRICS FOR THE EXECUTION ANALYSIS

clearance (average of the minimum distances to the obstacles);
5) minimum clearance (minimum distance to the obstacles);
6) number of camera exploration missions; and 7) total angle
explored by the camera. Results are summarized in Table IV,
which is divided into two sections, each relevant to an operation
mode.

Regarding the navigation mode, a total of 177 navigation
missions was carried out without collisions, with a total length
of 325 m and a mean velocity of 0.08 m/s (10 times less
than usual human walking velocity). The mean velocity and
length traveled per mission were greater in Task 2 than in
Task 1, which denotes that the navigation system was able to
deal with the different environmental conditions, resulting in
a velocity increase in open spaces (Task 2) and a reduction
when maneuverability became more important (Task 1). Mean
and minimum clearances show that the vehicle carried out
obstacle avoidance with safety margins, which is one of the
typical difficulties in autonomous navigation [34]. Regarding
the exploration mode, a total of 79 missions was carried out,
exploring a total angular distance of 3.2 rad.

In general, the performance of the robotic system was re-
markable as the navigation missions were successfully exe-
cuted, reporting no failures. The exploration system provided a
good visual feedback of the remote environment and sufficient
functionalities for active exploration.

B. Users’ Behavior Evaluation

An evaluation of the users’ behavior was carried out to mea-
sure the degree of participant adaptability to the brain-actuated
telepresence system. Three studies were defined to achieve such
an objective: 1) execution analysis, to study the performance of
participants; 2) activity analysis, to study the interaction strat-
egy with the robot; and 3) psychological assessment, to study
the participants’ workload, learnability, and level of confidence.

1) Execution Analysis: A set of metrics based on [5] and
[38] was used: 1) task success; 2) number of missions; 3) path

length traveled by the robot; 4) time elapsed until completion
of task; and 5) practical BCI accuracy. Results are summarized
in Table V, which shows the two trials per participant and task.

The number of missions is an indicator of the intermediate
steps required to complete the tasks. Although this metric is
strongly related to the interaction strategy (discussed in the next
section), it can be inferred that some participants presented a
more efficient mission selection. Participants 1 and 4 showed a
more efficient mission selection in Task 1, while participants
2, 3, and 5 presented a more efficient selection in Task 2.
This metric suggests that these participants could be divided
into two groups, according to the way that they adapted to
the environmental conditions. One group adapted better to the
constrained environment of Task 1, and the other group adapted
better to the open spaces in Task 2. Path length is another metric
of individual performance in the use of the telepresence system.
Participants 3 and 5 presented shorter path lengths in both tasks,
showing a better adaptation to the automation capabilities of
the system. Execution time involves BCI accuracy and mission
selection performance, which are factors that can increase the
number of selections required to complete the tasks. Due to the
large amount of time needed to select an option with the BCI
(13 s on average), the lower BCI accuracies lead to the longer
execution times. Participants 2 and 4 presented lower BCI
accuracies and, consequently, longer execution times. The fact
that all participants succeeded in completing the tasks shows
that all participants successfully adapted to the system, which
is a good indicative to explore the transition of the technology
toward end users.

2) Activity Analysis: The interaction strategy of the par-
ticipants when teleoperating the robot is studied. Regard-
ing robotic devices that provide automation facilities, two
types of interaction strategies can be applied: supervisory-
oriented interaction and direct-control-oriented interaction [40].
Supervisory-oriented interaction extensively explores the au-
tomation capabilities (mainly trajectory planning and obstacle
avoidance in navigation mode) minimizing user intervention.
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TABLE VI
METRICS FOR THE ACTIVITY ANALYSIS

Direct-control-oriented interaction is characterized by an in-
creased user intervention, minimizing the use of automation
capabilities. In the concrete case of the developed system,
supervisory-oriented interaction will be characterized by a high
number of far destinations in the navigation, while direct-
control-oriented interaction will be characterized by a higher
number of near-range destinations or left-/right-turn selections.

The following metrics, adapted from [5] and [38], were
defined to study whether the participants followed different in-
teraction strategies in the two tasks: activity discriminant (DA),
which is the ratio between goal selections minus total of turn
selections and the total number of selections; (PM ) path length
per mission; robot motion time per mission (TM ); control activ-
ity descriptor (CA), which is the ratio between turn selections
and total number of selections; supervisory activity descriptor
(SA), which is the ratio between the first grid row destinations
and total number of selections. According to the proposed
metrics, high values of activity discriminant (DA), path length
per mission (PM ), and robot motion time per mission (TM )
indicate a tendency toward supervisory-oriented interaction. On
the contrary, low values indicate a tendency toward control-
oriented interaction. Furthermore, control-oriented interaction
is also characterized by high values of CA, whereas supervisory
interaction is characterized by high values of SA. Results are
summarized in Table VI.

Values of DA, PM , and TM in Task 1 were comparatively
lower than those in Task 2, suggesting control interaction
in Task 1 and supervisory interaction in Task 2. In Task 1,
participants exhibited a propensity toward control interaction
as CA values were higher in comparison to the values in
Task 2. In Task 2, participants showed a propensity toward
supervisory interaction as SA values were higher in comparison
to those in Task 1. In summary, these results suggest that the
participants adapted to the different working conditions of each
task. Task 1 involved complex maneuverability, and participants
presented control-oriented interaction; Task 2 involved more
simple navigation in open spaces, and participants presented
supervisory-oriented interaction.

3) Psychological Assessment: This section studies the
adaptability of the participants to the telepresence system from
a psychological point of view. The following metrics were
used: 1) workload based on effort, which is the amount of
effort exerted by the participant during the tasks; 2) learnability,
which is the easiness to learn how to use the system during
the tasks; and 3) level of confidence, which is the confidence
experienced by the participant during the tasks. The results
obtained from the questionnaires (filled out after each trial by
the participants) are shown in Fig. 7.

Fig. 7. Metrics used for the psychological assessment in the two teleoperation
tasks. The first bar represents trial 1, and the second bar represents trial 2. The
value for each metric in each trial of a task is the sum of two questionnaires
values in a [0–4] scale, one for each operation mode (those values have been
grouped as no differences were found between the two modes). Workload
assessment is on a [0–8] scale, from almost no effort to considerable effort.
Learnability assessment is on a [0–8] scale, from difficult to easy to learn. The
level of confidence assessment is on a [0–8] scale, from least confident to highly
confident.

Participants 2 and 5 reported less workload than participants
1, 3, and 4. All participants reported higher values of workload
in Task 1. This result might be due to the fact that Task 1 in-
volved more complex maneuverability. Regarding the learnabil-
ity metric, participant 1 presented difficulties in learning how
to solve the first task but showed a great improvement in Task
2. This participant may have initially found the telepresence
system complex. Regarding the level of confidence, participant
4 showed the lowest values, which might be explained by his
low BCI accuracy (see Table V). In general, these three metrics
showed a great improvement in Task 2 with regard to Task 1.
An improvement in metrics can be observed in the second trial
with regard to the first one (within each task), where the first
trial may be seen as an adaptation trial to complete the new
task. These results suggest high adaptability of the participants
to the telepresence system: Participants experienced less effort
and higher learning skills and felt more confident during the
use of the system. However, these results should be interpreted
with caution since tasks were not counterbalanced, and thus,
they may reflect a learning effect.

V. CONCLUSION

This paper has reported a synchronous P300-based BCI tele-
operation system that can provide users with presence in remote
environments through a mobile robot, both connected via the
Internet. The shared-control strategy is built by the BCI de-
coding of task-related navigation or visual exploration orders,
autonomously executed by the robot. This design overcomes
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low ITRs, avoids exhausting mental processes, and explicitly
avoids delay problems in the control loop caused by Internet
communication (as what happens in teleoperation systems with
continuous control).

All users participating in the experimental methodology were
able to accomplish two different tasks, which covered typical
navigation situations such as complex maneuverability and
navigation in open spaces. The interaction with the BCI was
satisfactory as naïve BCI users obtained high accuracies (88%
in mean) with short calibration time (less than an hour). The
functionalities of the robotic system were sufficient to complete
the tasks. The navigation system implemented task-level primi-
tives that incorporated real-time adaptative motion planning and
model construction, and thus, it was able to deal with nonpre-
programmed and populated scenarios. As demonstrated in other
applications [5], [38], the navigation system demonstrated to
be robust (the robot received 177 missions without any failure).
The integration between the BCI system and the robotic system
was satisfactory, achieving an overall high performance of the
system. The evaluation of the users’ behavior suggested a high
degree of adaptability to the telepresence system.

One feature of the current system is that no continuous
feedback is perceived when the user is interacting with the BCI.
With this feature, the user is never exposed to external stimuli
while interacting with the BCI, and thus, it allows one to em-
ploy a methodology to explore the BCI accuracy in controlled
scenarios. However, this certainly limits the degree of presence
and shared-control interaction, and further investigation is re-
quired to understand the effects that the alleviation of this re-
striction could have. In order to increase the degree of presence,
the adoption of an asynchronous P300 control to support an
idle state would be an improvement, as given in [41]. Another
improvement could be the adoption of a multiparadigm BCI
by the inclusion of an asynchronous error-potential detection
protocol [42]. This improvement could have two effects. On
one hand, this could reduce the interaction required by the BCI
to control the robot (note that 50% of the total time is spent in
decoding the BCI intentions due the safety nature of the device,
implemented in the execution protocol through a validation
step) by removing the validation protocol as incorrect P300
selections could be detected. On the other hand, the inclusion of
this protocol could increase the shared-control interaction and
system safety by detecting possible unrecognized risks by the
robot’s sensors while navigating. However, the adoption of such
solutions could impose the typical drawbacks of asynchronous
protocols: lower accuracies, much higher calibration and train-
ing time with the user, and higher cognitive effort.

This study could be considered as a step toward the de-
velopment of new telepresence-oriented systems using BCIs
and mobile robots in which navigation and visual exploration
problems are solved. Thus, it could allow the designers to focus
on specific interaction functionalities (e.g., incorporate bidirec-
tional communication along the lines of a video conference),
which might be dependent on the patient pathology and needs.
Although the utility of this technology was demonstrated for
healthy users, the final objective is to bring these possibilities
closer to patients with neuromuscular disabilities, which is the
direction of work in the near future [28].
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