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Dynamic  multi-model  solution  for  the EEG/MEG  source  localization  problem.
A  source  model  is  a dynamic  system,  allowing  the  recursive  estimation  of  the  sources  within  the  filter  estimation  framework.
Simultaneous  integration  of different  dynamic  neural  models  with  different  parameters.
The  method  does  not  require  a  prior  definition  neither  of  the  number  of  sources  or of  the  initial  prior  estimates.
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a  b  s  t  r  a  c  t

This  work  presents  a new  dipolar  method  to estimate  the  neural  sources  from  separate  or  combined  EEG
and  MEG  data.  The  novelty  lies  in the  simultaneous  estimation  and  integration  of  neural  sources  from
different  dynamic  models  with  different  parameters,  leading  to  a dynamic  multi-model  solution  for  the
EEG/MEG  source  localization  problem.  The  first  key  aspect  of  this  method  is  defining  the  source  model  as
a dipolar  dynamic  system,  which  allows  for the  estimation  of  the  probability  distribution  of  the  sources
within  the  Bayesian  filter  estimation  framework.  A second  important  aspect  is  the  consideration  of several
banks  of  filters  that  simultaneously  estimate  and  integrate  the  neural  sources  of  different  models.  A  third
relevant  aspect  is  that the final  probability  estimate  is a  result  of the  probabilistic  integration  of  the
ource localization
ulti-model

MM

neural  sources  of numerous  models.  Such  characteristics  lead  to  a new  approach  that  does  not  require  a
prior  definition  neither  of  the number  of  sources  or of  the  underlying  temporal  dynamics,  allowing  for
the specification  of  multiple  initial  prior  estimates.  The  method  was  validated  by  three  sensor  modalities
with  simulated  data  designed  to impose  difficult  estimation  situations,  and  with  real  EEG  data  recorded
in  a feedback  error-related  potential  paradigm.  On  the  basis  of these  evaluations,  the  method  was  able
to localize  the  sources  with  high  accuracy.
. Introduction

Electrical and chemical activity of neurons in the brain results
n extracellular currents, which generate electric potentials and

agnetic fields that can be measured on the head surface
hrough electroencephalography (EEG) and magnetoencephalog-
aphy (MEG). EEG or MEG  sensors measure the electrical or
agnetic mixture of the temporal activity of groups of neurons

n very different and separate brain regions. Therefore, clinical
nd functional interpretation of EEG and MEG  signals entails the
peculation of the active brain areas generating such signals. This

peculation leads to the so-called EEG/MEG source localization
roblem: how to estimate the neural sources that generate the
EG/MEG signals (Baillet et al., 2001). The solution to the EEG/MEG
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source localization problem is a challenge due to its inherent ill-
definition: an infinite number of configurations of neural sources
could explain the same EEG/MEG observations (Grech et al., 2007;
Michel et al., 2004; Koles, 1998). Many studies have been carried
out (see Baillet et al., 2001; Grech et al., 2007 for reviews) lead-
ing to two  types of solutions: (i) dipolar methods, where neural
sources are represented by low dimensional spaces; and (ii) imag-
ing or distributed methods, where neural sources are represented
by high dimensional spaces.

Most research has been directed towards distributed meth-
ods, since the problem becomes linear and can be addressed
by non-parametric solutions (Hämäläinen and Ilmoniemi, 1994;
Pascual-Marqui et al., 1994; Liu et al., 2002; Darvas et al., 2004)
and by adaptive spatial filter solutions (Veen et al., 1997; Sekihara

et al., 2005). These solutions can be readily interpreted as 3D images
of brain activity. Few research has been directed towards dipolar
methods due to the non-linear nature of the problem (addressed
by parametric solutions with non-linear optimization algorithms;

dx.doi.org/10.1016/j.jneumeth.2012.09.017
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:antelis@unizar.es
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osher et al., 1992; Scherg, 1990) and dependence on the ini-
ial user specifications, such as the number of sources and initial
onditions. However, dipolar methods provide a direct and easy-
o-interpret mapping from the recorded EEG/MEG signals into a
mall set of source parameters, and are well suited for cases when
he brain activity is focalized. The work presented herein is in line
ith dipolar methods.

Usual shortcomings of dipolar techniques are: (i) computation
owards a solution that represents a unique hypothesis of neu-
al sources, although many hypotheses could explain the same
EG/MEG signals; (ii) the dynamics of the neural sources are
sually not addressed, when EEG/MEG signals are generated by
eural sources with underlying time-variable dynamics; and (iii)
o changes are allowed in the dimension of the solution space as a
xed number of sources is adjusted in advance, however, depend-

ng on the neural processes, the number of neural sources could
hange with time. Therefore, the estimation of EEG/MEG neural
ources might be addressed as a multihypothesis, time-varying
imension and dynamic estimation problem. The present work
akes existing studies a step further by considering a unified multi-

odel Bayesian framework to address the estimation of EEG/MEG
eural sources.

Bayesian formalism has been used to address some of the afore-
entioned issues individually, for instance, to incorporate spatial

nd/or temporal prior information that constrains the solution,
ainly in distributed methods (Baillet and Garnero, 1997; Schmidt

t al., 1999; Trujillo-Barreto et al., 2008; Wipf and Nagarajan, 2009)
nd to a minor degree, in dipolar methods (Bertrand et al., 2001;
un et al., 2006; Kiebel et al., 2008). Bayesian formalism has also
een used to take into account specific dynamics for the neu-
al sources, where Kalman filters have been used in distributed
ethods (Yamashita et al., 2004; Galka et al., 2004; Barton et al.,

009) and sequential Monte Carlo techniques in dipolar meth-
ds (Somersalo et al., 2003; Sorrentino et al., 2009). The idea of

 multi-model approach has been applied in other works in terms
f different anatomical brain compartments (Trujillo-Barreto et al.,
004) or in terms of different priors that constrain the solution
Mattout et al., 2006; Kiebel et al., 2008).

This paper proposes Dynamo, a framework for the estima-
ion of neural sources based on the Integrating Multiple Model
Bar-Shalom et al., 2001) and on the Novel-Interacting Multiple

odel (Quan et al., 2009) algorithms and that relies on the prob-
bilistic integration of multiple dynamic dipolar models. Model
stimation is recursively computed within a Bayesian filter frame-
ork, which is probabilistically integrated at each time to build

he final estimation. The performance of the method was evalu-
ted using simulated data (in three sensor modalities) as well as
eal EEG signals, and compared with other widely spread source
ocalization techniques. The paper is organized as follows: Sec-
ion 2 describes the dynamic EEG/MEG source localization problem,
ntroduces a single dynamic source model and its Bayesian filter
olution framework, defines the proposed dynamic multi-model
ource localization technique, and finally describes the evalua-
ion methodology followed in both simulated and real scenarios.
he performance of the technique and comparison with other
ource localization methods is presented in Section 3. Section 4 ana-
yzes the results of the evaluations and the main properties of the
ynamo technique.

. Methods and materials

.1. Problem definition and models
.1.1. Problem definition
Let the EEG and MEG  measurements at time t be �t =

�1
t . . . �N�t ]T and bt = [b1

t . . . bNbt ]T , where N� and Nb are the
science Methods 212 (2013) 28– 42 29

number of electric and magnetic sensors on the head surface.
Let the measurement vector be mt = [�t, bt]T, with the assump-
tion that there are Nt neural sources located in the brain. Each
source is modeled as a current dipole, characterized by a position
rq ∈ 3R and moment q ∈ 3R. The state of neural sources at time t is
xt = [r1

q, q1 . . . rNtq , qNt ]T , where xt ∈ 6 · NtR. The aim is to estimate
the neural sources xt at time t given: (i) the previous neural sources
up to time t − 1, x0:t−1, and (ii) the EEG and MEG  measurements up
to time t, m1:t. There are two  physical models involved in this prob-
lem: (i) a transition model for EEG/MEG sources, specified in terms
of a state space equation; and (ii) a measurement model, specified
in terms of an observer equation.

2.1.2. Transition model: dynamics of EEG/MEG neural sources
This paper is in line with previous works in the context of

dynamically-distributed source models (Yamashita et al., 2004;
Galka et al., 2004; Barton et al., 2009) and dynamic dipolar source
models (Somersalo et al., 2003; Sorrentino et al., 2007, 2008), which
use a multivariate autoregressive source model for the source state:

xt = f (xt−1, xt−2, ..., xt−T ) + wt (1)

where f(·) is possibly a nonlinear function, T is the regression order
and wt is the process noise. This model agrees with the com-
mon assumption that the brain activity follows a transition pattern
towards neighboring areas. As in previous works (Somersalo et al.,
2003; Sorrentino et al., 2007, 2008), this model is simplified by
assuming a first order multivariate autoregressive linear model
independent of time evolution. This leads to a transition model also
referred to as linear random walk:

xt = xt−1 + wt (2)

where wt is a Gaussian random vector with p(w)∼N(0, Q). This
transition model is characterized by the noise covariance matrix Q,
which is a diagonal matrix whose elements represent the uncer-
tainty in the position and moment of the sources due to the
non-modeled real dynamics. Certainly, the real dynamics of neural
sources are unknown and could be more complex than the random
walk. The advantage of this model is the simplicity and generality
when modeling specific dynamics.

2.1.3. Measurement model: the EEG/MEG forward problem
Given the neural sources, the EEG/MEG forward problem allows

for the computation of electric potentials and magnetic fields on
the head surface. This paper follows the classical forward solutions
used to calculate EEG or MEG  signals on the head surface (Mosher
et al., 1999; Darvas et al., 2004):

mt = h(xt) + vt (3)

mt =
[
�t

bt

]
=

[
heeg(xt)

hmeg(xt)

]
+

[
veegt

vmegt

]
(4)

where heeg(·) and hmeg(·) are the functions that produce the electric
�t and magnetic bt measurements given the state xt of the neural
sources, and veegt and vmegt are the noises in the electric and magnetic
observations, respectively. It must be noted that heeg(·) and hmeg(·)
are both nonlinear functions with respect to the position of the
neural sources rq, but linear with respect to the moment q. This
formulation holds for both spherical and realistic head models. This
paper adopts the three-shell spherical volume conductor model for
EEG and the single-shell volume conductor model for MEG, with

analytical equations given by Mosher et al. (1999):

�t = heeg(r�, rq, q) = keeg3 (r�, rq) · q (5)

bt = hmeg(rb, rq, q) = kmeg1 (rb, rq) · q (6)
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here keeg3 (r�, rq) is the field kernel for a three-shell volume con-
uctor model for EEG, kmeg1 (rb, rq) is the field kernel for a one-shell
olume conductor model for MEG, and r� and rb represent the
ositions of the electric and magnetic sensors, respectively.

Assuming that the noises in the electric and magnetic observa-
ions are Gaussian and uncorrelated, thus p(veeg)∼N(0, Reeg) and
(vmeg)∼N(0, Rmeg) yield p(v)∼N(0, R), with

=
[

Reeg 0

0 Rmeg

]
(7)

he noise covariance matrix R quantifies the uncertainty degree
f the recorded EEG/MEG signals, i.e., the noise level measure-
ent. As there is no a priori noise information for each sensor,

he noise covariance matrices are estimated as Reeg = �1:t�T1:t and
meg = b1:tb

T
1:t , where each diagonal element represents the sensor

ariances. Note that Eqs. (4) and (7) hold for EEG or MEG  modalities,
ndependently.

.2. Bayesian estimation for a dynamic source model

.2.1. Source model
A source model is defined by the source state xt with

Q,
{

x, P
}

0|0) parameters, where Q denotes a given uncertainty for

he dynamics of the sources contained in the model and
{

x, P
}

0|0
enotes the initial source state and its associated covariance. Note
hat the dimension of the source space for the model is dim(xt)
nd the number of sources or dipoles that constitute the model is
t = dim(xt)/6.

.2.2. Bayesian estimation framework
The objective is to estimate the state of sources xt, given the pre-

ious states x0:t−1 and the electric and magnetic observations m1:t.
n the Bayesian framework, the objective is to compute recursively
he posterior density p(xt|m1:t) that represents the probability dis-
ribution of the neural sources, given the electric and magnetic

easurements. x0:t and m1:t are assumed to be stochastic and
arkov processes. The Bayes theorem is applied,

(xt |m1:t) = p(mt |xt , m1:t−1)p(xt |m1:t−1)
p(mt |m1:t−1)

(8)

s well as the Markovian properties, to the process and measure-
ents:

(xt |m1:t) = � · p(mt |xt) ·
∫
p(xt |xt−1)p(xt−1|m1:t−1)dxt−1 (9)

hich is called the Bayes filter (Arulampalam et al., 2002). In
his equation, � = 1/p(mt|m1:t−1) is a normalizing factor, p(mt|xt)
s the likelihood function defined by the measurement model,
(xt|xt−1) is the probabilistic transition model, p(xt−1|mt−1) is the
rior density representing the prior information on neural sources
nd p(xt|m1:t−1) =

∫
p(xt|xt−1)p(xt−1|m1:t−1)dxt−1 is the prediction

ensity.
The solution of this probabilistic recursion is conditioned by the

ransition and measurement models and by the type of noise in the
rocess and measurements. In the case of linear and Gaussian sys-
ems, the optimal solution is the Kalman Filter (Welch and Bishop,
006). For nonlinear and/or non-Gaussian systems, the solution

s computed through either, local linearizations of the non-linear

unctions, e.g., the Extended Kalman Filter (Welch and Bishop,
006), or by numerical approximation techniques such as those
ased on sequential Monte Carlo methods (Arulampalam et al.,
002; Doucet et al., 2001, 2000).
science Methods 212 (2013) 28– 42

2.2.3. Extended Kalman Filter (EKF) estimation framework for a
source model

In the EKF framework the solution equations are as follows:

xt|t−1 = xt−1|t−1; Pt|t−1 = Pt−1|t−1 + Q (10)

xt|t = xt|t−1 + K
(

mt − h(xt|t−1)
)

; Pt|t = Pt|t−1 − KSPt|t−1 (11)

where xt|t−1 and Pt|t−1 are the mean and covariance of the pre-
diction density, xt|t and Pt|t are the mean and covariance of the
posterior density (i.e., the final solution), K = Pt|t−1HTS−1 is the
Kalman gain, S = HPt|t−1HT + R is the innovations covariance, and
H = ∂h(xt)/∂x|xt|t−1 is the first term of the Taylor expansion of the
nonlinear measurement model:

∂heeg(r�, rq, q)

∂rq(x,y,z)
= ∂k

eeg
3 (r�, rq)

∂rq(x,y,z)
· q (12)

∂heeg(r�, rq, q)

∂q(x,y,z)
= keeg3 (r�, rq) · ∂q

∂q(x,y,z)
(13)

∂hmeg1 (rb, rq, q)

∂rq(x,y,z)
= ∂k

meg
1 (rb, rq)

∂rq(x,y,z)
· q (14)

∂hmeg(rb, rq, q)

∂q(x,y,z)
= kmeg1 (rb, rq) · ∂q

∂q(x,y,z)
(15)

This EKF solution recursively estimates the neural sources from
EEG/MEG data of a source model (with parameters: number of
sources N, the covariance Q, and initial prior estimate

{
x, P

}
0|0).

2.2.4. Limitations of the framework
Dipolar source localization methods (Mosher et al., 1992;

Scherg, 1990; Antelis and Minguez, 2009a,b) among others) as well
as other frameworks that consider a unique source model, share
three intrinsic limitations. Firstly, the number of neural sources or
dipoles N is fixed. Therefore the number of neural sources could
be underestimated or overestimated, accompanying the temporal
increase or decrease in the real number of active brain areas (time-
varying dimension). This limitation is also common to all dipolar
techniques where the number of neural sources has to be defined
a priori, leading to a fixed-dimensional solution. Secondly, static
and unique neural dynamics is taken into account (represented in
covariance Q). The properties of the estimation are good as long
as the neural process obeys the neural dynamics considered, and
the dynamics do not change with time. This limitation is present in
the previous EKF framework and in all existing techniques. Thirdly,
a prior estimation of the neural sources

{
x, P

}
0|0 or initial con-

dition has to be provided. This initial estimate could have a large
effect when the dimension of the source space increases. Although
the initial estimate could be pre-estimated with a standard dipolar
solution, this is again restricted to the pre-selected number of
sources and this would only reflect a unique hypothesis of the
neural sources.

In order to overcome these three limitations, the next section
describes the Dynamo method, which addresses the time-varying
dimensionality, the consideration of different neural dynamics, and
the selection of the initial condition, yielding a dynamic multi-
model estimation framework.

2.3. Bayesian estimation for multiple dynamic source models

Dynamo is based on the Integrating Multiple Model (IMM)
algorithm (Bar-Shalom et al., 2001) and on the Novel-Interacting

Multiple Model (Novel-IMM) algorithm (Quan et al., 2009). The
method consists of a bank of Extended Kalman Filters running in
parallel, which operate over models with the same dimension of
the source space (same number of dipoles) but different parameters
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Fig. 1. Graphical representation of the dynamic multiple model estimation framework developed to solve the EEG/MEG source localization problem. The upper box describes
the  general architecture of the algorithm, composed of n filter banks and a selection block. The general input is the measurement vector mt and the general output is the

source  state vector with its associated covariance matrix
{

x, P
}
t|t

. The lower box represents the internal structure of a filter bank with its three steps: interaction, estimation,

and  fusion. Note that all filter banks have the same input observations. The output of a bank is the integrated source state vector with its associated covariance
{

x, P
}
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osterior probability vector �t|t(n), and likelihood vector Lt(n).

dynamics and initial conditions). The state estimations of the EKF
lters are probabilistically combined at each step to integrate the

nformation of all filters and to build the bank estimation. Several
anks of filters are running in parallel, but operating over models
f different source space dimensions (different number of dipoles).
he estimation of the method at each step is a probabilistic selec-
ion among the estimations of all banks. Fig. 1 shows the general
rchitecture of the method.

.3.1. Bank of EKF filters
Each bank is composed of r EKF filters and the estimation of the

ank is computed in three steps: (i) interaction, (ii) estimation and
iii) fusion. Fig. 2 shows a graphical illustration of the execution of

 one-time cycle of the bank of filters.

.3.2. Interaction
The interaction step has two stages. Firstly, there is a proba-

ilistic mixture (Mixing stage) of the prior estimates of all filters,

here the estimations with poor performance are improved by

he estimations that more likely explain the measurements. Sec-
ndly, there is a re-initialization of the filters that result redundant
redundancy filtering stage).
t|t

In the mixing stage, the mixed prior estimate {x, P}it−1|t−1 for
each filter is computed as a weighted combination of the prior
estimates of all filters:

xit−1|t−1 =
r∑
j=1

xjt−1|t−1�
j|i
t−1 (16)

P
i
t−1|t−1 =

r∑
j=1

[
Pjt−1|t−1 + �i,j

t−1|t−1 · (�i,j
t−1|t−1)T

]
�j|it−1 (17)

where �i,j
t−1|t−1 = (xit−1|t−1 − xjt−1|t−1). The weights �it−1 =

[�1|i
t−1, · · ·, �r|it−1] are the normalized mixing probabilities for

filter i, which are computed in the t − 1 estimation step and depend
on the probability of filter i and on the probability transition
between filter i and other filters.

In the next stage, filters with redundant estimations are re-
initialized. This is motivated by the fact that during the estimation
process some filters may  tend to similar estimates, while the idea

behind the bank of filters is to capture different solution areas of
the state space (which is very appropriate in situations where the
neural sources vanish and new ones appear in other brain regions).
For each pair of filters, Dm and Dn, the redundancy between their
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Fig. 2. Graphical illustration of a one-time cycle execution of a filter bank in the Dynamo algorithm. Is is assumed a filter bank with source models of one dipole (n = 1), which
is  composed of three (r = 3) EKF filters (D1, D2 and D3). (a) Prior estimates given by the three EKF filters. Note that dipoles D1 and D2 seem to be equivalent in both position and
moment. (b) Interaction step: firstly, prior estimates with poor performance are mixed with better prior estimates, and secondly, prior mixed estimates that are redundant
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re  randomly re-initialized. Since D1 and D2 are redundant, and D2 has the lower p
lter  produces its own source space estimate independently from its prior estimat
omputed for each filter. (d) In the fusion step, all estimations are combined in term

rior estimates {x, P}Dmt−1|t−1 and {x, P}Dnt−1|t−1 is given by means of
heir Mahalanobis distance:

2
Dm,Dn

= (	Dm,Dnt−1|t−1)T
(

P
Dm
t−1|t−1 + P

Dn
t−1|t−1

)−1
	Dm,Dnt−1|t−1 (18)

here 	Dm,Dnt−1|t−1 = (xDmt−1|t−1 − xDnt−1|t−1). Dm and Dn are regarded sta-

istically equivalent or redundant when d2
Dm,Dn

< 
2
dim(	),˛ (the

istance is lower than the inverse chi squared cumulative distribu-
ion with a significance level of ˛). Thus, when they are redundant,
he one with the lowest prior probability is randomly re-initialized
nd its probability is set to min(�t−1|t−1)/1000, while the other
emains in the same estimate and its probability is set to  Dmt−1|t−1 +
Dn
t−1|t−1. Then �t−1|t−1 is normalized. The re-initialization of redun-
ant filters allows to explore more efficiently the state space and
oes not modify the total mass probability of the bank.

.3.3. Estimation
The estimation step consists of three stages. In the first step,

ach EKF filter computes its own source state vector with its associ-
ted covariance {x, P}it|t , given the new measurements and the prior
stimate (Eqs. (10) and (11)). In the second step, the posterior and
ixing probabilities of all filters are computed. The posterior prob-

bility of the filters �t|t = [ 1
t|t , · · ·,  rt|t]

T , is recursively updated
y:

t|t = Lt�Tt|t−1 (19)

here Lt = [l1t , · · ·, lrt ]
T and lit = p(mt |xit|t) = N(mt |xit|t , R) is the like-

ihood function of data, given that the estimation of the filter i is
orrect; and �t|t−1 = [ 1

t|t−1, · · ·,   rt|t−1]T is the predicted probabil-
ty for all the filters given by:

t|t−1 = ��t−1|t−1 (20)

here �t−1|t−1 = [ 1
t−1|t−1, · · ·,   rt−1|t−1]T is the prior probability

defined initially equal for all the filters since all are randomly
nitialized and no prior information exists) and � is a mixing oper-
tor that accounts for transitions between models following a
omogeneous constant Markov process. Every particular value �ji
epresents the probability that, at time t, the selected filter is i, given

hat at time t − 1 the selected filter was j. Given the prior probabil-
ty vector (defined initially equal for all the filters since all filters
re randomly initialized and no prior information exists) �t−1|t−1,
nd the probability transition (defined with the larger values on the
robability, D2 will be randomly re-initialized. (c) Estimation step: firstly, each EKF
 new available measurements mt , and secondly, the probability and likelihood are
heir posterior probabilities to produce the estimation of the bank of filters.

diagonal and then each row is normalized) �, each particular value
of the mixing probability vector �it for filter i is computed by:

�j|it =
�ji 

j
t−1|t−1

 it|t−1

, ∀j = 1, . . . , r (21)

The final third stage is the sorting of the dipoles arrangement
within the state vector and the covariance matrix xit|t and Pit|t . This is
needed because filters with various dipoles (i.e., for banks of filters
with two or more dipoles) may  have multiple equivalent repre-
sentations, which may  cause trouble in the previous interaction
step and the next fusion step when combining the estimations of
all filters. The sorting is carried out for each filter by selecting the
arrangement of dipoles in xit|t and Pit|t (of all possible) that leads
to the minimum Mahalanobis distance with respect to the filter
with the highest probability, i.e., the state vector and the covariance
matrix of each filter are reordered to match with the estimation
given by the filter with the highest probability.

2.3.4. Fusion
In this step, all estimations are combined in terms of their pos-

terior probabilities, to produce the resulting estimation of the bank
of filters:

xt|t(n) =
r∑
i=1

xit|t 
i
t|t (22)

Pt|t(n) =
r∑
i=1

[
Pit|t +

(
xt|t − xit|t

)  (
xt|t − xit|t

)T]
 it|t (23)

The final estimation {x, P}t|t(n) is the weighted combination of
the estimation given by all filters. The weight of each estimation
depends on the posterior probability of the filter. The parameter n
is the number of banks, provided that there are more banks running
in parallel (see Fig. 1).

2.4. Selection of the estimation

Every bank of EKF filters estimates the neural sources of r

source models with the same dimension of the source space (same
number of dipoles) but different parameters (dynamics and ini-
tial conditions). The final step selects the final estimation from all
banks. The selection algorithm firstly computes the overall bank
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Fig. 3. Illustration of the time course of simulated neural sources. C1,. . .,  C6 and T1,
.  . .,  T5 are the conditions (stable behavior) and transitions (changes in character-
istics) of the neural sources. Top: Illustration of the time course of the simulation
versus the number of sources and temporal correlation (e.g., in C2 there are two
active and uncorrelated sources). Bottom: Illustration of the time course of the sim-

previous neural sources. The EEG/MEG signals were sampled at
256 Hz and independently corrupted with a zero-mean Gaussian
J.M. Antelis, J. Minguez / Journal of 

ikelihood function value LBt(n) for every filter bank as a function
f the posterior probability �t|t(n) and likelihood vectors Lt(n).

Bt(n) =
r∑
j=1

Ljt(n)�jt|t(n) (24)

hen, the bank likelihood and the number of sources associated
ith each bank are used to compute the Akaike information criteria

AIC):

ICt(n) = −2Ln(LBt(n)) + 2Ns(n) (25)

ubsequently, the filter bank with the minimum AIC value is
elected:

m = arg min
n

(AICt(n)) (26)

he final estimate (state vector and covariance) at time t is the
stimation of the nm bank:

t|t = xt|t(nm), Pt|t = Pt|t(nm) (27)

In summary, Dynamo is a dynamic and multi-model estima-
ion method for brain sources given EEG and/or MEG  data. The
stimation framework is based on the parallel execution of EKF fil-
ers operating over different source models, which probabilistically
nteract and fuse the information to obtain the best estimation at
ach time step.

.5. Implementation of the Dynamo method

There are two main issues related to the implementation of the
ethod: the sensor forward model and the parameters of Dynamo.

he sensor forward model is based on the EEG/MEG head models
see Section 2.1.3) that were selected as follows. For EEG, a three
hell spherical conductor model was used (radius fixed to 86, 96
nd 100 mm for brain, skull and scalp respectively; conductivities
xed to 0.33 S/m for brain and scalp, and to 0.0042 S/m for skull).
or MEG, a single-shell volume conductor model was used with a
omogeneous and isotropic sphere of radius 100 mm (Grech et al.,
007). Both spherical head models were shaped to the realistic head
odel of the probabilistic magnetic resonance imaging atlas of the
ontreal Neurological Institute (Evans et al., 1999). In addition, the

bservation noise variance matrices, Reeg and Rmeg, are estimated
s in Section 2.1.3.

The main parameters of Dynamo are the number of filter banks
given by the maximum number of dipoles), the number of EKFs
er bank, the transition probability matrix, and the initial condi-
ions and dynamics for each EKF. First, the Dynamo implementation
sed a maximum of three dipolar sources (i.e., three banks with
odels of 1, 2 and 3 dipoles), which is in line with studies suppor-

ing that a maximum number of three dipolar sources is sufficient to
xplain focalized brain activations (Plummer et al., 2008). Second,
he number of EKF filters has an effect on Dynamo since the selection
f a lower number of filters could omit valid hypotheses of neural
ources. The selection of a higher number of filters would enhance
he quality and accuracy of the estimation, but would lead to an
npractical application due to the computational burden. Simula-
ions were carried out to study this effect, evaluating the estimation
erformance by varying the number of EKF filters per bank from

 to 32. The best performance was found using 32 filters, as will
e described in the next subsection. Third, the transition matrix
as initialized with a higher probability to continue in the same
odel than to change to another one. This was implemented by
ssigning a probability of r/(2r − 1) to the diagonal elements and
/(2r − 1) to the off-diagonal ones, where r is the number of filers

n the bank. Finally, for each EKF, the initial condition (for both,
he first time step and for the redundancy filtering) was  randomly
ulation versus anatomical location of the sources (e.g., in C2 one source is cortical
and the other is located in the middle brain).

located within the brain volume and within the allowable range
of moment values (from −400 to 400 nA/m). The dynamics were
classified as slow, moderate, and fast, which were implemented by
the diagonal elements of Q (these values were fixed to cover 10,
50 and 100% of brain volume in position and 10, 50 and 100% of
a maximum possible value of moment components of 400nA/m).
Dynamo was  implemented with three banks of filters, 32 EKF filters
per bank, with randomized initial conditions and slow, moderate,
and fast neural dynamics on the EKF filters.

2.6. Evaluation in a simulated scenario

A key difficulty in the validation of source localization tech-
niques is the lack of a ground truth, as the underlying neural sources
are unknown. Therefore, the standard way of evaluating these tech-
niques is to assess the ability to reconstruct known sources in a
simulated scenario.

2.6.1. Design of neural sources and EEG/MEG signals
The neural sources were modeled by current dipoles with time-

varying location within the brain volume and a time-dependent
moment given by sinusoidal-damped functions. The neural sources
were designed to address simultaneously three aspects that impose
difficulties to existing source localization techniques: (i) variability
in the number of sources; (ii) changes in the anatomical location of
the sources, ranging from superficial (neocortical) to deep (subcor-
tical); and (iii) changes in the temporal correlation of the sources.
The simulation lasted 3 s, divided into Ci conditions with Ti transi-
tions between each condition (Fig. 3).

The EEG/MEG head models were selected as described in the
previous subsection to simulate sensor measurements given by
noise, with a standard deviation such that the signal-to-noise ratio
(SNR) was 50 dB (SNR = 20 log(�M/�N), being �M the standard devi-
ation of the obtained measurements and �N the standard deviation
of the noise).
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.6.2. Evaluation design
As Dynamo is based on a stochastic process, the performance

as evaluated by 10 Monte-Carlo simulations for each of the three
odalities (EEG, MEG, and EEG + MEG). The following metrics were

sed for evaluation (Bar-Shalom et al., 2001; Peralta-Menendez and
onzalez-Andino, 2002; Hesheng et al., 2004; Grova et al., 2006;
rech et al., 2007):

Error in the number of sources: ε(Ns) = abs(Ns − Ñs). Mismatch
between the actual Ns and the estimated number of sources Ñs.
Source position error: Firstly, ε(rq) =

∑N
i=1‖riq − r̃

i
q‖ is the sum

of the distances between the location of the actual sources
and the location of the estimated sources, when the esti-
mated and actual number of sources agree. Secondly, ε′(rq) =
ε(rq) + 1/M

∑M
j=1‖R − R̂j‖ is the source position error plus

the mean distance between the location of the M under-
estimated/overestimated sources (R̂) and the location of the
estimated/real source (R), when the estimated and real number
of sources do not agree. ε(rq) and ε′(rq) were normalized with
respect to the radius of the brain in the head model.

Source moment error: Firstly, ε(q) =
∑N

i=1‖qi − q̃
i‖ is the sum of

the distances between the moment of the actual sources and the
moment of the estimated sources, when the estimated and actual
number of sources agree. Secondly, ε′(q) = ε(q) + 1/M

∑M
j=1‖Q −

Q̂ j‖ is the source moment error plus the mean distance between
the moment of the M underestimated/overestimated sources (Q̂ )
and the moment of the estimated/real source (Q), when the esti-
mated and real number of sources do not agree. ε(q) and ε′(q)
were normalized with respect to the maximum of the moment
component.
Goodness-of-fit: gof = 1 − (m − m̃)T (m − m̃)/mTm. Degree of fit-
ness between the measurements given by the estimated sources
m̃ and the real measurements m.
Consistency index: ci = nees/
2

Ndim,˛
, where nees = (x −

x̃)T P̃
−1

(x − x̃) is the normalized estimation error square, ˛
is the significance level and Ndim is the dimension of the state
vector (6 · N). When ci < 1 the estimation is consistent with the
true value, otherwise the estimation may  have diverged.

Based on the previous setup, four analysis were carried out: the
rst analysis addressed the effect of the number of filters on the
stimation; the second verified the effect of the number of EEG sen-
ors; the third assessed the accuracy of the estimation in different
ituations; and the final fourth analysis was a comparison against
ther techniques. In the first analysis, a 10/10 international system
as adopted with 64 EEG sensors (assuming that no significant

mprovements would be obtained with more sensors, see Michel
t al. (2004) – this assumption was positively confirmed later) and
he number of filters ranged from 2 to 32. In the second analysis,
he number of filters was set to 32 (as the best performance was
chieved with 32 filters) and the number of sensors ranged from 16
o 96. In the third analysis, MEG  data was included with 151 mag-
etic coils simulating a real acquisition CTF System and 32 filters
ere used. The accuracy of the estimation method was assessed by

he three sensor modalities (EEG, MEG, and EEG + MEG) and several
ffects were studied (conditions Ci versus transitions Ti; anatomical
ocation of the sources –subcortical, middle and cortical–; corre-
ated versus uncorrelated).

The fourth analysis was a comparison against widely spread
ethods: the Least-Squares LS method (Mosher et al., 1992),
he minimum norm estimate MNE  (Hämäläinen and Ilmoniemi,
994), the linear-constrained minimum variance beamforming
CMV (Veen et al., 1997), and the low resolution electromagnetic
omography method LORETA (Pascual-Marqui et al., 1994). The LS
science Methods 212 (2013) 28– 42

method is a parametric solution that employs a non-linear opti-
mization process to estimate a predefined fixed number of current
dipoles, which was implemented with one, two and three sources
(referred as LS1dip,  LS2dip and LS3dip respectively). The MNE, LCMV
and LORETA methods are distributed solutions with a solution space
implemented by a dense grid of fixed-positions spanning the entire
brain volume. For comparison purposes, in the case of LS solutions
the metrics ε′(rq) and ε′(q) were used as in some conditions Ci and
transitions Ti the number of assumed dipoles did not match the real
number of sources. In the case of methods MNE, LCMV and LORETA,
equivalent current dipoles were calculated from the distributed
solutions as follows (note that the number of sources is known).
For one source, the equivalent dipolar position was the weighted
sum of the grid positions, where the weights were the normal-
ized power estimated by the method. For two or three sources, the
equivalent dipolar positions were computed using an optimization
process that minimized the distances of clusters in the distributed
solution. Once these equivalent dipolar positions were obtained,
a straightforward linear optimization was applied to estimate the
equivalent dipolar moment (q̂t = K†

tmt , where Kt is the lead field
evaluated at the equivalent dipoles positions, mt is the recorded
measurements at time t and K†

t is the pseudo inverse of Kt).

2.7. Evaluation in a real scenario

Real scenario evaluation is also a key difficulty to overcome, as
the underlying neural sources are always unknown. Therefore, a
usual way  of evaluating source localization methods in this con-
text is to assess the ability to reconstruct neural sources in a
well-established and known scenario of brain activity. Note that
the presented paradigm mainly serves as a test to understand the
Dynamo technique with non-simulated EEG data.

2.7.1. Experimental paradigm and data collection
The experiment (Lopez-Larraz et al., 2010) replicated the study

of (Miltner et al., 1997), which was based on a feedback stimuli
presentation after a time-estimation task. The presentation of neg-
ative/positive feedback produces an event-related response mainly
generated by Brodmann areas 24 and 32 in the anterior cingulate
(Miltner et al., 1997; Carter et al., 1998; Bush et al., 2000; Holroyd
and Coles, 2002), which was used as ground truth.

Five healthy male subjects participated in the experimental ses-
sions. The mental task was  to estimate the duration of one second.
Each trial started with a visual cue to indicate that the subject had to
press a button one second later. At the end of the mental count, the
subject pressed the button and 0.6 seconds later he/she received
a visual feedback indicating whether the estimated time was  cor-
rect or incorrect. The EEG data was  recorded from 32 electrodes
uniformly distributed according to the 10/10 international system.
The ground electrode was on FPz and the reference was placed
on the left earlobe. The EEG was  digitalized with a sampling fre-
quency of 256 Hz, power-line notch-filtered and bandpass-filtered
between 0.5 and 60 Hz. For each participant, approximately 150
error trials and 150 correct trials were recorded. After the exper-
imental sessions, epochs were extracted starting from the visual
cue presentation until one second later, then the EEG signals
were average-referenced and filtered with a zero-phase shift,
sixth-order, low-pass Butterworth filter with a cutoff frequency
of 10 Hz.
2.7.2. Evaluation design
The neural sources were estimated through the execution of 10

Monte-Carlo runs. The performance of the method was  evaluated
according to the following metrics:
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ynamo increased with the number of filters but computation time dramatically in
he  case of Dynamo implemented with 32 filters per bank. These results show that 

mprovement is not significant.

Brodmann area and brain structure: BA and BS.  Brodmann area and
the brain structure to which the estimated source belongs.
Distance to the error-processing region:  DEt. Minimum distance
from the estimated source to the brain region involved in error-
processing (i.e., BA’s 24 and 32, and BS anterior cingulate and
cingulate gyrus) at a given time.

DEt = min‖rt − rit‖, i = 1, . . . , N (28)

where rt is the position of the estimated source and rit i=1,. . .,  N
are the position of N points located within the brain and labeled
as either BA 24, BA 32, BS anterior cingulate or BS cingulate gyrus.
Activation of the Brodmann areas and brain structures:  ABA(i) and
ABS(i). Total activation of the ith Brodmann area or ith brain struc-
ture in a time interval.

ABA′(i) =
T∑
t=1

Nt∑
n=1

‖qnt ‖2 · ˛it,n, ABA(i) = ABA′(i)∑
jABA

′(j)
(29)

ABS′(i) =
T∑
t=1

Nt∑
n=1

‖qnt ‖2 · ˛it,n, ABS(i) = ABS′(i)∑
jABS

′(j)
(30)

where ABA(i) is the activation percentage of the ith Brodmann
area (i = 1, . . .,  52 as there are 52 Brodmann areas labeled in the
MNI  space), ABS(i) is the activation percentage of the ith brain
structure (i = 1, . . .,  32 as there are 32 brain structures of the brain
labeled in the MNI  space, and for simplicity, ABS(24) and ABS(32)
will refer to the activation of the BS’s anterior cingulate and cin-
gulate gyrus, respectively), T is the number of time samples, Nt is
the number of neural sources estimated at time t, ˛it,n is a binary
value equal to one if the actual source is located within the ith
Brodmann area (i.e., rnt ∈ ith Brodmann area) or zero otherwise,
and rnt and qnt are the position and moment estimates of source n
at time t. The full Gaussian-approximate distribution computed
by Dynamo was taken into account by drawing N = 100 samples
from N(xt , Pt) (instead of the mean estimate xt). In distributed
solutions, the maximum of the estimated activity at each time is
taken into account to compute the ABA and ABS.
Based on these metrics, two analysis were carried out. The first
nalysis studied the estimation of the neural sources for the grand
verage difference between error and correct conditions for all tri-
ls and subjects. The second analysis studied the estimation of the
ed. (b) Distributions of ε(rq), ε(q) and gof for different numbers of EEG sensors for
timation accuracy of Dynamo increases up to 64 electrodes, and that after this, the

neural sources for the grand average difference, but separately for
each subject. In both analysis the neural sources were studied at
the occurrence of the most prominent peaks and during the time
interval of the evoked activity, and a comparison among Dynamo,
LS1dip, LCMV and LORETA methods was performed.

3. Results

3.1. Evaluation for the simulated scenario

3.1.1. Analysis 1: number of filters
Fig. 4a summarizes the results of the influence of the number of

filters on the performance of the technique. Significant differences
were found between distributions of ε(rq) (p < 0.01, Wilcoxon rank-
sum test) as the number of filters was  progressively modified from 2
to 32. No significant differences were encountered between distri-
butions of ε(q) (p > 0.01, Wilcoxon rank-sum test) when the number
of filters changed from 16 to 32. Regarding gof,  as the number of fil-
ters changed successively from 2 to 32 significant differences were
found (p < 0.01, Wilcoxon rank-sum test). These results show that
the performance of the method improved as the number of filters
also increased; however, the computation time rapidly increased
along with the number of filters.

3.1.2. Analysis 2: number of EEG sensors
Fig. 4b summarizes the results of the analysis of the number of

EEG sensors. Significant differences were found (p < 0.01, Wilcoxon
rank-sum test) between successive distributions of ε(rq), and the
median of the distributions decreased as the number of electrodes
progressively increased from 16 to 64. However, no significant dif-
ferences were found (p > 0.01, Wilcoxon rank-sum test) when the
number of electrodes changed from 64 to 80 or from 80 to 96. No
significant differences were found between distributions of ε(q)
(p > 0.01, Wilcoxon rank-sum test) when the number of sensors
changed from 48 to 64 or from 80 to 96. Regarding gof,  significant
differences between distributions were found (p < 0.01, Wilcoxon
rank-sum test) when the number of sensors varied from 48 to 64,
and no significant differences were found (p > 0.01, Wilcoxon rank-
sum test) when the number of sensors changed either from 64 to

80 or from 80 to 96. These results revealed that the accuracy in the
estimation of the sources increased until 64 electrodes; however,
the increase is not as significant when using 80 or 96 electrodes.
These results agreed with the results of Michel et al. (2004),  where
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imulations and interictal epileptic data were used to show that
he source localization accuracy increased with the number of elec-
rodes, and that after 60 electrodes the improvement in localization
s minimal.

.1.3. Analysis 3: evaluation of estimation accuracy
The position accuracy ε(rq) of the method was 12.06%, 8.23% and

.43% for the EEG, MEG, and EEG + MEG  sensor modality, respec-
ively, and the moment accuracy ε(q) was 4.55%, 4.23% and 2.53% for
he EEG, MEG, and EEG + MEG  sensor modality, respectively. These
esults are in line with Kiebel et al. (2008) and Sorrentino et al.
2009), which reported a position error of 8 mm (i.e., ε(rq) = 11.63%)
nd of 6 mm (the ε(rq) could not be computed as the head model

as not reported). For the three sensor modalities, the estima-

ion was consistent with the true values (ci < 1) at all times, which
ndicated that the estimation did not diverge. Note that high val-
es (i.e., ci ≈ 1) were obtained during the first time and during Ti
ing the number of sources, (c) considering the anatomical location of sources and
, and blue for the EEG, MEG  and EEG + EMG  sensor modalities, respectively. (For

 web version of the article.)

transitions, which are times when the uncertainty of the estimation
increased as the characteristics of the neural sources were chang-
ing. Regardless of sensor modality, Dynamo was able to consistently
and accurately estimate the neural sources in the experimental
situations.

Effects of the sensor modality: The distributions of ε(rq) and
ε(q) were significantly different (p < 0.01, Wilcoxon rank-sum test)
across sensor modalities, and the lower median values were
achieved with EEG + MEG. No significant differences were found
(p > 0.01, Wilcoxon rank-sum test) between the distributions of gof.
These results indicate that the use of combined EEG + MEG  offered
better performance than using either EEG or MEG  alone, which
agrees with previous studies (Sharon et al., 2007; Molins et al.,

2008; Henson et al., 2009).

Effects of estimation situations (Ci and Ti): For the three sensor
modalities, the distributions of ε(rq), ε(q) and gof were significantly
different (p < 0.01, Wilcoxon rank-sum test) across conditions and
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ransitions (Fig. 5a). The medians of ε(rq) and ε(q) were higher in
he transitions than in the conditions, and the medians of gof were
lightly lower in transitions than in conditions. Moreover, nonzero
(Ns) was found in transitions but not in the conditions. The time
ourse of these metrics also revealed poor performance during ini-
ial time instants (i.e., high ε(rq) and ε(q), nonzero ε(Ns), and low
of), which was due to the fact that all filters were randomly initial-
zed and thus some iterations were needed to update the filters and
roduce good estimates. These results indicate that the estimation
ccuracy was better during Ci than during Ti. This is because during
i the neural sources are changing and Dynamo requires some iter-
tions to accommodate the estimation by updating the filters and
electing the appropriate bank.

Effects of the number of sources: For the three sensor modalities,
ignificant differences were found (p < 0.01, Wilcoxon rank-sum
est) in the distributions of ε(rq) and ε(q). Both median val-
es increased as the number of sources required for estimation

ncreased (Fig. 5b). These results indicate that the estimation accu-
acy was lower as the number of sources to be estimated increased.
his occurs because the estimation problem becomes more chal-
enging as the dimensionality of the state-space increases (i.e., more
ources and thus more parameters to estimate).

Effects of the anatomical location of the sources: For the three
ensor modalities, the distributions of ε(rq) and ε(q) from sub-
ortical sources were significatively different and higher (p < 0.01,

ilcoxon rank-sum test) than those from middle and cortical
ources (Fig. 5c). No significant differences in the distributions
f ε(rq) and ε(q) were found (p > 0.01, Wilcoxon rank-sum test)
etween middle and cortical sources (Fig. 5c). These results show

 lower performance in the estimation of neural sources located
n deep regions of the brain, which agrees with other studies
Whittingstall et al., 2003). This occurs because EEG and MEG  sig-
als arising from subcortical sources (those located farther away

rom the sensors) have a smaller magnitude than middle or cortical
ources (as in the mathematics of the forward model the EEG/MEG
ignals are inversely related to the cubic distance between sensors
nd sources), and therefore the signals are more affected by mea-
urement noise and by EEG/MEG signals of other middle or cortical
ources.

Effects of the correlation of the sources: For all sensor modal-
ties, the distributions of ε(rq) and ε(q) revealed no significant
ifferences (p > 0.01, Wilcoxon rank-sum test) between uncorre-

ated and correlated sources (Fig. 5d). These results indicate that
he technique had a similar performance irrespective of whether
he sources were correlated or not. This is because the Dynamo
olution relies on the forward solution for its implementation in

 manner that is independent of the observations, whereas other
ethods such as adaptive distributed solutions (e.g., LCMV) relies

n both the forward model and observations (Quraan and Cheyne,
010), (i.e., the measurements influence the estimation of each
ource individually).

.1.4. Analysis 4: comparison against other methods
For all conditions and transitions, the distributions of ε(rq) and

(q) of Dynamo were significantly different (p > 0.01, Wilcoxon
ank-sum test) and lower than those obtained with other tech-
iques (Fig. 6). Indeed, the median values of ε(rq) and ε(q) obtained
ith Dynamo (12.06% and 4.55%) were lower than those obtained
ith LS1dip (40.65% and 20.08%), LS2dip (24.08% and 13.41%), LS3dip

39.80% and 9.82%), MNE  (33.36% and 7.17%), LCMV (41.05% and
.83%) and LORETA (34.19% and 7.35%). Regarding gof,  significant
ifferences were found (p < 0.01, Wilcoxon rank-sum test) between

he distribution of Dynamo and the LS1dip solution, and no signif-
cant differences were found between the distribution of Dynamo
nd the other methods. These results show the high performance
f Dynamo in this experimental setup.
Fig. 6. Distributions of ε(rq), ε(q) and gof obtained with Dynamo, the least squares
solutions (LS1dip, LS2dip and LS3dip) and the distributed solutions (MNE, LCMV and
LORETA)  for all the conditions and transitions.

In addition, the distributions of ε(rq), ε(q) and gof were obtained
separately for each Ci condition for all methods. In all condi-
tions Dynamo presented the best performance. The LS solutions
presented good performance solely when the number of sources
assumed by the method agreed with the number of sources of the
condition. In condition C2 for example, the median values of ε(rq)
and ε(q) obtained with Dynamo (4.90% and 1.83%) were similar
to those obtained with LS2dip (7.71% and 6.03%) and lower than
those obtained with LS1dip (57.42% and 32.94%), LS3dip (43.96%
and 13.53%), MNE (25.39% and 5.46%), LCMV (38.71% and 8.32%) and
LORETA (27.42% and 5.90%). Even in this condition, which was the
most favorable for LS2dip (as there are two active neural sources),
the estimation accuracy is similar but still better for Dynamo.

3.2. Evaluation in the real scenario

3.2.1. Analysis 1: neural sources of the grand average difference
between conditions, averaged for all subjects

Fig. 7a displays, for all trials and subjects, the grand aver-
age of feedback potentials in the error and correct conditions at
channel FCz. In the error condition, the feedback potential has a
negative deflection at ≈281 ms,  a positive peak at ≈379 ms and a
negative peak at ≈488 ms;  while in the correct condition, the feed-
back potential has similar components but with noticeable smaller
amplitudes. The evoked activity is observed between ≈200 and
≈500 ms.  The topographical scalp maps of the grand average differ-

ence at the occurrence of those prominent peaks reveal focalized
patterns on the fronto-central scalp (Fig. 7a). These results agree
with Miltner et al. (1997) and Holroyd and Coles (2002) in the same
experimental paradigm.
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Fig. 7. (a) Waveforms of grand average potentials for all trials and subjects in the error condition (red), correct condition (blue) and difference between conditions (black)
for  channel FCz, and topographical scalp maps of the grand average difference between both conditions at time latencies of the more prominent peaks (dotted vertical lines).
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b)  Neural sources estimated with Dynamo projected onto spherical head slices for
ource  of Dynamo, LS1dip,  LCMV, and LORETA projected onto MRI  slices for a time lat
f  the references to color in this figure legend, the reader is referred to the web ver

The neural sources behind the grand average difference between
he two conditions were estimated with Dynamo. In the first neg-
tive and second positive peaks (≈281 and ≈379 ms,  respectively),
ynamo estimated two neural sources (upper and middle plots in
ig. 7b). In both peaks, one of the sources lies on BA 24 in the BS cin-
ulate gyrus. This result is consistent with (Miltner et al., 1997). The
ther source was located, for the first negative peak in BA 25 in the
S anterior cingulate, and for the second positive peak in BA 11 in
he BS rectal gyrus (associated with reasoning and decision making,
hich might be related to the mental recognition of feedback cues

nd is also consistent with (Miltner et al., 1997). For the third peak
≈488 ms), one source located on BA 4 in the BS precentral gyrus
as estimated (lower plot in Fig. 7b). These results show that, at

he occurrence of the prominent peaks, the estimated sources were
ocated in the brain regions related with error processing.

The neural sources was  also estimated with other source local-
zation techniques. Fig. 7c shows, at the time latency of the
econd positive peak (≈379 ms), the neural sources estimated with
ynamo, LS1dip,  LCMV, and LORETA projected onto sagittal MRI

lices (for Dynamo, only the closest source to the error-processing
egion is presented). Firstly, for this time latency, the estimated
ource of Dynamo and LS1dip solutions as well as the maximum of
he estimated activity in the LCMV and LORETA solutions lied on BA
me latencies of the three more prominent peaks (281, 379 and 488 ms). (c) Neural
of 379 ms  (second peak of the ErrP feedback showed in panel a). (For interpretation
f the article.)

24 in the BS cingulate gyrus. Results with equivalent BA’s and BS’s
were also obtained in the other two peaks. This indicates that in
the prominent peaks, all methods estimated similar neural sources
and in the brain regions that mediate in error-processing. Secondly,
Fig. 8a shows, for all methods, the distance to the error-processing
region, DE,  averaged between 200 and 500 ms.  Note that DE in the
Dynamo solution was lower and significantly different (p < 0.01,
Wilcoxon rank-sum test) to the other solutions. This indicates that
for the time interval of the evoked activity, Dynamo was the closest
solution to the error-processing region. Thirdly, the activation of
the Brodmann areas and brain structures pertaining to the error-
processing regions, ABA(24, 32) and ABS(24, 32), computed in the
time interval of the evoked activity (200 to 500 ms), are displayed
in Fig. 8b and c. Note that these activations are higher for Dynamo
(ABA(24, 32)=50% and ABS(24, 32)=34%) than for the other tech-
niques. These results show that in the time interval of the evoked
activity, Dynamo led to higher activations of the Brodmann areas
and brain structures that were involved in error-processing.
3.2.2. Analysis 2: neural sources of the grand average difference
for each subject

The neural sources of the grand average difference were also
estimated separately for each subject with Dynamo, LS1dip,  LCMV
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Fig. 8. For the neural sources of grand average difference between the error and
correct conditions for all trials and subjects, and estimated with Dynamo, LS1dip,
LCMV,  and LORETA, (a) distance to the error-processing region (DE) averaged for the
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ime interval from 200 to 500 ms,  and activation of the error-related (b) Brodmann
reas ABA(24, 32) and (c) brain structures ABS(24, 32), computed for the time interval
rom 200 to 500 ms.

nd LORETA methods. At the time of the second positive peak
≈379 ms), the topographic scalp distribution revealed a noticeable
ositive focalized fronto-central scalp pattern in subjects 1, 2, 3 and
, and also a positive but less focalized (more diffuse) scalp pattern

n subject 4 (Fig. 9a). For this time latency, Fig. 9c–e display for
ll techniques the estimated neural source projected onto sagittal
RI  slices, and the BA’s and BS’s associated with those estimated

ources.
For subjects 1, 2, 3 and 5, the Dynamo estimate is located on

A 24 in the BS anterior cingulate; the LS1dip and LCMV estimates
re located in BA’s 24, 32 or 23 in the BS’s anterior cingulate and
ingulate gyrus; and the LORETA estimate is located on BA’s 6, 32,
1 and 24 in the BS’s superior frontal gyrus, cingulate gyrus and the
aracentral lobule. For subject 4, more posterior but less similar
ources are observed in all methods, which could be attributed to
he more noisy and diffused scalp pattern as shown in Fig. 9a. Note
hat these results show that in subjects 1, 2, 3 and 5, the estimation
f Dynamo is always in the error-related processing brain regions,
hile the estimation of LS1dip,  LCMV and LORETA is not only in the

rror-related regions but also in other adjacent brain regions.
Fig. 10a  displays for all subjects and methods, the distance to

he error-processing region metric (DE), averaged between 200 and
00 ms.  Note that in all subjects DE was lower and significantly dif-
erent (p < 0.01, Wilcoxon rank-sum test) for Dynamo than for the
ther techniques. In addition, average DE was 8.95 mm,  27.07 mm,

2.53 mm and 24.07 mm,  for Dynamo, LS1dip,  LCMV and LORETA,
espectively (Fig. 10a). These results indicate that for all sub-
ects, Dynamo provided the closest solution to the error-processing
egion. Fig. 10b  and c shows for all subjects and solutions, the
science Methods 212 (2013) 28– 42 39

activation of the Brodmann areas 24 and 32, ABA(24, 32), and the
activation of the anterior cingulate and cingulate gyrus, ABS(24, 32),
both computed between 200 and 500 ms.  For subjects 1, 2, 3 and
5, ABA(24, 32) and ABS(24, 32) are both greater for Dynamo than
for other solutions. Note that ABA(24, 32) and ABS(24, 32) are both
very low in subject 4 for all solutions. This could be attributed to the
high diffuse scalp pattern (noisy EEG signals) as showed in Fig. 9a.
In addition, the average of ABA(24, 32) for all subjects was 44.42%,
32.11%, 27.53% and 12.22% for Dynamo, LS1dip,  LCMV and LORETA,
respectively; while the average of ABS(24, 32) was  38.49%, 24.20%,
27.79% and 10.91%. These results show that Dynamo led to high
activations of the Brodmann areas and brain structures involved in
error-processing.

4. Discussion

This paper described Dynamo, a framework for the estimation
of neural sources that relies on the probabilistic fusion of mul-
tiple dynamic dipolar source models. Every model is defined as
a dynamic system, whose parameters are the number of sources
(each source modeled with a current dipole with its position and
moment), and the dynamics and priors of these sources. The esti-
mation for each model is recursively computed within a Bayesian
filter framework, and for all models, the estimations are probabilis-
tically integrated to build the estimation solution. There are several
aspects of this technique that require further discussion, such as the
representation of the state space, the multi-model definition, the
Bayesian tools, and the implementation.

In classical dipolar solutions, the number of sources must be
defined a priori with their corresponding temporal dynamics and
priors (e.g., techniques based on minimization (Scherg, 1990;
Mosher et al., 1992) and on Bayesian estimation (Somersalo et al.,
2003; Sorrentino et al., 2008)). This is a limitation for the estima-
tion of a wide range of neural processes, where these parameters
change in time. Dynamo addresses such limitations in an unified
framework by means of probabilistic integration of the estimations
of multiple models with different values for these parameters. This
integration also allowed for the tracking of several hypotheses of
neural sources, which is a key issue (the source localization problem
is ill-posed and the vast majority of existing dipolar and distributed
techniques do not address this). On one hand, some techniques use
regularization schemes (Liu et al., 2002; Darvas et al., 2004) in this
direction, however these are mathematical strategies to select a
solution but not to represent different models. On the other hand,
other techniques propose the use of different models in the form of
different priors that yield different solutions (Phillips et al., 2005;
Mattout et al., 2006), but still, the issues of time-varying dimen-
sionality and neural dynamics remain.

In the Dynamo technique, the estimation of each model is car-
ried out with the Extended Kalman Filter (EKF) algorithm. As the
estimation assumes Markovian properties, the estimation of the
sources is recursive and only requires the previous estimated state
and the new available measurements. One advantage with respect
to classical solutions such as the dipole fitting algorithm (Mosher
et al., 1992) is that Dynamo avoids the execution of nonlinear opti-
mization algorithms that require long execution times, and also
that the solution embodies a smoothness in the temporal sequence
of the estimation. The final estimation at each time is the proba-
bilistic selection across estimations of all banks, which provides a
straightforward way  to deal with changes in the number of neural
sources and/or its underlaying dynamics (multiple hypotheses of

neural sources are considered in an integrated way). In addition,
the estimation is a probability distribution of the sources’ posi-
tion and moment (parameterized by a mean and its covariance)
and not solely a discrete point estimate. This allows for a direct
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Fig. 9. (a) Topographic scalp maps at the time latency of the second positive peak (≈379 ms  for all subjects). A positive focalized fronto-central scalp pattern is observed for
s  4. (b,
a
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ubjects 1, 2, 3 and 5, and also a positive but less focalized scalp pattern for subject
nd  LORETA projected onto sagittal MRI  slices.

epresentation of probability volumes or confidence intervals for
he position and moment of the sources, as already reported to be
ecessary in dipolar solutions of the EEG/MEG source localization
roblem (Braun et al., 1997; Fuchs et al., 2004).

In the first iteration of Dynamo, all models were randomly ini-
ialized. Note that an initial estimate could be computed using the
rst EEG/MEG observation with a classical dipolar solution (Antelis

nd Minguez, 2009a).  Such computation leads to all the models
ith roughly the same initial prior, which would be naturally taken

nto account in the interaction step by a global re-initializing due
o redundancy. The redundancy filter is an important part of the
 c, d, e) Neural sources for this time latency estimated with Dynamo, LS1dip, LCMV,

algorithm, as it avoids the concentration of similar solutions in the
same brain area by re-distributing redundant estimations in other
brain areas for exploration. In this way, sudden changes in the loca-
tion of the brain activity can be addressed, where a new brain area
separated from the actual activity begins to be de/activated.

The implementation of Dynamo utilized three-shell (for the
EEG case) and one-shell (for the MEG  case) spherical head mod-

els to solve the EEG/MEG forward model. The spherical model is
a sufficient description for MEG  as these signals are unaffected by
conductivity profiles of head tissues, but it is a rough simplifica-
tion for EEG due to the inhomogeneous and anisotropic electric
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Fig. 10. For the neural sources of the grand average difference between the error and
correct conditions estimated with Dynamo, LS1dip,  LCMV, and LORETA, (a) distance to
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he error-processing regions DE averaged for time interval between 200 and 500 ms,
nd  activation of the error-related (b) Brodmann areas ABA(24, 32) and (c) brain
tructures ABS(24, 32) computed for the time interval from 200 to 500 ms.

roperties of the head. The rationale behind the use of these
pherical models is that they are described by analytic equations
xpressed in closed form, which allows for the computation and
valuation of the first order derivatives as required by the EKF
lgorithm. Additionally, previous studies have demonstrated that a
hree-shell head model could be appropriate when the brain activ-
ty is focalized (Vanrumste et al., 2002; Vatta et al., 2010), which is
he main context of applicability of Dynamo.

Dynamo has been tested in a simulated scenario, where the neu-
al sources were designed to address simultaneously three aspects
hat impose difficulties to existing source localization techniques:
i) variability in the number of sources; (ii) changes in the anatom-
cal location of the sources, ranging from superficial (neocortical)
o deep (subcortical); and (iii) changes in the temporal correlation
f sources. The results suggested that the best compromise was
chieved with 32 filters and 64 EEG sensors, which were used in
ubsequent evaluations of the technique. The evaluation results
howed a high accuracy in all estimation situations, irrespective to
he sensor modality. In particular, the accuracy in position achieved
ith the EEG sensor modality (ε(rq) = 12.06%) was  in the same range

f other studies (e.g., equivalent position error of 11.63% in Kiebel
t al., 2008). Also note that the values of ε(rq) were lower than ε(q).
his could be explained by the fact that the mathematical equations
f the EEG/MEG forward model are linear functions with respect to
he moment, but nonlinear with respect to the position, whereby
he estimation of the position is prone to higher inaccuracies due

o linearizations within the EKF algorithm.

The performance of Dynamo was compared with other widely
ccepted techniques: significant differences and lower values of
(rq) and ε(q) were obtained, which supports the fact that the
science Methods 212 (2013) 28– 42 41

proposed method was  more accurate than other techniques for
this evaluation scenario (note that the setup was selected to cover
difficult estimation scenarios for existing techniques). The lower
performance of LS dipolar solutions could be attributed to the fact
that in some conditions, the number of sources disagreed with
the existing number of sources. The lower performance of the dis-
tributed solutions could be due to the fact that these solutions are
well conditioned to estimate widespread (and not focalized) brain
activity.

The method was also tested in a real scenario with five subjects,
where the presentation of negative/positive feedback produced an
event-related response mainly generated in the Brodmann areas
24 and 32 in the anterior cingulate cortex (Miltner et al., 1997;
Carter et al., 1998; Bush et al., 2000; Holroyd and Coles, 2002 among
others), which was used as ground truth. The neural sources of the
grand average difference for all subjects were estimated in the brain
regions that mediate in error-processing, and were similar with
the other techniques. In addition, the Dynamo estimation during
the evoked activity was  more accurate and led to significant higher
degree of activation than the other methods, for all subjects and
per subject. The results show that Dynamo has a high performance
in the context of error-related potentials, although further inves-
tigation is required to fully understand the advatages/disdvangaes
of the proposed technique in other real contexts.

Finally, it is worth to mention that the method could be used,
for example, in applications that require the study of the temporal
evolution of neural sources, or in cases where statistics of sources,
position, and moment should be computed over different condi-
tions or over different subjects (as a small set of sources’ parameters
is more appropriate than a high dimensional space provided by dis-
tributed methods). Dynamo is well-suited for applications whether
the brain activity is actually focalized. For cases where the brain
activity is widespread, the estimation of the neural sources assum-
ing a dipolar approach will not reflect a real brain activity, and
therefore the use of a distributed method could be preferred.
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