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Abstract— This paper addresses the obstacle avoidance prob-
lem for robots that operate in confined three-dimensional
workspaces. The contribution of this research summarizes in:
(i) the generalization of an existing technique to deal with 3D
workspaces, (ii) an implementation of the method, and (iii)
the experimental validation with an special emphasis on dense,
cluttered and confined scenarios, which are the difficulty of the
existing techniques. We show results that illustrate how this
method successfully performs obstacle avoidance, and how it
inherits the benefits of the original method being able to overcome
the typical challenging problems of other obstacle avoidance
methods but extrapolated to three dimensions.

I. INTRODUCTION

This work addresses the autonomous motion aspect within
a robotic rescue project. One example of application is a
disaster area under a collapsed house where a robot searches
for victims. From a robotic perspective, in these scenarios
there is no a priori knowledge of a map since the robot
might be the first entity to go in. These environments are
usually unstructured since they are composed by randomly
distributed pieces of material. Furthermore, the scenarios can
evolve since one can find people working in the area, new
collapses could arise, or some areas could be dynamically
modified by fire for example. In other words, the scenarios are
unknown, unstructured and dynamic. To autonomously move
a vehicle under these circumstances, the techniques used have
to use sensors in order to collect information of the scenario
and to adapt the motion to any new contingency or event. In
these scenarios, the natural choice for motion is the obstacle
avoidance methods. Furthermore, from the technical point
of view, these scenarios share two characteristics/difficulties.
The first one is that motion cannot be restricted to a plane.
Motion techniques have to deal with full 3D workspaces.
The second one is that the scenarios are dense, cluttered and
confined. Motion techniques have to be robust under these
work conditions. This paper presents a technique to perform
robust obstacle avoidance under both circumstances.

There are several sensor – action schemes based on path
deformation that have been applied in 3D contexts [1], [2],
[3]. The performance is very good specially for complex
systems or with a lot of degrees of freedom. However, their
performance decreases in highly dynamic scenarios, since they
assume the existence of path that could be highly modified
or invalidated by the changes. On the other hand, reactive

collision avoidance methods base the motion on the current
information gathered by the sensors. There are many reactive
techniques that have demonstrated to have good performance
in 2D workspaces [4], [5], [6], [7]. However, some difficulties
arise when dealing with complex, cluttered and confined
scenarios [8], [9]. Some methods have been developed to deal
with this difficulty [10], [9]. They demonstrated robust motion
in dense, cluttered and complex scenarios, but always with
the assumption that the motion is in 2D workspaces. The
formulation of one of these techniques to deal with the real
3D workspaces is the scope of this research.

This paper describes the formulation of the Obstacle Re-
striction Method (ORM) [10] to work in three-dimensional
workspaces. The contribution of this research summarizes
in: (i) the generalization of the method to deal with 3D
workspaces, (ii) an implementation of the method, and (iii)
the experimental validation with an special emphasis on dense,
complex and confined scenarios. We show results that illustrate
how this method successfully performs obstacle avoidance
overcoming typical problems of existing methods.

II. THE OBSTACLE RESTRICTION METHOD

In this Section we describe the formulation of the ORM to
work in three-dimensional workspaces. We assume a spherical
and omnidirectional robot (free flying object). The obstacle
information is given in the form of points, which is the usual
form in which sensor data is given (e.g. laser sensors).

Obstacle avoidance methods are based on an iterative per-
ception – action process. Sensors collect information of the
environment that is processed by the method to compute a
motion command. The motion is executed by the robot and
then the process restarts again. The ORM has two steps:

1) Subgoal selector: this procedure decides if the motion
should be directed towards the goal or if it is better to
direct the motion towards another location in the space
(Subsection II-A).

2) Motion computation: this procedure associates a mo-
tion constraint to each obstacle, which are managed
next to compute the most promising motion direction
(Subsection II-B).

We outline next both steps.
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Fig. 1. This Figure depicts the subgoal selector step. (a) Goal location and
robot facing a wall with two holes (the robot fits in the right-hand one but
not in the left-hand one). (b) There is no path that joins the robot location
with pgoal within the tunnel. (c) The tunnel is not blocked, thus it exists a
path to p2. This subgoal is selected for the next step.

A. The Subgoal Selector

We present in this Subsection a procedure that decides
whether the motion has to be directed towards the goal or
towards an alternative subgoal. For example, in Figure 1a it
is better to drive the vehicle towards location p2 (where the
robot fits in the hole and easily reaches the goal pgoal turning
left-hand latter on), rather than moving directly to the goal
(where there is an obstacle that blocks the way).

The procedure has two steps. First we search for locations
suitable to place a subgoal. They are located in between
obstacles or in the edge of an obstacle:

1) In the middle point between two angular contiguous
obstacle points whose distance is greater than the robot
diameter (e.g. among obstacles).

2) In the direction of the edge of an obstacle (obstacle point
without contiguous) at a distance farther than the robot
diameter (e.g. locations p1 and p2).

The result of this process is a list of candidate subgoals that
capture the structure of the scenario.

The second step is to decide whether to use the goal for
motion or to select a subgoal of the list. We do it by checking
with a local algorithm whether the goal or a subgoal can be
reached from the current robot location (the description of this
algorithm with the mathematical demonstration is long and
with more room would be included in an Appendix). In short,
the algorithm searches the existence of a path that connects the
two locations by checking if a local portion of the space (the

tunnel) that joins them is blocked by obstacles in configuration
space [11]. The algorithm returns:

• NEGATIVE: The tunnel is blocked. There is no local path
joining both locations within the tunnel.

• POSITIVE: The tunnel is not blocked. There exists a set
of homotopic paths joining both locations in the tunnel.

In order to select a subgoal we first use the algorithm with
the goal. If the result is NEGATIVE, we choose the closest
subgoal to the goal that has a path that reaches it. For instance,
in Figure 1a we try first with pgoal with NEGATIVE result
(Figure 1b). Then, we try with p1 with NEGATIVE result.
Finally, we obtain POSITIVE with p2 (Figure 1c). This point
is selected as subgoal.

In summary, the result of this process is a subgoal that can
be reached from the current robot location.

B. Motion Computation

From now on we refer to ptarget the subgoal computed in
the previous Subsection. In this Subsection we first introduce
the space division that will be used in the next subsections.
Next, we discuss the motion computation that has two steps:
first we compute a set of motion constraints for each obstacle
and second we manage all the sets to compute the most
promising direction of motion.

Let R be the radius of the robot and Ds a security
distance around the robot bounds. Let the frame of reference
be the robot frame with origin p0 = (0, 0, 0) and unitary
vectors (ex, ey, ez), where ex is aligned with the current main
direction of motion of the vehicle. Depending on the relation
between the robot configuration and the target direction we
divide the space in four quadrants as follows. Let A, B and
C be the planes defined by [p0, ex, ez], [p0, ez,ptarget] and
[p0, ey,ptarget]; and nA = ey, nB = ez ⊗ ptarg and
nC = ptarg ⊗ ey be the normal to these planes respectively.
Then, let u be a given vector, the quadrant is Ω(u) =

=

0
B@

TL if (u · nA ≥ 0) & (u · nB ≥ 0) & (u · nC ≥ 0)
TR if ((u · nA < 0) | (u · nB < 0)) & (u · nC ≥ 0)
DL if (u · nA ≥ 0) & (u · nB ≥ 0) & (u · nC < 0)
DR if ((u · nA < 0) | (u · nB < 0)) & (u · nC < 0)

(1)
where Figure 2 shows an example. We address next the two

steps that compute the motion.
1) The motion constraints: In the ORM each obstacle

creates a motion constraint. A motion constraint is a set of
motion directions that are not desirable for motion SnD. This
set is computed as the union of two subsets S1 and S2. S1

represents the side of the obstacle which is not suitable for
avoidance, while S2 is an exclusion area around the obstacle.
We describe next the computation of the first set of subset of
directions S1 for a given obstacle point pobst.

Let D be the plane defined by [p0,pobst,ptarget ⊗ pobst],
and nD = (ptarget⊗pobst)⊗pobst the normal to this plane.

The first set of constraints is:

S1 =
(

(A+ ∩ B+) ∩ D+ if Ω(pobst) = [TL,DL]
(A+ ∪ B+) ∩ D+ if Ω(pobst) = [TR,DR] (2)



Fig. 2. This Figure depicts the division of the space in four quadrants.

where A+, B+ and D+ are sets of directions:

A+ = {p | nA · p ≥ 0 and Ω(pobst) = [TL,DL]

or nA · p < 0 and Ω(pobst) = [TR,DR] }
B+ = {p | nB · p ≥ 0 and Ω(pobst) = [TL,DL]

or nB · p < 0 and Ω(pobst) = [TR,DR] }
D+ = {p | nD · p > 0 }

The second set is:

S2 = {p | arccos
p · pobst

||p|| · ||pobst|| ≤ γ} (3)

where γ = α + β,

α = |atan

(
R + Ds

||pobst||
)
|

β =

{
(π − α)

(
1 − ||pobst||−R

Ds

)
if ||pobst|| ≤ Ds + R,

0 otherwise

Finally, the motion constraint for obstacle pobst is the union
of both subsets:

SnD = S1 ∪ S2

Another important feature is the boundary of the constraint,
that we compute as:

Sbound = {p | p ∈ B(S2) and p /∈ S1}
where B is the boundary of a given set. Figure 3 depicts an
example of all these features.

The next step is to compute the motion constraints for
obstacle points in each quadrant. Let pi, i = 1 . . . m be
the obstacle points that belong to a quadrant G = Ω(pi)
(expression (1)). Then, the motion constraints for all the
obstacles in quadrant G is

SG
nD = ∪m

i=1S
i
1 ∪ Si

2 (4)

and the bound is

SG
bound = {p | p ∈ B(∪m

i=1S
i
2) and p /∈ ∪m

i=1S
i
1}

The set of desirable directions is the complementary of con-
strained directions SG

D =
{
R

3 \ SG
nD

}
.

Fig. 3. This Figure depicts the computation of the motion constrain SnD =
S1 ∪ S2 for a given point uobst and target utarget.

2) Motion computation: Once computed the motion con-
straints for each quadrant there are five cases depending on
the relative location of the target ptarget and the set of non
desirable directions SG

nD in each quadrant.
1) Case 1: Target direction is not constrained utarg ∈ SD:

usol = utarg

2) Case 2: Target direction is constrained but only in the
constrained directions of 1 quadrant (i.e. utarg ∈ SG

nD

where G = [TL | DL | TR | DR ]). Then:

usol = uG
dom

3) Case 3: Target direction is constrained in the intersection
of constrained directions of 2 quadrants (i.e. utarg ∈
(SG1

nD ∩SG2
nD ) where G1,G2 = [TL | DL | TR | DR ]):

usol =
uG1

dom + uG2

dom

2
4) Case 4: Target direction is constrained in the intersection

of constrained directions of 3 quadrants (i.e. utarg ∈
(SG1

nD ∩ SG2
nD ∩ SG3

nD ) where G1,G2 = [TL,DR ] and
G3 = [TR | DL ] or G1,G2 = [TR,DL ] and G3 =
[TL | DR ]). Then:

usol =
u

G1
dom+u

G2
dom

2 + uG3

dom

2
5) Case 5: Target direction is constrained in the intersection

of constrained directions of the 4 quadrants (i.e. utarg ∈
(STL

nD ∩ SDL
nD ∩ STR

nD ∩ SDR
nD )).

usol = nE ⊗ nF

where uG
dom, nE and nF are computed as follows. Direction

uG
dom is the best direction of motion in a given quadrant G.

Let be pG
i the points of the SG

bound, then:

uG
dom =


 arg mini(

pG
i ·ex

||pG
i ||·||ex|| ) if SG

D = ∅
arg mini(

pG
i ·ptarget

||pG
i ||·||ptarget|| ) otherwise

Directions nE and nF are:

nE = (uTL
dom ⊗ uDR

dom) ⊗ uTL
dom + uDR

dom

2
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Fig. 4. Computation of the direction solution in Case 3. (a) Robot and obsta-
cle configuration. (b,c) Representation of the motion constraints in latitude and
longitude coordinates for quadrants DL and DR. (d) Representation in the
same figure of both quadrants. Notice how the target direction is constrained
in the intersection of constrained directions of both quadrants (Case 3). The
motion solution in this case represented in (a).

nF = (uTR
dom ⊗ uDL

dom) ⊗ uTR
dom + uDL

dom

2

As a result of this process we get a direction of motion
solution usol. Figure 4 shows an example of the motion
computation in Case 3.

Finally the motion commands are translational v and rota-
tional w velocities. The direction of v is the unitary vector
esol in direction usol. The magnitude is ||v|| =

=

{
vmax ∗ (

π
2 −|θ|

π
2

) if ||pobst|| > R + Ds,

vmax ∗ ||pobst||−R
Ds

∗ (
π
2 −|θ|

π
2

) if ||pobst|| ≤ R + Ds.

where θ = arccos( usol·ex

||usol||·||ex|| ), Ds is a security margin
around the robot bounds, vmax is the maximum velocity, and
||pobst|| is the distance to the closest obstacle.

The rotational velocity is a rotation over esol with module:

||w|| = ωmax ∗ θ
π
2

where wmax is the maximum rotational velocity.
In summary in this Section we have presented the formu-

lation of the ORM to work in three-dimensional workspaces.
The next Section shows the experimental results.

III. IMPLEMENTATION AND EXPERIMENTAL VALIDATION

We tested the method in simulation with a spherical and
omnidirectional robot equipped with a range laser sensor.
The simulator emulates the motion of the vehicle and the
sensor measurement process. We fixed the maximum velocities
vmax = 0.3 m

sec and wmax = 0.7 rad
sec respectively. We assumed

a frequency of 5Hz (perception–action cycle). All the scenarios
where unknown and only the goal location was given in
advance to the vehicle. The method used the information
provided by the sensors to compute motion. No structure of
the scenario is assumed and the scenario could be dynamic.

We describe next four experiments with three different
objectives. The first one is to show how the method correctly
performs obstacle avoidance; the second is to confirm motion
in dense, complex and confined scenarios; and the third is to
show how this method avoids classical shortcomings [8], [9]
of other approaches like:

• To fall in trap situations due to the perceived environment
structure (e.g U-shaped obstacles) or due to motion
among very close obstacles.

• To generate unstable or oscillatory motion in constrained
spaces.

• To have high goal insensitivity, i.e to be unable to choose
directions far away from the goal direction.

• The impossibility to select motion directions towards
obstacles.

These shortcomings usually lead to collisions or the impos-
sibility to solve the navigation and thus to reach the goal. We
describe next the four experiments:

a) Motion in confined spaces: This experiment illustrates
the method driving the vehicle in a dense and confined scenario
(Figure 5a-c). The vehicle was introduced and moved along
the pipe in order to reach the goal. Within the pipe there was
little space to maneuver (the pipe and robot diameters are 0.6m
and 1m respectively, i.e. 0.2m at both sides when centered).
However, the method reactively managed to center the vehicle
(Figure 5b). There were no trap situations due to motion
among very closed obstacles, and the motion was smooth and
oscillation free (see the robot’s path and the velocity profiles
in Figures 5a, c). The experiment was complete in 20sec, with
an average translational velocity of 0.159 m

sec .
b) Motion in dense and complex scenarios: In this exper-

iment the method drove the vehicle between two consecutive
non aligned gaps. Firstly, the vehicle was driven to enter in
the room by the first hole, and then was maneuvered to reach
the second hole, pass it and reach the goal location (Figure
5d-f). In some parts of the experiment the robot navigated
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Fig. 5. These Figures show the experimental results. (Left column) Robot, Goal and path executed by the vehicle. (Center column) Representative snapshot
of the experiment with the robot and the current perception. (Right column) Velocity profiles of the experiment.

among close obstacles where no traps were found. Stable and
oscillation free motion was generated in all the experiment

(see the robot path and the velocity profiles in Figures 5d,
f). During almost all the experiment the method directed



the motion towards obstacles (Figure 5e). Furthermore, the
method computed directions of motion far away from the goal
direction (Figure 5e). The time of the experiment was 30sec
and the average translational velocity was 0.153 m

sec .
c) Motion avoiding a U-shape obstacle: Here, the

method avoided a large U-shape obstacle located between the
vehicle and the goal (Figure 5g-i). The method avoided to enter
and getting trapped inside the obstacle by directing the motion
towards alternative subgoals located on the outside of the U-
shaped obstacle (Figure 5h). In this case, motions directed far
away from the goal direction had to be selected in order to
avoid the U-shaped obstacle. The time of the experiment was
24sec and the average translational velocity was 0.223 m

sec .
d) Motion in a dense and cluttered environment: In this

experiment, the robot navigated in a cluttered non structured
scenario to reach the goal location. A ceiling and a floor, that
are not displayed in the images for clarity, were added to force
the robot to navigate among the obstacles (Figure 5j-l). No
problems of traps or oscillations were found. In order to reach
the goal the robot had to select motions directed toward the
obstacles and as well, motions directed far away from the goal
direction (Figure 5k). The experiment was carried out in 33sec,
and the average translational velocity was 0.162 m

sec .
The experiments confirm that the method is able to per-

form robust obstacle avoidance in confined 3D scenarios. We
discuss next advantages of this method regarding the classical
problems or limitations of existing obstacle avoidance methods
described earlier in this section.

The local trap situations due to U-shape obstacles or
due to the motion among close obstacles are overcome with
this method. This is because the subgoal selector naturally
place intermediate locations to avoid these regions (Figure
5h shows one of these situations). Furthermore, there is no
difficulty to move among very close obstacles because: (i)
the possibility of whether the vehicle fits in a passage among
close obstacles is checked with the subgoal selector (in Figure
5e the psubgoal is placed after checking that the vehicle fits
in the hole), and (ii) the solution in Case 5 has been designed
to center the vehicle in these circumstances. When moving
among closed obstacles, we observed oscillation free motion
(see the smooth paths generated and the velocity profiles in
Figure 5). With this method, directions far away from the
goal direction can be obtained when required. Given the
current perception, the subgoal selector place a subgoal that is
used in the sequent step as target location. This target can
be located in any location in the space irrespective of the
goal location. This property was determinant to successfully
accomplish the experiments (Figures 5e,h). In addition, in
the action formulation of the method nothing prohibits the
selection of directions of motion towards the obstacles.
Thus they were selected during all the experiments almost
every time (Figures 5e,k). Another difficulty of many existing
techniques is the tuning of the internal parameters. In the
ORM formulation, the only parameter is a security margin Ds

around the robot bounds (in our implementation this margin
is twice the robot radius).

IV. CONCLUSIONS

Many applications in robotics deal with 3D confined sce-
narios like exploration in disaster arenas or cave inspection.
Additionally, a great deal of work has been done for robots that
operate in full 3D workspaces like outdoor, flying or underwa-
ter robots. This paper deals with one of the fundamental skills
for robot autonomy that is the reactive obstacle avoidance.

The motivation to develop this work was the existing
research gap related with obstacle avoidance methods that
deal with 3D confined scenarios. The contribution is the
formulation of an existing technique to work in 3D scenarios,
its implementation and experimental validation. The difficulty
of this work is twofold. First, the third dimension has to
be constructed in such a way that the elimination of one
dimension leads to the formulation proposed in the original
2D method. Second, the method has to have the same motion
properties that the original method. On one hand, the first
statement has been fully accomplished and one can see that
the mathematical formulation proposed leads to the original
method without one dimension. In other words, the formula-
tion proposed is a valid generalization of the method.

On the other hand, we have demonstrated the second issue
by developing and testing an implementation of the method.
The experiments demonstrate that the method inherits the
advantages of its predecessor, being able to avoid classical
limitations of many existing obstacle avoidance methods such
as local trap situations, instabilities or oscillations for example.
The experiments confirm that the method correctly performs
obstacle avoidance in dense, complex and confined 3D sce-
narios. This was the objective of this research.
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