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Abstract— One of the main problems of EEG-based brain
computer interfaces (BCIs) is their low information rate, thus
for complex tasks the user needs large amounts of time to
solve the task. In an attempt to reduce this time and improve
the application robustness, recent works have explored shared-
control strategies where the device does not only execute the
decoded commands, but it is also involved in executing the
task. This work proposes a shared-control BCI using error
potentials for a 2D reaching task with discrete actions and
states. The proposed system has several interesting properties:
the system is scalable without increasing the complexity of the
user’s mental task; the interaction is natural for the user, as the
mental task is to monitor the device performance to promote its
task learning (in this context the reaching task); and the system
has the potential to be combined with additional brain signals
to recover or learn from interaction errors. Online control
experiments were performed with four subjects, showing that
it was possible to reach a goal location from any starting point
within a 5x5 grid in around 23 actions (about 19 seconds of
EEG signal), both with fixed goals and goals freely chosen by
the users.

I. INTRODUCTION

Over the last years, brain-computer interfaces (BCIs) have
made significant progress in controlling devices using both
invasive and non-invasive techniques [1], [2]. Non-invasive
approaches are mainly dominated by EEG-based BCIs that
have demonstrated the control of 2D virtual cursors [3],
mobile robots [4], [5] and robotic wheelchairs [6], [7]. For
EEG-based systems, the BCI maps the electrical signals
measured at the scalp to control commands.

The major design decision of such a system is to select
the mental task the user will carry out to generate the
EEG signals. Successful control has been achieved using
self-generated activity such as the motor imagery of body
limbs [8] or the performance of cognitive mental tasks [9];
and with event-generated activity, such as the P300 event-
related potential (ERP) [7] and the steady-state-visually-
evoked potential (SSVEP) [10].

In all cases, the EEG-based BCIs are affected by a low
information rate, mainly due to the poor signal-to-noise ratio
of the EEG, and to the fact that the performance of the
system varies with time due to EEG non-stationarities [11].
Furthermore, they require large amounts of time to perform
a task [7] and usually a high and/or constant concentration
during operation [9]. To alleviate these limitations, recent
systems started to explore shared-control strategies where
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the device does not only execute the decoded commands,
but is also involved in executing the task [1] (e.g. taking into
account the environment while reaching a target or avoiding
an obstacle [4], [7]).

The use of shared-control schemes opens the door to
a new use of error-related potentials as an alternative or
complementary signal for a BCI system. Error-related po-
tentials are ERPs elicited by an unexpected outcome (i.e.
after making a mistake or observing one) [12]–[15]. Due to
its nature, this type of potentials are particularly well suited
as supervision or feedback signals during the execution of
a task. For instance, they have been already used as reward
signals to teach a device within a reinforcement learning
framework [14], [15].

This work presents a shared-control BCI of a 2D reaching
task of a cursor over a discrete grid of possible targets,
using error-related potentials as supervision signals. Under
this control scheme, the user has to evaluate whether the
cursor is correctly moving towards the goal or is making
wrong movements. Based on this signal, the device estimates
which is the desired target while moving towards it based on
the optimal motion policies for each of the possible goals.
The results show that all users were able to reach predefined
and self-selected goal locations in around 23 actions (about
19 seconds of EEG signal). The use of error potentials has
some interesting properties. First, the user’s mental task is a
supervision of a device operation, making the system very
scalable, as long as the user can assess the device actions as
correct or wrong. Second, the system is natural, since the user
is assessing the actions performed by a device to guide it to
a desired position. Third, within a shared-control strategy it
can be combined with other brain signals to correct decoding
failures or recover from wrong or ambiguous decisions of the
device.

II. METHODS

A. Data Recording

Electroencephalographic (EEG) and electrooculographic
(EOG) activity were recorded using a gTec system (3 syn-
chronized gUSBamp amplifiers). For the EEG, 32 electrodes
were recorded, distributed according to an extended 10/20
international system (FP1, FP2, F7, F8, F3, F4, T7, T8, C3,
C4, P7, P8, P3, P4, O1, O2, AF3, AF4, FC5, FC6, FC1,
FC2, CP5, CP6, CP1, CP2, Fz, FCz, Cz, CPz, Pz and Oz),
with the ground on FPz and the reference on the left earlobe;
for the EOG, 6 monopolar electrodes were recorded (placed
above and below each eye, and from the outer canthi of the
left and right eyes [16]), with the ground on FPz and the
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Fig. 1. (a) Experimental protocol designed. The protocol showed a 5x5
grid with a virtual cursor (green circle) and a goal location (shadowed in
red). The up-left-most position is the [1 1] (row and column). (b) The cursor
could perform five different actions (from top to bottom, move one position
up, down, left or right, or performing a goal-reached action). (c) Correct
actions (i.e. optimal policy) from each state for the goal exemplified on (a).

reference on the left mastoid. The EEG and EOG signals
were digitized with a sampling frequency of 256 Hz, power-
line notch filtered, and band-pass filtered at [0.5, 10] Hz. The
EEG was also common-average-reference (CAR) filtered.
Additionally, the horizontal, vertical, and radial EOG were
computed as in [16] to remove the EOG from the EEG using
a regression algorithm [17]. The data acquisition and online
processing was developed under a self-made BCI platform.

B. Experimental Protocol

Four subjects (mean age 26± 2 years) participated in the
experiments. The participants were seated on a comfortable
chair one meter away of a computer screen that displayed all
the information related to the experiment. The experimental
protocol is shown in Fig. 1. The protocol consisted of a
5x5 squares grid, a virtual cursor (green circle), and a goal
location shadowed in red. The cursor performed five different
instantaneous actions: move one position left, right, up or
down; and a goal-reached action, represented as concentric
blue circumferences (see Fig. 1b). The time between two
actions (inter-action interval) was random within the range
[3, 3.5] s. The role of the subjects was to assess the cursor
actions as correct when the cursor performed (i) a movement
towards the goal position, or (ii) a goal-reached action over
the goal position; and as incorrect otherwise (see Fig. 1c).
The users were instructed not to move their eyes during
the cursor actions, and to restrain blinks only to the resting
periods.

The experiment consisted of two phases: the training phase
used to calibrate a classifier able to distinguish between
correct and error user’s assessments; and the control phase,
where the user controlled the cursor to a goal position.
During the control phase, two different groups of goal
locations were tested: (i) the first group was fixed for all the
subjects, and consisted of five predefined goals and initial
cursor positions (see table I); (ii) for the second group, each
user was asked to freely choose five different initial cursor
positions and goals to reach. During this group of goals, the
goal position was not shadowed in red, since it was the user
who chose it.

TABLE I
INITIAL AND GOAL POSITIONS FOR THE FIXED GROUP OF GOALS

Run 1 Run 2 Run 3 Run 4 Run 5

Initial position [1 1] [2 3] [1 2] [1 4] [3 3]
Goal position [5 5] [3 1] [3 3] [4 1] [3 3]

C. Calibration of error potentials

For the calibration of the error potential detection, a train-
ing phase was first executed to acquire sufficient examples of
potentials while the user assessed the device actions. During
this phase, the virtual cursor performed random actions, with
a 20% of probability of performing an erroneous action. This
phase lasted for 30 minutes, acquiring around 80 correct and
320 erroneous trials.

Once the training data was acquired, features were ex-
tracted from eight fronto-central channels (Fz, FC1, FCz,
FC2, C1, Cz, C2, and CPz) within a time window of
[200, 800] ms downsampled to 64 Hz, forming a vector of
312 features. The feature vectors of all trials were normalized
and decorrelated using PCA, retaining those that explained
95% of the variance. Finally, a regularized linear discriminant
(LDA) [18] classifier was trained using the retained features.
The classifier output has the form y(x) = w′x + b, where
y(x) ≥ 0 is classified as a correct assessment (class 1), and
y(x) < 0 as an error assessment (class 0). This output y(x)
was transformed into the probability that a trial x belonged
to the correct class, p(c = 1|x) = 1

1+e−y(x) [19].

D. Shared-control for a reaching task

This section describes the proposed shared-control strat-
egy with error potentials. Although these potentials provide
feedback about the device actions, the amount of information
conveyed by them is limited. In particular, the decoder of
Section II-C does not contain information about direction or
magnitude. Furthermore, it has a non-negligible number of
misdetections. Therefore, the proposed shared control uses
memory to accumulate evidence about possible goals while
executing a trajectory. The proposed approach consists of two
phases. The first one computes offline optimal trajectories
(i.e. policies) for each potential target, while the second one
ranks them during execution using error potentials elicited
for wrong actions.

1) Offline policies computation: The offline phase was
used for the computation of the optimal motion policies (see
Fig. 1c) for all possible goal locations. Let π∗

i (s) be the
optimal policy for reaching the goal position i from the
state s, whose output is the best action to compute in s
(see Fig. 1c for a representation of the optimal policy when
the goal location was [2 2]). The optimal policies can be
represented with their associated Q-values Q∗

i (s, a), which
represents the value of executing the action a in state s when
the goal location is i. These Q-values were converted into
probabilities, following a soft-max normalization [20]:

Q̂∗
i (s, a) =

eQ
∗
i (s,a)/τ∑

b e
Q∗

i (s,b)/τ
, (1)



Fig. 2. Device control simulation for the goal shown in Fig. 1a ([2 2], marked with letter G). At each step t, the device was on a state st and executed
an action at (shown over each individual plot). Each state i is colour-encoded as the probability of the goal being at that state i, p(π∗

i |at...1, st...1).
The classifier was ideal, with its output p(c = 1|x) = 0.8 for correct actions, and p(c = 1|x) = 0.2 for incorrect actions. Initially, all the probabilities
were equiprobable. While more steps were executed several policies were discarded, whereas others increased their probability. After 11 steps, the policy
convergence criterion was reached, and the device learned the goal position.
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Fig. 3. (a) Action-locked averages from channel FCz (error, correct and
difference in red, blue and black respectively), together with the color-
encoded topographic interpolation of the three most prominent peaks of
the difference average. Time 0 ms indicates when the cursor executed an
action. The source localization for the most prominent negative peak of the
difference average is also shown. (b) Color encoded r2 discriminability test
for each time point (x-axis) and channel (y-axis), including the 6 monopolar
EOG channels recorded (denoted as E1 to E6).

where τ is denoted the temperature (fixed to τ = 0.3 for
the current experiment). This parameter served as a degree
of reliability of the observed information (classifier output).
For the designed protocol, the Q-values for all the possible
goal locations can be computed offline prior to the control
phase using the Q-learning reinforcement learning algorithm
[20].

2) Online control: The online cursor control was per-
formed by updating the probabilities of having the goal lo-
cation on a state i p(π∗

i ), which where initially equiprobable
(see Figure 2, step 0). At each time step t, the device per-
formed an action at from state st. This action was assessed
by the user, and the EEG classified following the procedure
described in subsection II-C, obtaining p(c = 1|x, at, st).
This probability was used to update p(π∗

i ) for each goal
location i (see Figure 2, steps 1 to 10). Finally, the execution

finished when a probability p(π∗
i ) reached a convergence

criterion, pc = 0.9 (see Figure 2, step 11). At time t, the
probability of each policy i being the correct one given an
action at executed in a state st is:

p(π∗
i |(a, s, x)1...t) ∝ p(at|π∗

i , (s, x)t) · p(π∗
i |(a, s, x)1...t−1), (2)

where the likelihood is computed as:

p(at|π∗
i , (s, x)t) = p(c = 1|x)·Q̂∗

i (st, at)+p(c = 0|x)·(1−Q̂∗
i (st, at)),

(3)

Notice that the first term of the likelihood represents how
we should increase the policy π∗

i if the user’s assessment
was correct, while the second term penalized the policy π∗

i

weighted by the probability of having and incorrect user’s
assessment. Fig. 2 shows an example of the device control
when reaching the goal shown in Fig. 1a.

III. RESULTS

A. Electrophysiology analysis

Fig. 3a shows the error, correct and difference grand
averaged potentials (error minus correct averages) in channel
FCz, averaged for all the subjects. The difference grand
average was characterized by three components: a negative
deflection at around 250 ms, a positive deflection at around
400 ms, and a another negative component at around 500 ms.
The topographic interpolations of the two broader peaks of
the difference average showed that the signals were gener-
ated mostly in fronto-central channels. These results were
in agreement with previous studies using error potentials
[13]. The sLoreta source localization [21] was applied to
the most prominent negativity of the difference average,
confirming that the signals were generated in the anterior
cingulate cortex (ACC, Brodmann area 24), which is the
area thought to be the main generator of error-processing
brain activity [13]. Fig. 3b shows the r2 discriminability
test of the signals obtained. The test revealed two main



TABLE II
RESULTS OF THE REACHING TASK FOR THE FIXED GOALS

s1 s2 s3 s4 mean ± std

♯ Targets reached (out of 5) 5 5 5 5 5 ± 0
♯ Actions 16 ± 2 43 ± 9 23 ± 12 17 ± 5 25 ± 13

Net time (s) 12.96 ± 1.91 34.56 ± 7.10 18.40 ± 9.73 13.60 ± 4.38 19.88 ± 10.75
Total time (s) 52.65 ± 7.76 140.40 ± 28.83 74.75 ± 39.54 55.25 ± 17.80 80.76 ± 73.68

Accuracy correct / error (%) 82.46 / 79.17 60.98 / 78.49 82.43 / 63.41 71.19 / 76.92 74.27 ± 10.32 / 74.50 ± 7.45

TABLE III
RESULTS OF THE REACHING TASK FOR THE FREELY CHOSEN GOALS

s1 s2 s3 s4 mean ± std

♯ Targets reached (out of 5) 5 5 5 5 5 ± 0
♯ Actions 23 ± 9 21 ± 7 16 ± 6 23 ± 11 21 ± 8

Net time (s) 18.08 ± 7.37 16.48 ± 5.84 12.96 ± 5.10 18.08 ± 8.44 16.40 ± 6.61
Total time (s) 73.45 ± 29.93 66.95 ± 23.73 52.65 ± 20.73 73.45 ± 34.29 66.63 ± 26.85

Accuracy correct / error (%) 75.00 / 72.97 75.00 / 83.87 83.93 / 84.00 70.37 / 76.19 76.08 ± 5.67 / 79.26 ± 5.56

Fig. 4. States visited by all the subjects, for each of the five runs executed with the fixed goals (from left to right, runs 1 to 5). Darker colors indicate
more visited states. The range was normalized from 0 to 1 according to the most visited state for each run. The initial and goal positions are marked with
an S and a G respectively.

zones of discriminability between correct and error signals,
at around 350 and 500 ms, agreeing with the two broader
peaks appearing in the difference average. Furthermore, no
discriminable information was found on the EOG channels
(E1 to E6 in Fig. 3b), thus indicating that no EOG activity
was contaminating the recorded potentials, and that the EOG
was not involved in the device control.

B. Control phase analysis

For each group of goals (fixed and freely-chosen), five
metrics were evaluated: (i) Number of goals reached; (ii)
number of actions needed to reach the goal, (iii) EEG
seconds needed to reach the goal (net time); (iv) total
time needed to reach the goal; and (v) classifier accuracy,
measured as the percentage of detection of correct and
erroneous signals.

Table II shows the results for each subject (averaged for
goals). The first result was that the device was able to reach
all the target location, independently of their relative location.
The users needed 25 ± 13 actions to reach the goal. With
the proposed inter-action interval (around 3.25 s), the total
time needed to reach the goals was of 80.76 ± 73.68 s.
Nonetheless, the net time (i.e., the seconds of EEG signal
used for decoding) was of 19.88 ± 10.75 s. Note that the
difference between the net and total times was the seconds

belonging to inter-action intervals, which could be easily
removed. The mean classifier accuracy across subjects was
of 74.27± 8.94 and 74.50± 6.45 for correct and erroneous
actions respectively. As expected, there was a significant
negative correlation between the classifier mean accuracy and
the time needed to reach the task (r = −0.47, p = 0.038).
Notice that a random walk strategy that selected random
actions at each step would require around 150 actions for
a 5x5 grid size. Fig. 4 shows the states visited for the five
runs performed. As can be seen, not all the states needed
to be visited to reach the goal. For instance, during run
3, mostly all the central states were visited, whereas the
peripheral states were not. This is an interesting property
of the proposed control scheme, since it allows for a better
scalability of the system, due to the fact that each step
of the trajectory provides information for multiple goals
simultaneously. As a result, the percentage of visited states
would decrease for larger state spaces.

Table III shows the results for each subject. As with the
fixed goals, all the targets were correctly reached by the
device. The number of actions needed to reach the goal
was 21 ± 8, with a total time of 66.63 ± 26.85 s, and a
net time of 16.40± 6.61 s, and thus slightly better than the
results with fixed goals. However, these differences were not
significant (paired t-test, t19 = 1.05, p = 0.31). Regarding



the classifier accuracy, the detection rate was better in this
case: 76.08±5.67 and 79.26±5.56 for correct and erroneous
actions. The error accuracy was significantly better than
the one obtained for the fixed goals, (paired t-test, t19 =
−2.27, p = 0.04), but the correct accuracy was not (paired
t-test, t19 = −1.12, p = 0.28). The fact of this slight increase
of accuracy could be due to a protocol habituation, since the
users always executed the free goals after the fixed ones.
Again, there was a significant negative correlation between
the mean accuracy and the time needed to reach the task
(r = −0.79, p = 3 · 10−5).

IV. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a shared-control BCI for
a 2D virtual cursor based on error potentials. Most of the
intelligence of the system was moved to the device side by
comparing optimal trajectories with the executed one based
on the detected error potentials (actions perceived as wrong
by the user). The proposed approach compensates the low
information transfer rate of error potentials by exploiting
the structure of trajectories. The experimental results showed
that, for a 5x5 grid, the system reached any goal after only
23 actions on average (less than a minute in our protocol).

The proposed shared-control BCI might scale to more
complex scenarios because: i) it is not necessary to explore
every single trajectory or potential goal; and ii) the user only
has to monitor the device actions and evaluate if they are
right or wrong. The authors are currently applying this BCI
approach to real devices (e.g. mobile robots or manipulators)
with larger and continuous state-action spaces.

REFERENCES

[1] JdR Millán, R Rupp, GR Müller-Putz, R Murray-Smith,
C Giugliemma, M Tangermann, C Vidaurre, F Cincotti, A Kübler,
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