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Abstract— In this paper, we propose a solution to the EEG
source localization problem considering its dynamic behavior.
We assume a dipolar approach which makes the problem non-
linear. From the dynamic probabilistic model of the problem,
we formulate the Extended Kalman Filter and Particle Fil-
ter solutions. In order to test the algorithms, we designed
an experimental protocol based on error-related potentials.
During the experiments, our dynamic solutions have allowed
the estimation of sources which are varying in position and
moment within the brain volume. Results confirm the activation
of the anterior cingulate cortex which is the brain structure
associated with error processing. These findings demonstrate
the good performance of the dynamic solutions for estimating
and tracking EEG neural generators.

I. INTRODUCTION

Electroencephalography (EEG) is a brain imaging tech-
nique that gives a unique access to the electric neural
activation, furthermore it has very good temporal resolution,
and it is non-invasive, very cheap and portable. Hence,
EEG is one of the most preferable technologies to study
the brain. However, clinical and functional interpretations
of EEG signals imply the speculation of the possible active
areas within the brain that generate those signals. For this
reason, the solution to the EEG source localization problem
attempts to find from EEG signals which regions of the
brain are active. There are two general approaches to solve
the EEG source localization problem, dipolar methods and
distributed methods [1]. Despite their differences, the large
majority of these methods share the property of providing
static solutions, they only use information from one time
instant, whereas the EEG sources and signals clearly have a
time varying nature.

To account for this limitation, in this paper we propose
a methodology for solving the so-called inverse problem
in EEG considering its dynamic nature. We first formulate
the dynamic model of the EEG source localization problem
in a probabilistic framework. Subsequently, we assume a
dipolar approach where sources positions and moments have
to be estimated. Under this context we derive the Extended
Kalman Filter (EKF) and Particle Filter (PF) solutions, which
give the advantage of consider that the neural generators
of the EEG signals changes according to some neural dy-
namic. Additionally, these solutions allow to incorporate
in the model the presence of noise in the measurements
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and even in the sources. An alternative advantage of PF is
that it can explicitly represent simultaneously many likely
solutions. In order to validate these formulations, we design a
neurophysiological protocol based on error-related potentials
where the main focus of neural activity is assumed to be
known as reported by other studies. The overall result is that
we successfully apply the EKF and PF in real settings to
estimate EEG sources.

II. DYNAMIC MODEL OF THE EEG SOURCE
LOCALIZATION PROBLEM

Let be Φ0...t the set of EEG signals up to time t acquired
with Ne electrodes attached at the scalp. The neural genera-
tors of these signals are Ns sources. The goal is to estimate
the sources parameters X = [r1, J1...rNs , JNs ] (with r
being the position and J being the moment) at time t using
the measurements up to time t. For this, two probabilistic
equations are needed, a transition model p(X t|Xt−1, wt) and
a measurement model p(Φt|Xt, vt). Where Xt : �6·Ns is the
source space, and Φt : �Ne is the measurement space. The
random variables wt and vt represent the noise in the process
and in the measurements respectively.

With this representation, the goal is to compute a posterior
probability p(Xt|Φ0...t) to make inference about the sources
[2]. Using the Bayes theorem and assuming Markov process
we obtain the recursive update equation known as the Bayes
filter for the dynamic EEG source localization problem:

p(Xt|Φ0...t) = η·p(Φt|Xt)·
∫

p(Xt|Xt−1)p(Xt−1|Φt−1)dXt−1

(1)
Where η is a normalizing factor. To implement a solution
for the Bayes filter we need three distributions, the initial
posterior p(X0) that characterizes the prior knowledge about
the sources, the transition model p(Xt|Xt−1) that models
the time evolution of the neural sources, and the likelihood
p(Φt|Xt) that allows to obtain measurements given a source
space. The goal now for solving the dynamic EEG source
localization problem is to derive a solution to the Bayes filter.

A. Transition model

This mathematical model describes how the EEG sources
evolve over time which is unknown. Therefore we can
assume the transition as a random walk in the source space
[2], whereby the specific form of the transition model is
p(Xt|Xt−1) = N (Xt|Xt−1, Q). This assumption imposes
that the transition model is a zero-mean Gaussian density
with a diagonal covariance matrix Q whose elements repre-
sent the expected time evolution of each source parameter.



B. Deriving dynamic solutions to the EEG source localiza-
tion problem

The dynamic EEG source localization problem can be
categorized depending on whether the location of the sources
is fixed or not, and on whether the type of the noise in the
measurements and in the sources is assumed to be Gaussian
or not. We focus on the dipolar approach where the location
of the sources is not fixed (non-linear situation) and we
assume Gaussian noise. This is because we are interested
in modeling few focal areas of the brain. For this case
the unknown source space is given by the set of positions
and moments for each source X = [r1, J1, ...rNs , JNs ],
the transition model is given by N (Xt|Xt−1, Q) and the
measurements model is given by p(Φt|Xt). We will derive
now the EKF and PF dynamic solutions to the EEG source
localization problem.

1) Aplying Extended Kalman Filter (EKF) to solve the
dynamic EEG source localization problem: The EKF solu-
tion assumes that the nonlinear equation of the measurement
model can be locally linearized. In order to estimate X t at
time t, the EKF performs recursively two steps, i) a time
update step which estimates the next state Xt using the
linear transition equation, and ii) a measurement update step
which adjust the estimated state Xt by using the current
measurements Φt via the linearization of the measurement
model [3].

2) Aplying Particle Filters (PF) to solve the dynamic
EEG source localization problem: The goal in this solution
is to get a set of N samples or particles {X (i)

t }N
i=1 that

represents the posterior distribution p(Xt|Φ0...t). We start
with a set of particles {X (i)

t−1}N
i=1 distributed according to

p(Xt−1|Φ0...t−1), then, by applying the transition model to

each particle we obtain a new set {X̃t
(i)}N

i=1 which is dis-
tributed according to p(Xt|Φ0...t−1). Then, using the actual
measurements, importance weights {w(i)

t }N
i=1 are computed

through the likelihood function w
(i)
t ∼ p(Φt|X̃t

(i)
). After-

ward, a resampling-selection step is applied to the weighted

sample set {X̃t
(i)

, w
(i)
t }N

i=1 discharging/multiplying particles
with low/high importance weights [5], so that finally we
get the sample set {X (i)

t }N
i=1 distributed according to the

posterior p(Xt|Φ0...t) which can be used to make inference
about the sources space Xt at time t.

3) Parameters of the methods: To implement these non-
linear dynamic solutions, we further need the process covari-
ance Q, which is determined based on physiological basis;
the noise covariance R, which can be estimated with some
EEG measurements; the initial estimation X0 which can
be computed using a static solution such as Beamforming
LCMV [4] and the initial density p(X0) which can be
normally distributed with mean X0 and covariance Q. In
the PF, the likelihood function is assumed to be a zero-mean
Gaussian function p(Φt|Xt) = N (Φt|Xt, R) and the particle
with the highest weight in the posterior is selected to be the
sources state Xt.
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Fig. 1. Typical waveform of an interaction error-related potential at
electrode Cz recorded during the experimental protocol.

III. EXPERIMENTAL VALIDATION

A. Experimental protocol, instrumentation and head model

In order to assess in real settings the performance of the
algorithms, we have designed a protocol based on error-
related potentials (ErrP) since there is evidence of the brain
regions that generate these potentials [6].

Recently, it has been probed during brain-computer ex-
periments that an ErrP is evoked after a person is aware
of the occurrence of an interaction error [7]. Roughly, this
error (named interaction ErrP) has a waveform with four
prominent peaks as shown in figure 1. The importance of this
ErrP in our context is that for these peaks the main focus
of neural activity is expected to be mainly in the anterior
cingulate cortex or ACC (Brodmann areas 24 and 32). To
elicit the ErrP we have implemented a protocol similar
to Ferrez’s protocol, where a subject facing a computer
screen is concentrated in a green block that is moving from
right to left (machine task). While the machine is executing
the task, sometimes the block moves to the right (which
emulates a machine error) evoking the ErrP. We performed
this experiment with one subject while EEG signals were
acquired. The whole experiment consisted of 11 sessions
with 5 errors trials each one.

The general instrumentation is based on a commercial
gTec EEG system. The EEG signals were digitalized with a
sampling frequency of 256Hz, power-line notch-filtered and
bandpass-filtered between 0.5 and 60Hz. After the recording
sessions, the EEG signals were average referenced and band
pass filtered from 1 to 10Hz. A time window of one second
was selected after the ErrP stimulus onset.

The head was modeled by a homogeneous sphere of radius
96mm that represents the skin and the sources were restricted
to be located only within a innermost sphere of radius
84mm that represents the brain. The measurement space is
a set of 32 electrodes from the 10-10 international system
projected to lying on the sphere surface. In order to solve the
forward model, the head model, the sources position and the
electrodes locations where defined in the coordinate system
of the MNI head model.

B. Analysis and Results

For all the ErrP single trials, the main neural sources were
estimated using the EKF and the PF. We have also computed
the static dipolar solution given by the beamforming LCMV
algorithm.



TABLE I

TWO MORE FREQUENT BRAIN STRUCTURE AND BRODMANN AREA ESTIMATED WITH LCMV, EKF AND PF AT THE OCCURRENCE OF THE PEAKS FOR

ALL THE ERRP’S SINGLE TRIALS.

Peak LCMV EKF PF

1

Anterior Cingulate/Gyrus
55%

Anterior Cingulate
55%

Anterior Cingulate/Gyrus
73%

BA’s 24, 25, 32, 33 BA’s 24, 32 BA’s 24, 25, 32, 33
Parahippocampal Gyrus

18%
Cingulate Gyrus

18%
Posterior Cingulate

18%
BA’s 27, 28, 34, 35 BA’s 24, 25, 32, 33 BA’s 23 and 31

2

Parahippocampal Gyrus
36%

Anterior Cingulate/Gyrus
55%

Anterior Cingulate/Gyrus
55%

BA’s 27, 28, 34, 35 BA’s 24, 25, 32, 33 BA’s 24, 25, 32, 33
Lingual Gyrus

36%
Parahippocampal Gyrus

27%
Parahippocampal Gyrus

27%
BA’s 18 BA’s 27, 28, 34, 35 BA’s 27, 28, 34, 35

3

Anterior Cingulate
55%

Anterior Cingulate/Gyrus
45%

Cingulate Gyrus
36%

BA’s 24, 25, 32, 33 BA’s 23, 24, 32 BA’s 23, 24, 32
Insula

18%
Medial Frontal Gyrus

18%
Anterior Cingulate

27%
BA’s 13 BA’s BA’s 24, 32

4

Parahippocampal Gyrus
55%

Parahippocampal Gyrus
36%

Parahippocampal Gyrus
36%

BA’s 27, 28, 34, 35 BA’s 27, 28, 34, 35 BA’s 27, 28, 34, 35
Anterior Cingulate

27%
Anterior Cingulate/Gyrus

36%
Cingulate Gyrus

27%
BA’s 24, 32 BA’s 23, 24, 32, 33 BA’s 23, 24, 32

mean (0.5 sec)

Anterior Cingulate
45%

Anterior Cingulate
55%

Anterior Cingulate
63%

BA’s 24, 32 BA’s 24, 32 BA’s 24, 32
Cingulate Gyrus

36%
Cingulate Gyrus

45%
Cingulate Gyrus

36%
BA’s 23, 24, 32, 33 BA’s 23, 24, 32 BA’s 23, 24, 32

1) Dynamic neural estimation of the ErrP single trials:
The objective of this first analysis was to assess the estima-
tions obtained with the EKF, PF and LCMV solutions for all
the ErrP’s single trials. As in previous studies, we assume 1
dipolar source [6]. Commonly, event related potentials such
as ErrP’s requires the average of many trials in order to
reduce the noise levels, however, our dynamic approaches
allow the source localization of ErrP single trials since the
algorithms incorporate in the solution model the presence
of noise in the measurements. Table I shows the two more
frequent brain structures and their associated Brodmann areas
estimated by the three methods precisely at the occurrence
of the four peaks showed in figure 1. As it can be seen, for
the majority of the ErrP peaks, the source is located in the
Anterior Cingulate (BA’s 24 and 32) and in the Cingulate
Gyrus (BA’s 25 and 33). These results demonstrates that in
the majority of the trials, the ACC is systematically activated
during the occurrence of the four prominent peaks. For
example, notice that for the first peak the main focus of
brain activity estimated by the EKF and PF is located in the
Anterior Cingulate and in the Cingulate Gyrus in the 73% of
the ErrP’s, however the main focus of activity estimated by
the LCMV algorithm is located in these regions in the 55%
of the ErrP’s. This table also shows the location of the mean
estimated source over half a second after the ErrP stimulus
onset. For this case, the EKF and the PF estimated the brain
activity in the anterior cingulate (BA’s 24 and 32) in 55%
and 63% of the ErrP’s respectively. These findings agree
with the mean location over half a second reported in other
neurological studies of error potentials [6]. To summarize,
these results confirm the fact that at the occurrence of the
ErrP peaks and during the whole time interval after that the
ErrP is elicited, the main focus of neural activity is located
in the brain region covered by the ACC.

2) Neural estimation assuming one and two dipolar
sources: In the second analysis the objective was to assess

the estimation given by the dynamic solutions during the
whole ErrP time window assuming 1 and 2 dipolar sources.
Figure 2 shows the position time course during half a second
of the estimated sources obtained with the EKF solution
over a brain sagittal view. Brodmann areas 24 and 32 are
represented by the dark grid within the brain volume. The
solution obtained assuming one dipole (figure 2a) shows that
during the occurrence of the ErrP peaks the source is located
very near to the volume that covers the ACC. Similarly, in
the solution obtained assuming two dipoles (figure 2b) one
of the sources (plotted in red) is located almost during the
whole time window within the grid that covers the ACC.
Comparing the moment of this source with the moment of
the second source (plotted in green) during the ErrP peaks,
we found that the strength of the source within the ACC
is greater than the source outside the ACC. These results
explicitly shows that assuming one or two dipoles, the PF
estimate the sources within the volumen that cover the ACC.

3) Comparison with static methods: Finally, figure 3
displays for one of the ErrP’s the estimated position and
moment components obtained with the three methods assum-
ing one dipolar source. Notice that all the methods produce
similar estimations. From these results, one could infer that
three methods of very different nature (one static method and
two dynamic solutions with different hypotheses) estimate
closely the same solution which indicates the validity of the
proposed dynamic EKF and PF solutions. However, in some
time instants, the graph of the estimated position given by
the static LCMV method shows abrupt changes. To evaluate
this observation, figure 4 shows the magnitude of the position
first derivative given by the algorithms. This result explicitly
shows the sudden variations in the estimation of the position
given by methods that do not address the dynamic nature
of the problem. In particular, it can be observed that in
many times the position changes abruptly for the static
Beamforming LCMV solution, on the other hand the position



(a)

(b)

Fig. 2. Views of the brain showing the estimation time course given
by the EKF assuming (a) one dipolar source and (b) two dipolar sources.
Dotted circles represent the spherical head model used to solve the forward
problem.

always change gradually for the EKF and PF estimations.
From these results, we can state that the dynamic methods
show a good performance in terms of position estimation
since they consider that the dynamic position changes of the
EEG sources occurs gradually.

IV. CONCLUSIONS AND FUTURE WORKS

We have described a methodology to solve the EEG source
localization problem considering its dynamic nature. We
first obtain the Bayes filter for the EEG source localization
problem which allows to recursively update the posterior
probability of the neural sources given EEG measurements.
Subsequently, for the dipolar and non-linear approach we
derived the EKF and PF solutions. To assess the performance
of the algorithms we designed a neurophysiological protocol
based on error-related potentials. Our dynamic solutions
confirm the activation of the ACC during the ErrP peaks
which is the brain region associated with error processing.
These results demonstrate that the application of EKF and
PF for estimating the EEG neural sources is very promising,
which can be explained by the fact, among other reasons, that
these algorithms take into account the neural dynamics, the
non-linearity of the measurement model, and the presence of

−50

0

50

r x (
m

m
)

 

 

EKF PF LCMV

−50

0

50

r y (
m

m
)

0 0.5 1

−50

0

50

r z (
m

m
)

Time (sec)
(a)

−200

0

200

J x (
nA

)

−200

0

200

J y (
nA

)

0 0.5 1
−200

0

200

J z (
nA

)

Time (sec)
(b)

Fig. 3. Time course estimation of the (a) position and (b) moment
components for one of the ErrP’s trial.
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Fig. 4. Magnitude of the position first derivative given for the EKF, PF
and LCMV solutions.

noise in the measurements and in the EEG neural generators.
In the future work, a more intensive experimental procedure
using different kinds of error potentials such as response and
observation errors will be used to validate the algorithms.
Also, we will extend their implementation in realistic head
models. Finally, we will improve the potentiality of the
algorithms in three aspects, first, in the EKF the on-line
recognition of error during BCI experiments, in the PF
the identification of various likely solutions, and third, a
switching model approach by selecting at each time instant
the best solution between various EKF’s and PF’s running
in parallel.
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