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Abstract— EEG brain-computer interfaces (BCI) require a
calibration phase prior to the on-line control of the device,
which is a difficulty for the practical development of this
technology as it is user-, session- and task-specific. The large
body of research in BCIs based on event-related potentials
(ERP) use temporal features, which have demonstrated to be
stable for each user along time, but do not generalize well
among tasks different from the calibration task. This paper
explores the use of low frecuency features to improve the
generalization capabilities of the BCIs using error-potentials.
The results show that there exists a stable pattern in the
frequency domain that allows a classifier to generalize among
the tasks. Furthermore, the study also shows that it is possible
to combine temporal and frequency features to obtain the best
of both domains.

I. INTRODUCTION

EEG-based brain-computer interfaces (BCIs) build a com-
munication channel between the user and a device based on
brain activity, with a wide range of non-clinical and clinical
applications [1]. In all BCIs there is a calibration phase to
learn a mapping from EEG activity to the control space
that operates the device. This calibration has to be carried
out for each subject to deal with the large inter-user EEG
variability [1]. In addition, a common procedure is also to
recalibrate the BCI for each new task and even for the same
task between sessions, to deal with the EEG variability [2],
[3]. This is a large shortcoming of current BCI technology
as the calibration is a tedious and boring process (that may
take between 30 and 45 minutes for error potentials [12]).

Calibration is dependent on the EEG signal used for the
BCI. On one hand, for self-generated brain activity (such
as the motor imagery of body limbs [4]) there is a body of
work to deal with EEG non-stationarities, either to reduce
the calibration time [3] or to minimize the impact in the
decoding performance [2]. On the other hand, BCIs that rely
on external cues such as those using event-related potentials
(ERPs) [5], have a better generalization among sessions but
do not generalize between different tasks. This is because
the amplitude and latency of their components are affected
by factors such as spatial attention [6]; stimuli contrast [5];
the probability of appearance of the expected stimulus [5];
the inter-stimulus interval [7]; user-dependent factors such as
age and cognitive capabilities [8]; and other cognitive aspects
such as the stimulus evaluation time (i.e., the amount of time
required to perceive and categorize a stimulus) [5], [9].
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Fig. 1. From left to right, experiments 1 to 3.

The on-line detection of ERPs relies on the fact that
these signals are phase-locked to a trigger event [5], [10].
Thus, successful single-trial detection has been carried out
mainly in the temporal domain [11], [12], despite of the
single-trial temporal variability. A recent study showed that
different tasks of these BCIs induce a phase change (i.e.
different latencies) in the components of error potentials [13].
As a result, the use of temporal features of the ERP (e.g.
amplitudes) significantly degrades ERP detection rate when
the tasks in the calibration and execution phase are different.
Nonetheless, it is possible to estimate the latency variations
between different ERPs and use it to reduce the calibration
time of a new task.

Another possible alternative to avoid this degradation of
the detection rate could be the use of frequency features,
as these features are insensitive to phase shifts (and thus
latency) variations. Furthermore, in principle no information
from a new task is needed as long as the ERP amplitudes and
frequency components remain similar. This paper explores
the usage of low frequency components of error potentials
as a way of dealing with changes induced by different tasks
in the temporal domain. The results show that although
the detection accuracy within a single task is better in
the temporal domain, there exists a stable pattern in the
frequency domain that allows a classifier to generalize among
the tasks, and thus BCIs based on these features generalize
better. In practice, the study also shows that it is possible to
combine temporal and frequency features to obtain the best
of both domains.

II. METHODS

A. Data Recording

The EEG was recorded using a gTec system with 16
active electrodes (Fz, FC3, FC1, FCz, FC2, FC4, C3, C1,
Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4 according to
the 10/10 international system), with the reference and the
ground placed at the left earlobe and AFz respectively. The
EEG was sampled at 256 Hz and power-line notch filtered
at 50 Hz.



B. Experimental Setup

Six volunteer participants (five males and one female,
mean age 27) participated in the study. Participants were
instructed to observe movements performed by a device and
evaluate them as correct when they were towards a target
position and as incorrect otherwise, evoking non-error and
error potentials. The participants were asked to restrict eye
movements and blinks to specific resting periods.

Three experimental conditions with progressively higher
cognitive workload were designed (see Figure 1). In all the
experiments, the device performed correct/incorrect move-
ments until reaching a specific goal position. Time between
actions was random and within the range [1.7, 4.0] s, with
a 20% probability of performing an erroneous movement.
The first experiment consisted of a squared cursor that could
execute two actions (move one position left or right) in
a 1D grid with 9 different equally-distributed positions.
The second experiment displayed a simulated robotic arm
that could perform four actions (move one position left,
right, up or down) in a 2D grid with 13 equally-distributed
positions. The third experiment followed the configuration of
the second experiment, but using a real robotic arm. For more
information about the experiments, see [13]. Each experi-
ment lasted ∼ 2.5 hours. They were always executed in the
same order as presented above, with a time between sessions
of 17.58 ± 10.09 days. For each subject and experiment,
approximately 800 trials (around 160 and 640 error and non-
error potentials) were acquired.

C. Electrophysiology Analysis

For the time analysis, the time-locked averaged potentials
were computed for the error, non-error and difference (error
minus non-error averages) conditions at channel FCz. For
the frequency analysis, the power spectral density (PSD) of
each one-second trial was first computed using the Welch’s
method with a Hamming window and a window overlap of
50%. Then, the error, non-error and difference average PSDs
were computed at channel FCz. The r2 discriminability test
[14] between error and non-error conditions was computed
for each channel and time instant (time analysis), and each
channel and frequency component (frequency analysis).

D. Feature Extraction

Two different sets of features were extracted.
1) Temporal Features: The EEG was common-average

referenced (CAR) and [1, 10] Hz band-pass filtered. Temporal
features were the EEG voltages of each trial of eight fronto-
central channels (Fz, FC1, FCz, FC2, C1, Cz, C2, and CPz)
[12] within a time window of [200, 800] ms (being 0 the
stimulus onset) subsampled at 64 Hz, leading to a vector of
312 features. Finally, the features were normalized within
the range [0, 1].

2) Frequency Features: The EEG was common-average
referenced (CAR). For each of the channels used in the
temporal features, the PSD was computed on one second
of EEG after the stimulus onset as explained in subsection
II-C. The frequency features were the power values of each

channel from the theta band ([4, 8] Hz) ± 1 Hz (as previous
studies suggested that the error potentials are generated
within this band [10]), which led to a vector of 200 features.
Finally, the features were normalized within the range [0, 1].

E. Methods for Single-Trial Classification

Previous studies showed that the usage of temporal fea-
tures provoke a degradation of performance when training
with one experiment and testing with another one (i.e. gen-
eralization) [13]. The objective of the present classification
study was to analyze whether the frequency features or the
combination of both (temporal and frequency) are robust
enough to generalize among different tasks (experiments).

Single-trial classification was carried out using a support
vector machine (SVM) with a radial basis function (RBF)
kernel, as this classifier presents high accuracies when clas-
sifying ERPs [15] and error potentials in particular [12]. One
important drawback of SVM is its sensitivity to imbalanced
datasets. To avoid this drawback, the minority class (i.e. the
error class) was oversampled by random replication to match
the number of trials of the majority class (i.e. the non-error
class) [16].

To study the generalization capabilities of the different
feature sets, each task data was divided into a training and
a test set composed by 50% of the data each. The classifier
was evaluated in two different conditions. First, the baseline
accuracy was obtained by using the training and test sets
of the same experiment Ej (denoted EjEj). Second, the
classifier was trained using the train set of an experiment Ei

and tested on the test set of another experiment Ej . The train-
test combinations considered in the study were E1E2, E1E3,
and E2E3, following the combinations studied in [13].

III. RESULTS

A. Results of the Electrophysiology analysis

Fig. 2 (first row) depicts the error, non-error and difference
grand averages, for the three experiments. The three differ-
ence grand averages of the error potentials have an early
negativity and two broader positive and negative components,
in agreement with other studies [11], [12]. However, in line
with previous works, the latencies of these peaks varied
among the three experiments [13] (see figure 2, up-right-
most plot). For instance, the latency of the broader negative
peak was of 426, 492 and 535 ms for experiments 1 to 3.
This variation in latency is also visible with the r2 metric
(Fig. 2 second row). Notice how the r2 patterns of fronto-
central channels present a time shift among experiments.

Regarding the frequency analysis, Fig. 2 (third row) de-
picts the error, non-error and difference PSD averages for the
channel FCz for the three experiments. The difference aver-
ages were similar in the theta band for the three experiments
(see Figure 2 third row, fourth column). This supports the
fact that the main variation of the signals was due to latency
differences, but not to amplitude differences (as described
in [13]). The r2 discriminability patterns were in the theta
band as suggested in [10]. Notice that the r2 values were
progressively higher among experimental conditions. Despite
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Fig. 2. Electrophysiology results for experiments 1 to 3. First row shows the error, non-error and difference grand averages for channel FCz, and the
last column the difference average compared for the three experiments. Second row shows the r2 test of the temporal signals (x-axis: time, and y-axis:
channels). Third and fourth row show the PSD averages (for channel FCz) and the r2 test of the frequency signals. For each r2 plot, the squared zone
represents the window used for the extracted features.

there is not a clear reason of this increase in the r2, it could
be due to: a user habituation to the protocols (since the three
experiments were always executed in the same order from 1
to 3); or a higher cognitive workload that generated stronger
error components with greater r2 values. This increase in
separability could hinder the generalization from a more
complex experiment to a simpler one (EiEj with i > j), but
not during the opposite generalization (EiEj with i < j).

B. Classification results

Figure 3 depicts the baseline accuracies of EjEj , and
the generalization accuracies of EiEj for the temporal and
frequency feature sets, and for the concatenation of both sets
(c.f. subsection II-D), averaged for all subjects.

Regarding the temporal features, the baseline of each
experiment had high accuracies, being on average 78.78%,
77.54% and 79.04% for experiment 1 to 3. **However, when
generalizing the classifier to another experiment, the use
of these results in an accuracy degradation,** mainly due
to the latency variations observed in the electrophysiology
analysis. In fact, the mean accuracy dropped a 21.09%,

24.36% and 10.21% for the E1E2, E1E3 and E2E3 cases.
On the other hand, the use of frequency features resulted on
lower baseline accuracies than the temporal ones: 67.29%,
71.33% and 69.67% for experiments 1 to 3. However, the
accuracy drop was substantially lower when generalizing
the classifier: 3.91%, 4.52%, and 3.44% for E1E2, E1E3

and E2E3. For the baseline classifiers that use the temporal
and frequency features, the accuracies presented very similar
results to those obtained using the temporal features: 76.17%,
79.31%, and 77.64% for experiments 1 to 3. More inter-
estingly, the generalization classifiers had accuracy drops of
13.11%, 16.23% and 6.35%; but the absolute accuracies were
very similar to those obtained with the frequency features:
66.20%, 61.41%, and 71.32%, for E1E2, E1E3 and E2E3.
Thus, the use of both set of features at the same time allowed
to have the best of time and frequency domains.

These results confirmed that the temporal features had
poor task-generalization capabilities due to the latency vari-
ations. However, the frequency features generalize better
comparing the baseline and the generalization accuracies,
suggesting that these features remained similar among ex-
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Fig. 3. (Top) Baseline accuracies ± SEM (%) when training and testing with experiment j (denoted EjEj ) (Bottom) Generalization accuracies ± SEM
(%) when training with experiment i and testing with experiment j (denoted EiEj ). Dark and light colors represent the non-error and error accuracies.
Left, middle and right plots show the results when using the temporal, frequency, and combined set of features respectively. Notice that the baseline EjEj

should be compared to the generalization EiEj .

periments.

IV. CONCLUSIONS AND FUTURE WORK

An important issue in current BCI technology is to mini-
mize the calibration time as it is one of the major difficulties
especially in the context of patients. For BCIs based on
event-related potentials, re-calibration is mainly due to a time
shifts present on the potential of interest for each different
task. This paper builds on these results showing the presence
of these latency changes, and how they affect the temporal
features (EEG amplitudes) during the generalization among
different tasks (provoking large drops in the accuracies).
In addition to this, the paper showed how classifiers based
on low-frequency EEG features have better generalization
properties among different tasks (completely avoiding the re-
calibration process) than those based on temporal features.
Furthermore, the combination of features of both domains
allows to obtain classifiers with performances similar to the
temporal alone on one task, and similar to the frequency
alone in generalization (i.e the best properties of both do-
mains). As future work, the authors are studying the use of
other frequency features such as wavelets to determine their
generalization adequacy.
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