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Abstract— Decoding motor information directly from brain
activity is essential in robot-assisted rehabilitation systems to
promote motor relearning. However, patients who suffered a
stroke in the motor cortex have lost brain activity in the injured
area, and consequently, mobility in contralateral limbs. Such a
loss eliminates the possibility of extracting motor information
from brain activity while the patient is undergoing therapy
for the affected limb. This work proposes to decode motor
information from EEG activity of the contralesional hemisphere
in patients who suffered a hemiparetic stroke. Four stroke
patients participated in this study and the results proved
the feasibility of decoding motor information while patients
attempted to move the affected limb.

I. INTRODUCTION

Demographic data analysis shows an increasing concern

in finding solutions and optimizing interventions for stroke

survivors [1], [2]. Robot-assisted rehabilitation therapies

have emerged as a very promising therapeutic approach

with numerous advantages [3], including the enhancement

of muscle strength, improvement of motor coordination and

dexterity [4], and promotion of neural circuit strength to

recover lost mobility [5]. Robot-assisted rehabilitation also

provides a reliable and safe way for the execution of intensive

and repetitive rehabilitation movements of the affected limbs,

while reducing the need of assistance from the therapist.

Force and kinematic sensors are usually used in robotics-

based motor rehabilitation as control signals whenever stroke

survivors still present residual movements [6], [7]. Alter-

natively, information from the peripheral nervous system

(PNS), such as muscle activity (EMG), can be used (alone

or combined with force or kinematics sensors) to drive and

control the movement-assisted devices [8], [9], [10], [11].

This is advantageous as it provides a certain level of control

to the patient undergoing therapy. However, this strategy does

not directly involve the central nervous system (CNS), and
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therefore it could slow down or even inhibit motor relearning

[12].

For patients without any residual movement in the affected

joints, EMG (if present) and electroencephalographic (EEG)

signals combined or alone might be the only non-invasive

remaining signals that could be used to trigger, in a natural

way, the robot movements and therefore close the loop

between brain and end effector (paralyzed limb). Recently,

several groups developed BCI approaches for motor reha-

bilitation in stroke patients, in which proprioceptive and

visual feedback become the key factors to close the brain-end

effector loop and produce some rehabilitation effects [13],

[14].

The use of information obtained directly from CNS is

essential to allow the patient to control, in a fully natural

and active way, both the device and the rehabilitation process.

Thus, strengthening of neural circuits is induced along with

the reorganization of the cortex (brain plasticity), allowing

for the recovery of lost mobility. Consequently, to promote

motor relearning, information such as motor planning or

intention must be directly extracted form the CNS while

the patients are using a movement-assisting device. Although

recent studies with healthy subjects have proposed the decod-

ing of motor information directly from the brain activity non-

invasively recorded with EEG [15], [16], the limitation when

dealing with stroke patients is the damage in the brain neural

networks connections. This damage could cause absence

or limitation of detectable motor-related brain activity in

injured and vicinity areas that could connect intention with

action (contralateral muscle activity). It has been proved

that during the execution of movement both the contralateral

and ipsilateral cortex are active [17], [18] due to subcortical

and intercallosal connections [19], [20]. Furthermore, it has

been demonstrated that arm kinematic information could be

decoded from brain ipsilateral areas [21], suggesting the

use of the healthy hemisphere to decode limb movement in

patients with unilateral stroke, and thus use this information

in robot-mediated therapy.

This work studies the decoding of motor intention using

EEG activity of the contralesional hemisphere only, in four

severely affected chronic stroke patients. In particular, sen-

sorimotor rhythm oscillations in the healthy motor cortex

were used to decode movement (intention to move) of

the unaffected and affected arm. In addition, a continuous

decoding strategy is presented, based on estimation of motor

information, to simulate a real case scenario in which the

patient could control a rehabilitation robot on-line with

contralesional brain activity only.



II. METHODS

A. Subjects

Four male patients (age range 55−65 years) who suffered

subcortical ischemic stroke (two in the left and two in the

right hemisphere) participated in this study. All patients

suffered a stroke at least two years before the experiments,

i.e., being in the chronic phase. Patients were unable to use

the upper limb for any activity of daily living, having no

residual finger extension on the paretic side. All patients were

able to complete the tasks using the healthy side.

B. Experimental procedure

The experimental protocol was approved by the ethics

committee of the University of Tubingen, Medical Faculty,

and written consent was obtained from each patient. The

subjects were seated in a chair in front of a computer screen

with both forearms resting comfortably on their lap. The

task was to move -or to attempt to move- the unaffected -or

affected- arm from the initial position to any self-selected 3D

location presented on the screen as colored circles (reaching

task), and then to return to the initial position (see figure

1). The experiment comprehended two conditions. Condition

one referred to movement of the unaffected arm, while

condition two referred to attempts to move the affected arm.

The users were provided with audio and visual cues. The first

cue instructed the users to relax the body and to adopt the

initial position for three seconds. The second cue marked the

start of the movement of the unaffected arm or the attempt

to move the affected arm. After another three seconds, the

third cue indicated to relax adopting the initial position, blink

and rest for another three seconds. During the motion phase

(between the second and third cues), subjects were asked

to avoid blinking or compensating movement with the torso

or other parts of the body. This was controlled visually by

the therapist and then off-line by visual inspection of the

EMG data. The experiment was executed in four blocks of

six minutes each. Fourty trials were recorded in each block,

resulting in a total of 160 trials (80 for each condition). After

each block the patient could rest as long as necessary to avoid

fatigue.

C. Data acquisition

EEG activity was recorded from 64 active electrodes

arranged according to the 10/10 international system using

an actiCAP system (from Brain Products GmbH, Germany),

with the ground at AFz and referenced to the left earlobe.

Sixteen bipolar Ag/AgCl electrodes (eight on each arm) from

Myotronics-Noromed (Tukwila, WA, USA) were used for

surface EMG data acquisition and placed on the muscles

involved in the movement: 1) extensor carpi ulnaris; 2)

extensor digitorum; 3) on the flexor carpi radialis, plamaris

longus, flexor carpi ulnaris (flexion); 4) on the external head

of the biceps (flexion); 5) the external head of the triceps;

6) frontal side of the deltoid; 7) lateral side of the deltoid;

and 8) posterior side of the deltoid over the teres minor and

infraspinatus muscles. EEG and EMG data were recorded at

a sampling rate of 2500 Hz with no filtering.

Fig. 1. Snapshot of the experimental setup showing a participant with the
EEG and EMG electrodes, and temporal sequence of one trial during the
execution of the experiment.

D. EEG and EMG data preprocessing

EEG and EMG trials lasted nine seconds each, with the

time reference set from -3 to 6 seconds with respect to

the presentation of the second cue (movement initiation).

For each trial the actual movement onset was determined

using the EMG signals. For each subject, the EMG signal

with the higher amplitude and most consistent activity (low

amplitude in the relax period and sustained high amplitude

during the moving period) across all trials was selected by

visual inspection. The selected EMG channel was high-pass

filtered with a cutoff frequency of 10 Hz, and subjected to

the Hilbert transform to obtain the movement onset for each

trial. Finally, all EEG and EMG trials were epoched from -3

to 3 seconds relative to the EMG-based movement onset.

EEG data were bandpass-filtered from 0.5 to 60 Hz using

a zero-phase shift filter and re-sampled to 160 Hz. In order to

remove the effects of volume conduction, Laplacian spatial

filtering [22] was applied to obtain artifact-free EEG signals.

E. Task-related power modulation

The temporal evolution of the power spectra of differ-

ent frequency bands of the artefact-free EEG activity was

computed with a time-frequency analysis using the complex

Morlet‘s wavelet [23]. The time-frequency representation

(TFR) was computed for all trials in each condition from 2

to 40 Hz with a frequency resolution of 1 Hz. Subsequently,

the statistical significance of the percentage of power spectra

decrease/increase relative to the baseline in the time interval

from -3 to 0 s was computed with a bootstrap analysis [24]

at the α = 0.01 significance level.

F. Feature selection

Channels located on the contralesional motor cortex and

frequency bins in the motor-related bands (α and β) present-



ing significant de-synchronization in the time window from

0 to 3 s were individually identified by visual inspection for

each subject. The spectral power at those frequency-channel

pairs was computed using a 16th order autoregressive model

[25] over a window of size δw for the EEG activity, constitut-

ing features xt at time t for motion intention detection. Power

spectral-based features from channels in the motor cortex and

from motor-related bands have been used for the detection

of imagined or executed movements of different parts of

the limbs [26]. However, this work only uses channels from

the contralesional motor cortex to decode both conditions

(movements of the healthy side and attempt to move the

paretic side).

G. Classifier

The features xt were used to classify the arm movement

from the EEG measurements at time t using a Support Vector

Machine (SVM) with a radial basis function kernel, due to its

extensive use in different BCI applications [27]. The features

xt extracted in the time interval t ∈ [−3, 0) were labeled as

rest, while features extracted in t ∈ [0, 3] were labeled as

motion. Features were z-score normalized. The classification

performance was evaluated by a ten-fold cross validation

procedure, where the full set of trials was sampled without

replacement to create independent training and test sets for

each fold.

The training of the classifier used only non-overlapping

features of the training trials, that is, xt was sampled

according to δw (t ∈ {−3 + δw,−3 + 2δw..., 3}). Note that,

due to the window required to compute the power spectra,

features with t ∈ [0, δw] span over rest and motion. These

features were excluded from the training set. The output

of the classifier was computed every 50ms in each test

trial. Note that at time t, the features are computed using

exclusively the EEG activity up to t. Different δw (3, 2, 1,

0.75, 0.5 and 0.25 s) were evaluated to assess the impact of

the time window in the classifier performance.

To measure performance, the decoding accuracy (DA) was

defined as the percentage of correctly classified labels.

III. RESULTS

A. Task-related power modulation analysis

Figures 2 and 3 show for both conditions and in all

subjects the relative power maps for the contralesional elec-

trode with maximum desyncrhonization and its correspond-

ing ipsilesional channel. The maps consistently show for

the four subjects that there is no statistically significant

de-synchronization in the ipsilesional channel, as expected

due to the lesion. However, in both conditions there is a

significant power decrease in the α and β bands of the

contralesional channel. This observed desynchronization is

stronger in movements of the unaffected arm (Figure 2) than

in attempting to move the affected arm (Figure 3). These

results are consistent with studies using healthy participants

and show statistically significant involvement of the healthy

motor cortex in the execution of movements of the unaffected

arm, but more interestingly, they also show that, although in

a minor degree, the healthy motor cortex is also involved in

the attempt to move the affected arm.

B. Motion detection results

The first analysis studies the window size δw providing

the best results in terms of classifier accuracy. Figure 4

summarizes the results of DA for different windows sizes.

As expected, the larger the window, the better the estimation

of the power spectra and, consequently, the accuracy of the

classifier. The smaller window (0.25s) results in random

classification (50%). A time window of 0.75s increases the

average classification rate up to 71% in average for all the

subjects. Wider windows slightly improve accuracy (e.g.,

almost 80% for a 3s window). However, in rehabilitation

therapies it is necessary to detect motion intention within

a reasonable time and, therefore, 0.75s is a good trade-off

between accuracy and latency for the classifier.

Regarding the difference between the affected and un-

affected arms, there are no significant differences in the

decoding accuracy for any participant. This suggests that,

despite the weaker desynchronization observed when moving

the affected arm, the corresponding power spectral fea-

tures obtained in the contralesional hemisphere still contains

movement intention information. Furthermore, the window

size does not play an important role for the two different

conditions. In any case, these results show the feasibility to

decipher motor information from the contralesional hemi-

sphere while performing movements of the affected limb.

The next analysis studies the classification accuracy along

time, i.e., the rate obtained at each point in time in the

interval [−3, 3]. Results were obtained with window size

δw of 0.75s. Figure 5 shows the percentage of correct

classification for the four participants. Note that the first

prediction time is at -2.25 s, as at this instant the first full time

window of EEG activity (0.75 s) becomes available, which

is required to compute the power spectral features. For all

the subjects, the percentage of classification for t < 0 (no

motion) for the class rest is 72% and 71% for the affected and

the unaffected arm, respectively. While during motion (t >

0), the percentage of classification for the class movement

-or attempt to move- is 69% and 71%, respectively. This

confirms a similar performance for condition 1 than for

condition 2.

The classification rate does not change abruptly at t = 0,

but it evolves rather smoothly from one class to another,

which results in a lower accuracy at approximately t = 0 than

what was obtained for the rest of the time axis. Indeed, the

classification rates from 0 to ≈0.5 s are approximately 50%

for both arms. There are several reasons that may explain

this behavior. Firstly, sensorimotor rhythms start to modulate

after the corresponding cue and prior to the actual beginning

of the movement measured from the EMG sensors. Secondly,

approximately at t = 0 there is a dynamic change in the

power spectra. As explained in Section II-G, the estimated

power spectra does not belong to a single class (motion or

rest) and, consequently, it may be less discriminative. This

effect is boosted by the fact that these periods of time were
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Fig. 2. Significant relative power maps for all subjects for condition 1:
Movements of the unaffected arm. For subjects one and two, the lesion is in
the left hemisphere and significant de-synchronization was observed in the
right hemisphere (contralesional). Subjects three and four presented lesions
in the right hemisphere and significant de-synchronization was observed in
left hemisphere (contralesional).

not used during training. Another interesting observation is

that the accuracy during the movement -or attempt to move-

period tends to decrease after t ≈ 2 s. This may be due to the

fact that the sensorimotor rhythms decay as a consequence of

the automatism process in the brain (this can also be observed

in the reduction suffered after t ≈ 2 s in the ERD patters

showed in Figure 3).

IV. CONCLUSIONS

This paper studied the use of EEG activity directly from

the motor cortex to measure the involvement (attempt to

move the affected arm) of severely affected chronic stroke

patients with no residual finger extension in motor rehabili-

tation therapies. A significant de-synchronization was shown

in the contralesional cortex while moving the affected arm,

which was present in all patients and could be used to

control a rehabilitation robot. Furthermore, the decoding

performance during the ipsilateral decoding (paretic attempt

to move) was similar to the one obtained during contralat-

eral decoding of the healthy arm and can be classified

continuously using contralesional brain sensorimotor brain

oscillations during movement of the paretic arm only. This
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Subject 4: lesion in the right hemisphere
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Fig. 3. Significant ERD/ERS maps for all subjects for condition 2:
Attempting to move the affected arm. For subjects one and two, the lesion
was in the left hemisphere and significant de-synchronization was observed
in the right hemisphere (contralesional). Subjects three and four presented
lesions in the right hemisphere and significant de-synchronization was
observed in left hemisphere (contralesional).
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Fig. 4. Decoding accuracy (DA) from different time windows sizes for all
subjects. (a) Results for movements of the unaffected arm (condition 1). (b)
Results for attempting to move the affected arm (condition 2).

allows for the reliable and stable neural control of motor

rehabilitation prosthetics, even in the absence of ipsilesional

brain activity during an attempt to use the paralyzed limb,

providing more therapeutical-assisstive options to severely

affected stroke patients. The rehabilitative effect of using

only contralesional areas to control the robot might not

facilitate brain reorganization towards ipsilesional areas as

recommended by data [28], [29], but could be used as a very

interesting rehabilitation tool, assessing the involvement of

the patient (intention to move) in the transition to regain

ipsilesional control.
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