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Abstract— This paper presents a technique to improve the
data association in the Iterative Closest Point [2] based scan
matching. The method is based on a distance-filter constructed
on the basis of an analysis of the set of solutions produced by
the associations in the sensor configuration space. This leads
to a robust strategy to filter all the associations that do not
explain the principal motion of the scan (due to noise in the
sensor, large odometry errors, spurious, occlusions or dynamic
features for example). The experimental results suggest that the
improvement of the data association leads to more robust and
faster methods in the presence of wrong correspondences.

I. INTRODUCTION

A key issue in autonomous mobile robots is to keep track
of the vehicle position. When the robot is equipped with
range sensors, one common framework is scan matching.
The objective is to compute the relative motion of a vehicle
between two consecutive configurations using the sensor
measurements. Although these techniques are local in nature,
many applications in robotics such as mapping, localization
or tracking incorporate them to estimate the relative robot
displacement [21], [9], [15], [11], [16].

Scan matching is an active research area that has produced
many different techniques. Roughly, they can be divided in
two groups. The first one deals with structured scenarios
[8], [6], [4] and the other with raw data [3], [7], [2]. The
latter does not assume any type of structure and estimates
the sensor displacement by maximizing the overlap between
the range measurements or scans. The most popular of these
methods is the Iterative Closest Point (ICP) algorithm [2]
(see [20] for variants of the original method). This method
is based on an iterative process in two steps: first a set of
correspondent points between the scans is computed and
then, the sensor displacement is estimated by minimizing
the error of the correspondences. This process is repeated
until convergence.

The most critical point of the ICP is the establishment
of the correspondences. Since no high level features are
used, the computation of the joint matching of the points of
both scans is computationally very expensive (exponential
with the number of points of the scans). To reduce the
complexity, the ICP-type algorithms use the nearest-neighbor
rule to establish pairs of correspondences between the points
of each scan (see [12], [19], [14], [17] for sophisticated
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ways to compute the nearest-neighbor and ameliorate per-
formance). This step is crucial for these techniques since the
remaining of the strategy depends on their quality. Although
these techniques work well in static environments, their
performance degrades in situations where the correspondence
process becomes more difficult: (i) noise in the sensor, (ii)
large errors in the sensor odometry, (iii) spurious, (iv) new
discovered areas, (v) occlusions and (vi) dynamic obstacles,
among others. The contribution of this paper is an improved
data association to ameliorate the scan matching performance
under the previous conditions.

Some works have addressed this difficulty by evaluating
the correspondence error as a measure of its goodness. For
instance, a trimmed version of the ICP [5] simply discards
the worst correspondences. Other strategy is to split the scans
in sectors and discard those with a high mean correspondence
error [1]. In [10] and [16], the scan matching is formulated
as a an Expectation-Maximization and the effect of dynamic
measurements is minimized through a weighting process.
Unfortunately, wrong correspondences do not always have
a large correspondence error, which affects the robustness
and the convergence of previous approaches.

In this paper we analyze the set of solutions produced
by the ICP correspondences in the configuration space of
the sensor. This leads to a robust strategy to filter all the
associations that do not explain the principal motion of the
scan. The experimental results suggest that the improvement
of the data association leads to more robust and faster
methods in the presence of wrong correspondences.

The paper is organized as follows: in Section II we
describe the ICP framework. Sections III and IV present the
framework. In section V, we discuss the experimental results
and we compare our method with existing techniques. Finally
we draw our conclusions in Section VI.

II. ITERATIVE CLOSEST POINT SCAN MATCHING

The Iterative Closest Point algorithm addresses the scan
matching problem with an iterative process in two steps.
At each iteration k, there is a search of correspondences
between the points of both scans (Zref and Znew). Then, the
estimation of relative displacement q0 is improved through
a minimization process until convergence.

More precisely, let be a point p ∈ R2 and a sensor config-
uration q = (x, y, θ) ∈ R2 × [−π, π]. Let be {p1 . . .pNref

}
the points of reference scan Zref and {t1 . . . tNnew} the
points of the other scan Znew (expressed in the frame of
Zref using q0 ). Let be qk = q0. Repeat:



1) For each pi in Zref compute the closest point rj in
Znew (transformed to the system of reference Zref

using the estimation qk) whose distance is lower than
a given threshold dmin:

ri = arg min
tj

{d(pi, tj)} (1)

The result is a set of N associations
A = {(pi, ri) | i = 1 . . . N}.

2) Compute the displacement estimation qmin that mini-
mizes the mean square error between pairs of C:

Edist(q) =
N∑

i=1

d(pi,q(ri))2 (2)

Let be qsol = qmin ⊕ qk. If there is convergence the
estimation is qsol, otherwise iterate again with qk+1 =
qsol.

As mentioned in the introduction, the critical point of
this framework is the first step: the establishment of the
correspondences. This is because the second step strongly
depends on the quality of the set of associations. The noise
in the sensor, large errors in the sensor odometry, spurious,
new discovered areas, occlusions or dynamic obstacles could
produce wrong associations affecting the robustness. That is
why many existing scan matching techniques are of limited
applicability under these working conditions.

The proposal of this paper is to introduce an intermediate
step between the associations and the minimization. The
idea is to filter those associations that do not explain the
main motion of the scan and thus are likely to be wrong
associations. The study of the associations is performed in
the sensor configuration space. The next section addresses
this study.

III. ASSOCIATIONS IN THE SENSOR CONFIGURATION

SPACE

In this section we describe some properties of the associ-
ations in the sensor configuration space. Recall that we have
a set A = {a1 . . . aN} of N associations. One association
is ai = {pi, ri} such that pi = (pix, piy) and ri =
(rix, riy). In the set A, p associations come from the static
structure, m associations from the dynamic obstacles and d
associations are spurious or wrong. In general p > m+d (the
static structure is predominant). We describe next how these
associations are related in the sensor configuration space.

A. Basic problem: 1 association

The displacements q that solve one association a = {p, r}
hold:

p = T + R(θ)r (3)

where T = (x,y) and R(θ) is the rotation matrix. Equation
(3) can be written as:

f(x, y, θ) = p − (T + R(θ)r) (4)

Function f(x, y, θ) defines a one-dimensional manifold in
the sensor configuration space R2 × [−π, π]. This manifold

has the shape of a circular helix since Equation (4) can be
rewritten as:

f(x, y, θ) = (px + ||r|| cos(θ + β), py + ||r|| sin(θ + β), θ) (5)

where β = arctan −ry

rx
. The center of the helix is p and

the radius ||r||. Notice that the set of solutions q for each
association is an helix (C∞) in the sensor configuration
space.

Another tool that will be used later is the distance from
a given configuration q0 = (x0, y0, θ0) to an helix f . In the
configuration space, we define the norm of q as in [14]:

‖q‖ =
√

x2 + y2 + L2θ2 (6)

where L is a positive real number homogeneous to a length.
We define the distance from a configuration to an helix:

dqf (q0, f)) = ||qc−q0||, such that qc = arg min
q∈f

||q−q0||2

(7)
Since f is a one dimensional manifold in θ (Equation (5)),
the minimum of ||q − q0||2 is given by:

∂||f(x, y, θ) − q0||2
∂θ

= 0 (8)

Developing and using Equation (4) we have an expression
of the form:

aθ + b sin θ + c cos θ + d = 0 (9)

where: a = L2, b = prT − x0p2x − y0p2y , c = p1xr2y −
p1yr2x − x0p2y + y0p2x and d = −θ0L

2. Unfortunately
there is no closed form solution for Equation (9) thus we
use Taylor θ � θl:

θmin =
(bθl − c) cos θl − (cθl + b) sin θl − d

a + b cos θl − c sin θl
(10)

The linearization point is:

θl = arctan
q0y − py

q0x − px
− arctan

ry

rx
(11)

computed as the projection of q0 to the cylinder that embeds
the helix (Equation (5)). Substituting θmin in Equation (5)
we get qmin. Finally:

dqf (q0, f)) = ||qmin − q0|| (12)

B. Proximity of Manifolds to a Region of Reference

Let say that we have a region of configurations of refer-
ence defined like a compact set embedded in the configura-
tion space Ω ∈ R2×[−π, π]. One evaluation of the goodness
of an association a is to compute the distance to the manifold
f of solutions to this set:

dRf (Ω, f) = minq∈Ωdpf (q, f) (13)

where dpf is the distance from a configuration to an helix.
When the solution of reference is the motion of the sensor,
then the distance of the manifolds that explain this motion
to the solution is zero, while the other associations give a
greater distance.
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Fig. 1. This Figure shows a set of associations (top) and the curves that
generate in the sensor configuration space (bottom). (Top) Two measure-
ments with a given motion between them. The circle is static and there
are two dynamic obstacles that have their motion plus the sensor motion.
(Bottom) In the sensor configuration space, each association creates a curve
of solutions. The region of reference is a set of configurations computed by
a given method that explains the motion of the sensor. The curves closed
to this set are created by associations of the static structure.

However, in realistic operation the measures are corrupted
by noise. Although it is not describe here in detail due
to space constraints, one can use continuity arguments in
Equation (13) to demonstrate that when the noise tends to
zero, the solution tends to the perfect solution (zero distance).
In any case, the noise degrades the solution and thus the
location of the manifolds. By computing the distance of
the manifold to the solution of reference one have a robust
criterion to deal with noise. Figure 1 shows an example.

This process is useful to evaluate associations if one
can have in advance a good approximation of a region of
configurations likely to explain the motion.

In summary, in this section we have described some
properties of the associations in the configuration space and
outlined one strategy to detect the static structure of the
scenario based on the distance of the manifolds to a reference
solution.

IV. THE PROPOSED FRAMEWORK

In the previous section we derived some tools to measure
the distance from a given solution of reference to the set of
solutions of each association. We show next how to use this
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Fig. 2. (Top) Two scan and associations with the [?] distance. (Bottom).
Metric and dRf distances. The wrong associations are detected since the
dRf strongly increases.

distance to filter those associations likely to be incorrect. The
strategy has two steps:

1) Computation of the solution of reference. In this step
we apply the least squares (Equation (2)) with the
initial set of associations A. The estimated solution
is qref (solution of reference).

2) Filtering the associations. For all associations ai ∈ A
we compute the dRf (qref , fi). Then a given percent-
age is filtered. The remaining set is A′.

Both steps are carried out between steps 1 and 2 in the
standard ICP framework (see Section II).

The idea underlying this approach is that with the first
minimization, we obtain a coarse estimation of the sensor
displacement. In this process, all the correspondences take
part. In the next step, we evaluate all the manifolds by
computing their distance to the reference solution. If this
distance is small, this means that the set of solutions of this
association is close to the solution of reference, and thus
this association is likely to explain the same motion that
the reference one. However, when the distance is large, the
solution set is far to the reference solution. This means that
this association comes from an spurious or wrong association
and thus is rejected. At the end of this process we have a
set A′ of associations that explain a similar motion. Notice
that A′ is the set A but filtered with a criterion of distance
in the space of solutions.
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Fig. 3. Two range scans in a dynamic scenario.

We describe next an academic but illustrative example
of this process. Figure 2 depicts a corridor and the same
corridor but rotated a given quantity. The nearest-neighbor
automatically process the associations computing the set
A. Now we use the filtering strategy. The minimization is
applied to compute qref . The solution qref is just a coarse
approximation to the motion due to the large number of
wrong associations. Then we compute the distance of qref

to each of the manifolds created by each association of
A and we filter those with a distance greater than dth.
Notice how the wrong associations produce a distance that
is significantly greater than the correct associations. Finally
the minimization is applied to the set A′ to get the solution
qmin of this step of the ICP.

V. EXPERIMENTS

We have performed three types of experiments to evaluate
the technique: (i) static scenario, (ii) dynamic scenario and a
(iii) a run in the laboratory. The sensor is a SICK LMS200
mounted on a B21r robot. This sensor gathers 181 range
measurements (with a field of view of 180◦) at 5Hz with a
maximum range of 8.1 meters.

The objective of the experiments was to show how the
filtering strategy of the previous sections improves the results
of ICP methods in terms of convergence rate, precision
and robustness under different conditions. We decided to
modify the MbICP method [14] since it has been recently
demonstrated that it improves widely used techniques such as
[13], [2]. In the experiments we compared the performance
of the ICP [2] and MbICP [14] with the MbICP equipped
with the new data association (that we named MbICP-IDA).

In order to provide a fair comparison, we fixed the same
settings for all methods. The maximum range was limited
to 6m. We used a smooth criterion of convergence [19] that
requires two consecutive iterations with a location correction
lower than 0.0005 (m, rad) for each coordinate. The maxi-
mum number of iterations is 300. Furthermore, we set the
maximum percentage of discarded associations to 20%.

A. Scan against scan experiments

In these experiments we evaluated the scan matching
performance with two data sets: (i) an static scenario artifi-

cially corrupted with noise in the measurements and sensor
displacement, and (ii) a dynamic scenario. The first dataset
is composed by 879 laser scans acquired in a 60m trajectory
along different kinds of scenarios: regular rooms, corridors,
cluttered and open spaces, etc (Figure 4). Each scan is
compared with itself, so ground truth is available (0, 0, 0).
To simulate sensor noise and outliers (reflections, occlusions,
etc) each point is contaminated with uniformly distributed
noise in the range ±0.025m, and a random 10% of the points
are also contaminated with noise in the range ±0.50 m. For
each scan 10 different initial random locations are generated
(8790 runs for each range).

The second data set consists of 619 laser scans acquired in
a fixed location with 2 or 3 people continuously walking in
front of the robot (generating occlusions and non-static data
points). Figure 3 shows an example. Each scan is compared
with the next one, however, as the vehicle is static the ground
truth is (0, 0, 0). For each scan 10 different initial random
locations are generated (6190 runs for each range).

The next two tables summarize the results.

TABLE I

MBICP +IDA VS MBICP AND ICP: STATIC SCENARIO

Method ICP MbICP MbICP
Static Scenario + IDA

Conv. Rate (#) 23.73 20.9 14.51
Sensor error Precision (m) 0.011 0.007 0.007

(0.15m, 0.15m, 17◦) Robustness (%) 98.01 99.60 99.93
Conv. Rate (#) 32.09 27.46 19.24

Sensor error Precision (m) 0.011 0.007 0.007
(0.3m, 0.3m, 34◦) Robustness (%) 92.67 95.90 99.17

TABLE II

MBICP +IDA VS MBICP AND ICP: DYNAMIC SCENARIO

Method ICP MbICP MbICP
Dynamic Scenario + IDA

Conv. Rate (#) 26.51 22.41 17.02
Sensor error Precision (m) 0.024 0.004 0.004

(0.15m, 0.15m, 17◦) Robustness (%) 52.73 80.64 86.00
Conv. Rate (#) 37.359 30.24 22.13

Sensor error Precision (m) 0.025 0.004 0.004
(0.3m, 0.3m, 34◦) Robustness (%) 47.15 78.25 85.01

We discuss first the results in terms of robustness. A run
was considered a failure when the solution was larger than
0.02m in translation and 0.02rad in rotation (notice that the
ground truth is (0, 0, 0)). These values are just a threshold
used to identify failures of the method. In Table I we observe
that all the methods are robust. However, as the noise in the
sensor increases the robustness of the methods decreases.
This effect also appears in the dynamic scenario since there
are many issues involved like dynamic associations and
occlusions affecting the correspondence step of the methods
(see Table II). In any case, it is clear that the filtered data
association improves the robustness in both cases.

The MbICP and the MbICP+IDA have the same order
of precision. This is because precision is very related with
the behavior of the method in the vicinity of the solution.
Since this analysis is performed for the runs that converged,
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Fig. 4. Visual odometry. (Top) experiments with the odometry of the robot. (a) Odometry, (b) ICP, (c) MbICP and (d) MbICP+IDA. (Bottom) experiments
with the odometry of the robot corrupted with noise. (a) Odometry, (b) ICP, (c) MbICP and (d) MbICP+IDA.



then the role of the new data association is not very relevant
(almost no error in the sensor location).

The MbICP+IDA converges faster than the other methods.
This was expected since the new data association improves
the correspondences and thus the subsequent minimization.
The computation time of the MbICP and the MbICP+IDA
are very similar. This is because the computation time of
the extra minimization is very small with respect to the data
association step.

In summary the MbICP with the new data association
outperforms the standard methods in robustness, precision
and convergence. This is because the proposed approach
filters the incorrect data associations in the presence of large
error locations, occlusions, dynamic objects, etc.

B. Visual map with scan matching

The second test corresponds to the matching of consec-
utive scans of the first data set. As the ground truth is not
available, the validation is done by plotting all the scans
using the locations estimated by the methods.

Firstly, we tested the method using the robot odometry
(top of Figure 4). However there is no a large difference
between the maps. Only the map of the MbICP+IDA is
slightly straighter than the map of the MbICP and the ICP.
This is due to the better robustness of the MbICP+IDA.
The convergence rates (the average number of iterations) are
6.00, 6.06 and 6.14 for the MbICP+IDC, MbICP and ICP
respectively. There is no a significant difference since the
odometry is quite good.

We repeated the experiments by corrupting the sen-
sor location with uniformly distributed noise in the range
±(0.15m, 0.15m, 17◦). Then the scan matching process is
much more difficult. Bottom Figure 4 shows the visual maps
obtained. Again the results are very similar for both methods.
However, again the MbICP+IDA performs slightly better due
to the improved data association. The convergence rates are
15.73, 18.35 and 19.86 for the MbICP+IDA, MbICP and
the ICP respectively. This shows a reduction in the required
number of iterations.

VI. CONCLUSIONS

This paper presents a technique to improve the data
association in the ICP-based scan matching. The method
is based on a distance-filter constructed on the basis of an
analysis of the set of solutions produced by the associations
in the sensor configuration space. This leads to a robust
strategy to filter all the associations that do not explain the
principal motion of the scan greatly improving the next steps
of the methods. The experimental results suggest that the
improvement of the data association leads to more robust and
faster method in the presence of wrong correspondences.

Future work will concentrate in improving the rejection
criterion with adaptative thresholds. Furthermore, we will
investigate the usage of clustering strategies in the sensor
configuration space of each pairing to explicitly classify scan
points as static, dynamic, non-visible structure and outliers.
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