
Advances in the Framework for
Automatic Evaluation of Obstacle Avoidance Methods

J.L. Jimenez I. Rãnó
Dpto. de Inforḿatica e Ing. de Sistemas

Universidad de Zaragoza, Spain
irano@unizar.es

J. Minguez
I3A, Dpto. de Inforḿatica e Ing. de Sistemas

Universidad de Zaragoza, Spain
jminguez@unizar.es

Abstract— This paper will describes the advance in our
project for benchmarking obstacle avoidance techniques for
mobile robots. The core of the project is to create a methodol-
ogy/software to evaluate the performance of the methods given
a wide range of work conditions. These work conditions usually
include scenarios with very different nature (dense, complex,
cluttered, etc). The performance is measured in terms of robotic
parameters (robustness, optimality, safety, etc). In the paper we
will give an overview of the project and we will focus on the
project analysis from a software engineering point of view. At
this state the software design decisions are critical and could
imped a proper later development, therefore we have developed
a great effort in the analysis and design of the project.

I. I NTRODUCTION

There is currently a great effort in the robotic community
to find standards as a way to measure the quality of a wide
range of technologies. Good examples are the RosTa EU
project, the special group of interest raised by EURON and
some other launched by the NIST. Many of these efforts
are focussed on creating benchmarks for a given area. Our
project is concerned with the standarization but from the
automatic evaluation point of view. Instead of working on
benchmarks, we address an automatic evaluation system is
being constructed for obstacle avoidance algorithms. On
the one hand, benchmarking just will try to match the
results of an algorithm with some expected output, a desired
algorithm result. On the other hand, our automatic evaluation
framework will provide the needed results to perform the
benchmarking, but also will generate a comparison perfor-
mance of the obstacle avoidance algorithms in very different
situations.

In this direction, we have been working in the development
of a software tool evaluate the obstacle avoidance algorithms
in the context of service robotics. The objective of this
paper is to present the first steps: the analysis and design
of the problem from a software engineering perspective.
The project is expected to grow up, hence this software
engineering perspective is very important at this stage. Since
this is currently an open research field, the application is
expected to change as new ways of evaluation appear. In
order to design a useful application in the future, including
those desirable characteristics, it is important to follow good
software engineering practices. An early implementation has
been done and some tests have been performed as the final
steps of the analysis of requirements and design of modules

and system. The rest of the paper is organised as follows:
Section II introduces the evaluation system global analysis
and its requirements. In Sections III, IV and V the analysis
and design of the identified independent applications is
presented. Some details of our early implementation and pre-
liminary results are depicted in Section VI, while Section VII
depicts some conclusions and next steps in our project on
automatic evaluation system for obstacle avoidance.

II. OVERVIEW OF THE EVALUATION SYSTEM

FRAMEWORK

In this section we will present an overview of the whole
evaluation system framework to analyse and identify the pos-
sible modules and its requirements. Some aspects of the eval-
uation system has been introduced in [2]. The idea behind
the application is to evaluate obstacle avoidance methods
(measuring quantitative parameters of the solutions) given a
wide range of working conditions (different scenarios). As
can be seen from Figure 1 three independent modules can
be clearly identified. The colored blocks denotedModule 1,
Module 2andModule 3correspond to the scenario generator
and characteriser part, the robot simulator and trajectory
descriptor and the final analysis of the results module. They
jointly from the complete automatic evaluation system and
can be implemented as separate applications even some
interaction exists between them.

Figure 2 draws the interaction between the three modules
of the automatic evaluation system as a data flow diagram
representation. Instead of keeping direct data flows between
the modules, the applications can use two data repositories,
namely the scenario files (obtained from the scenario gen-
erator) and the execution result files (provided by the robot
simulator module). The user will introduce to the system
some parameters like the amount of scenarios to generate, the
number of test to run, and so on. In view of Figures 1 and 2
the automatic evaluation has been decided to be implemented
as three independent applications.

Following [5] the requirement analysis of a software
system can be viewed as a set of functional requirements,
what the system should do, and a set of non-functional
requirements, like efficiency, portability, extensibility and
so on. As a ongoing research project some points are not
currently defined or are prone to change, therefore software
modularity, flexibility and extensibility are mandatory as



Obstacle
Avoidance

Scenario
Characterize

Result
Tables

Scenarios

M
ot

io
n

Trajectory
Generation Generation

Scenario

Trajectory
Evaluation

3

12

Fig. 1. Framework Modules

Module 2

Module 1Scenarios

Module 3OA Algorithms

Simulation Results

User

Simulation
Data

Table
Options

Table
Results

Generation
Data

Fig. 2. Data Flow Diagram

non-functional desirable features. On the other hand the
functional requirements of the system have to be defined
before the analysis stage. The rest of this section is devoted
to present the modules and its functional requirements.

a) Module 1: represented in Figure 1 is the scenario
generator and characteriser. Its general purpose is to generate
simulated environments (randomly or following some crite-
ria) and compute descriptors measuring interesting properties
from an obstacle avoidance point of view. The descriptors
will be used to classify the different sets of environments
according to its nature (dense, complex, cluttered, etc). This
is a key module on the system since the obstacle avoidance
algorithms must be tested on all the possible situation or
environments a robot will face up. A high level analysis
shows that its functionality must include:

• It must be able to characterise the scenarios using the
defined descriptors and compute their values.

• It must generate scenarios, randomly (for a given num-
ber of scenarios) or such that they descriptors cover a
given range with a minimum number of them. While in
the first case the user must only introduce the number
of scenarios to be generated, the former must ask for a
number of bins and minimum scenario number in each
bin.

• It must handle scenario files and files with scenario lists.

The module will create, open, save, move, copy and
select (following several criteria) those files or parts of
them.

• It should allow to create and delete indexes on a list
of scenarios, according to a descriptor and user defined
descriptor ranges.

• It must include a graphical user interface to show single
scenarios or scenario lists, and make them accessible for
user manipulation.

b) Module 2: will compute the trajectories of an obsta-
cle avoidance algorithm for a set of scenarios. It also should
provide some performance measurements of the trajectories
refereed to an, in some sense, optimal path. The functional
requirements found for this module are:

• It should be able to dynamically load any obstacle
avoidance algorithm that matches a given function pro-
totype.

• It must simulate a generic robot over a set of scenarios
and characterise the robot motion according to some
trajectory descriptors.

c) Module 3: builds the evaluation results based on
the outputs provided by the two other modules. Given an
obstacle avoidance algorithm, for each scenario descriptor
and trajectory descriptor this module will generate a result
table with the algorithm performance behavior. This module
can bee seen as the most general part of the system, since it
can be used for other purposes where scalar results from two
different features need to be drawn. The minimal functional
requirements of this application are:

• It must build tables by crossing scenario descriptors and
trajectory descriptors.

• It must be able to open and to create result files for an
obstacle avoidance algorithm benchmark in a predefined
format.

III. SCENARIO GENERATION AND CHARACTERISATION

In this section we present the application for scenario
generation and characterisation (Module 2) analysis and
design, while implementation and testing will be treated in
a separated section. We choose to follow the OMT (Object
Modelling Technique) methodology [3] to build the analysis
diagrams of each application in the system and some UML
(Universal Modelling Language) tools has been also used
to build those diagrams. However, since UML [4] has been
derived from OMT and they have many common elements.

The structure of the sections describing the individual
applications is the same for all three parts of the whole
evaluation framework (see also Sections IV and V). First the
analysis section focuses only on the static relations of data,
not treating the dynamic and functional relations, because
its smaller significance in our case. Then the design section
includes the application architecture grouping the analysed
data models into modules.



A. Analysis of the Scenario Generator and Characteriser
Application

The key concept in this application is the scenario for
a full technical description of scenarios see [2]. They will
be characterised according to its qualitative features and
will be used to carry out the robot motion simulations. A
concept with such an importance must be included as a
class to collect the scenario functionality on the application,
the Scenarioclass. The scenarios will have associated sets
of characteristics, the descriptors, and encoding models,
the way scenarios are implemented in the application, that
need to be included in the static class view. Therefore a
Descriptor virtual class needs to be created to reflect the
scenario characterisation. The general class represents the
functionality of any descriptor prone to be implemented
in the system, and collects the scenario characterisation
functional requirement. Moreover, as theDescriptor class
is virtual the concrete defined descriptors will be derived
from it. This also fulfils the extensibility non functional
requirement above mentioned. Since the calculation of some
descriptors can be computationally expensive in terms of
time and memory we decided to use theProxy software
pattern [1]. In this way the computation of the descriptor is
delayed until it is really necessary, and once the numerical
value is get it will be stored for later use. Figure 3 shows part
of the UML class diagram generated on the analysis stage
of the application. As can be seen from figure, currently
only three descriptors have been implemented asDensity,
ClearnessandConfinementderived classes.

Descriptor

+ Calculate(): double
+ Value(): double
+ ...

Density

<<create>>−Density(imp: ScenarioImp)
<<destroy>>−Density()
+Calculate(): double
+...

Clearness

<<create>>−Clearness(imp: ScenarioImp)
<<destroy>>−Clearness()
+Calculate(): double
+...

Scenario

<<create>>−Scenario()
<<destroy>>−Scenario()

+ CreateDescriptors(): void

+ ...
+ CreateImplementations(grid: unsgined int ): void

Confinement

<<create>>−Confinement(imp: ScenarioImp)
<<destroy>>−Confinement()
+Calculate(): double
+...

0..* descriptors

implementations

1..*

ScenarioImp

+ FixRadius(r: double); void
+ GetRadius(); double
+ ...

Fig. 3. Part of Scenario Class Diagram

The right class box on Figure 3 is the scenario imple-
mentationScenarioImpvirtual class. Since the computation
of some descriptors can be quite difficult for some scenario
representations theScenarioImpclass has been designed to
allow different scenario representation on the application.
Even not drawn in the figure two classes are derived from
this virtual class, the discreteDiscreteImpand continuous
ContinuousImpscenario implementations. While the later
stores the environment as a set of obstacles defined by
its geometrical primitives, the former consists on a binary
occupancy grid with configurable size. This allows to com-
pute the descriptors with different resolutions and algorithms

for a given scenario. The capability of having different
implementations introduces the need for an implementation
converter in order to pass from one implementation to
another. AConverter virtual class has also been designed
using the Strategy software pattern. This pattern defines
and encapsulates a family of algorithms, in our case for
implementation conversion. From theConverter class any
implementation converter can be derived. Currently only a
continuous to discrete implementation algorithm is available.

Another functional requirement of this application stated
in Section II is the ability to generate scenarios in different
ways. A fixed number of random scenarios, for instance,
could be desired to perform test on some algorithms. In other
cases a set of scenarios need to be generated to cover all
the possible value ranges of a given descriptor. A virtual
class Generator, not reflected on the Figure 3, has been
defined to fulfil the corresponding functional requirement
of the application. Since the generation of scenarios can be
performed in different ways, theStrategysoftware pattern
has also been selected to design the generator class. Any
instance of a generation algorithm must be derived from
the Generatorclass. Moreover, as there are several imple-
mentations of the scenario, the virtual class has a method
calledFixImplementation() to select the implementa-
tion kind to be generated.

Up to this point the analysis has only included individual
scenarios, however the evaluation system has to perform test
on all possible scenario conditions. Therefore a scenario list
ScenarioListabstract class needs also to be used to jointly
store sets of scenarios. Any other scenario list can be derived
from it. On the other side, the lists usually need to be
acceded in a sequential way and an iterator software pattern
is necessary. Besides this access method for the scenarios on
the lists, another functional requirement is the capability of
scenario indexing according to the value of some descriptor.
A class for a scenario list index has been modelled to serve
as an interface for scenario lists allowing to access groups
of scenarios with some given ranges of descriptor values.

An important aspect of the scenario generator is data
persistence, because all the computed descriptors and its sce-
narios must persist when the application finishes. To generate
and characterise scenarios can be a resource consuming task.
To allow this data persistence it was necessary to create a
scenario storage file system. Since the internal form in which
data is stored is not a part of the analysis stage, but just to
take into account the persistence needs, two abstract classes
have a reader and a writer been implemented, with some
appropriate derived classes to store the scenario lists in a
preliminary format. This structure allows for a change in
the internal storage way, fulfilling also the flexibility non
functional requirement.

The final requirement is to allow the user generate and
handle the scenarios and sets of them through a Graph-
ical User Interface. It is common practice to change an
application GUI, and therefore it is important to have a
small number of classes involved, to have a uncoupled
application and GUI implementation. Any visual element on



the application is modelled as aGUIElementclass, and are
grouped hierarchically. The composite software pattern has
been used since it allows to treat visual elements in the same
way either being compound or not. It is a good practice to
separate the user interaction in two parts: the visual part and
the functional part, such that if any needs to be changed
the other can be kept. The functional part are implemented
through the application commands that represent the simplest
actions a user can perform. The Command software pattern
proses the creation of command objects to encapsulate and
parametrise actions.

B. Design of the Scenario Generator and Characteriser
Application

The previous section has depicted the five main concepts
related to the scenario generation and characterisation ap-
plication with its corresponding classes. A set of classes
(Scenario, Scenario Implementation, Generator. . . ) and its
derived subclasses are grouped around the scenario concept.
There are other classes related to the scenario list; the
Scenario List itself, the Iterator, Reader, Writer and Indexes.
Some others providing Graphical User Interface functionality
and finally the command related classes. All of the above
can be joined into a new class representing the application
itself. Figure 4 groups and relates the main modules to build
application, an arrow starting in one module means that it
depends on the target arrow module. As can be seen all the
modules, except the application, use services of the Scenario
module while this one does not use any service of the rest of
the layers. This makes the scenario module quite critical in
case any change should be done, because all the layers could
need an adaptation to the new module interface. The Scenario
I/O layer is used by the Commands and GUI modules making
it the second most critical module to changes.

GUI

Application

Commands

Scenario Scenario IO

HD

Fig. 4. Scenario Generator and Characteriser Application Architecture

The Commands and GUI layers interact with each other,
since the GUI uses Commands functionalities and introduces
information parameters from the end user to the commands.
Finally, the higher layer, the Application is available to the
user for the lower level Commands and GUI layers access.

IV. ROBOT SIMULATOR AND TRAJECTORYEVALUATION

This section presents the analysis and design performed
on the simulation application, the so called module 1 in

Section II. This module must interact with the scenario
generator presented in Section III by reading the different
scenarios where obstacle avoidance algorithms have to be
tested. As stated in Section II the functional requirements of
this application are the simulation of a generic robot motion
for any dynamically loaded obstacle avoidance technique and
trajectory descriptor calculation.

A. Analysis of the Robot Simulator and Trajectory Evalua-
tion

The simulated robot model has a sensorial and motor
part. The sensor of the robot is assumed to be a proximity
range sensor providing distance measures in a180◦ range
around the robot front, one for each degree. On the other
hand, the robot always move forward with limited speeds and
accelerations. As presented in Figure 5 a robot class models
all those robot characteristics. We reflect in this class diagram
takes the fact that the motion control is provided by an
external library. Through the MovementCalculator class we
provide an interface for the implementation of the dynamic
library loading process and function call. As can be seen
in the figure two classes are derived from this basic one
that must take into account the way each operating system
loads the dynamic libraries. Using this class heritage to load
obstacle avoidance algorithms the non functional requirement
of a multi-platform application is accomplished.

MovementCalculator

+ Calculate(p; Point, pl; list<Point>): MovementRecord
+ LocalClaculator(): bool
+ ...

Robot

+ ...

<<create>>−Robot()
<<destroy>>−Robot()

+ CreateMovementCalculator(name: string): MovementCalculator

+ GetTrajectory(); Trajectory

Win32MovementCalculator

<<create>>−Win32MovementCalculator()
<<destroy>>−Win32MovementClaculator()

+ ...
+ Claculate(p; Point, pl list<Point>): MovementRecord

Trajectory

<<create>>−Trajectory()
<<destroy>>−Trajectory()
+ ...

LinuxMovementCalculator

<<create>>−LinuxMovementCalculator()
<<destroy>>−LinuxMovementClaculator()

+ ...
+ Claculate(p; Point, pl list<Point>): MovementRecord

Optimality

<<create>>−Optimality()
<<destroy>>−Optimality()
+ ...

Success

<<create>>−Success()
<<destroy>>−Success()
+ ...

Safety

<<create>>−Safety()
<<destroy>>−Safety()
+ ...

1

TrajectoryDescriptor

+ GetTrajectory(): Trajectory
+ SetTrajectory(): Trajectory
+ Claculate(): void

1..*

+ ...

Fig. 5. Class Diagram for the Robot Simulator and Trajectory Evaluation

The trajectory evaluation is performed by the computation
of some trajectory descriptors also represented in Figure 5.
The motion simulator obtains as output the robot trajectory
that must be compared to some defined optimal paths to
evaluate the trajectory generated by the loaded obstacle
avoidance algorithm. The robot class includes a trajectory
class which can be evaluated through the trajectory de-
scriptors, modelled as a virtual TrajectoryDescriptor class.
Currently three such derived descriptors have been defined
and implemented, success, optimality and safety. The suc-
cess descriptor has a boolean value indicating if the target
position has been reached following the motion commands.
Optimality is a comparison with the optimal path obtained
using the visibility graph from the start to the end position,
while safety is computed through comparison with the safest



path, obtained from the Voronoi diagram. Finally, as for the
scenario characterisation application the results need to be
stored, therefore the robot class also includes a result writer
abstract class that allows to store descriptors in a format that
can be changed in the future without affecting the rest of the
classes.

B. Design of the Robot Simulator and Trajectory Evaluation

The robot simulator and trajectory evaluation application
design is presented in Figure 6. As can be seen some of
the application layers are Scenario and Scenario I/O, defined
for the scenario generator but also used here. The design
reflects that the only way to access the hard disk storage
is through the I/O modules. An operating system layer has
been added since the obstacle avoidance library, the Motion
Calculator module, is OS dependant. The Robot layer is
related is related with the Scenario, from which simulation
data is extracted, with the Trajectories and Characterisation
layer, the one that computes trajectories descriptors

Scenario IO Scenario Movement
Calculation Results IO

Operative System (OS)

Traj. &
Charact.

Robot

Application

HD HD

Fig. 6. Simulation Application Architecture

Since two of the designed modules on this trajectory
evaluation application are directly dependent on the Scenario
layer, as for the scenario generator and characteriser the
classes related with the scenario class may change if the
scenario is changed. Therefore the scenario layer must have
a stable interface with the rest of classes.

V. RESULT ANALYSIS APPLICATION

This is the simplest application on the current imple-
mentation of the automatic evaluation system. Actually this
application could be used to perform data analysis of any
system with similar features, since it only builds result
tables by crossing descriptor ranges. Besides the capability
of building result tables the only functional requirement is
to store them into a given format.

A. Analysis of the Application for Data Analysis

The key concept in for this application is the result
interpreter, an element that for a given result sequence and
a scenario file is able to statistically summarise results in
an automatic way. Since there are multiple table formats
and programs to handle them we decided to use in out
preliminary implementation a plain text format. However,
it can be interesting to build binding with some office
applications for data analysis. The main classes include

the ResultReader abstract class that forms a base for the
result file reader, the reading functionality for results not
included on Figure 5. When the reader finished the process of
data loading it generates an element of the ResultInterpreter
hierarchy which is responsible of statistically cross the data.
Once again the Result interpreter class is an abstract one
allowing different data interpretation classes to be defined in
later researching steps, that is providing extensibility to the
application.

B. Design of the Application for Data Analysis

This is the smallest application to design, only an inter-
preter for the results needs to be added as represented in
Figure 7, while the Scenario and Scenario I/O layers are
again used. The main application layer uses the functionality
of the results interpretation and the Results I/O, while the
statistical interpretation module writes its own result files,
making it independent of the Results I/O layer.

Scenario IO Scenario Results IO

Results Interpretation

Application

HD HD HD

Fig. 7. Analysis Application Architecture

VI. I MPLEMENTATION ISSUES ANDAPPLICATION

TESTING

Besides all the functional and non-functional requirement
for our applications we should choose the proper devel-
opment tools. Since the obstacle avoidance algorithms will
usually be provided as compiled dynamic libraries and the
evaluation problem is run on a intensive test basis, an
efficient programming language must be selected. Another
interesting requirement is to make a multi-platform project,
that, as stated before, must be highly modular. On the other
hand, both application analysis and design have been done
Object Oriented and therefore the implementation language
should support objects. We choose C++ as our implementa-
tion language since it fulfils all out requirements, but mainly
it provides modularity and produces efficient programs. We
also used a set of highly standard tools like the Standard
Template library (STL) and GTK+ for the application parts
that need a Graphical User Interface.

An early implementation of the whole framework has been
performed contain more than 11,000 lines of C++ code.
The performed tests over the system has been done in two
steps; a component test and integration test. The component
test where performed over all the classes and modules, and
the joint application was also tested once the parts were
integrated. Most of the test were black-box testing, where
different inputs were provided to the elements and its outputs
were checked with the expected output. Once a class or layer



was fully tested the integration was performed and again
tested in a bottom-up way.

A. Scenario Generation and Characterisation

Figure 8 shows a final view of the application Graphical
User Interface. The left part of the main window shows the
working scenario list, while the right part is split in the
current scenario display at the bottom and the descriptors
sub-window, where descriptor values are displayed. The sce-
narios can be generated in different ways, the non-parametric
way just generates a random number of scenarios on a
scenario list. The parametric generator allows the user to
define bins over one descriptor and select a minimum number
of scenarios in each bin. Of course all the generated scenarios
or lists can be saved to the hard disk with an appropriate
format using the application.

Fig. 8. Generation and Characterisation Application

B. Robot Simulator and Trajectory Evaluation

For the simulation application the optimal path between a
starting and target positions needs to be obtained. The current
implementation state includes aA∗ algorithm to compute the
optimal path as a sequence of discrete cells, therefore using
the discrete implementation of the scenarios. The Voronoi
diagram on the discrete scenario implementation has been
used to get the safest path. Both, paths are used to compute
optimality and safety trajectory descriptors, which are also
evaluated using the discrete implementation by performing
an integration over the grid cells. Since the amount of
simulations to perform is big and done as a batch process,
no graphic interface has been designed for this application.

C. Evaluation Results

For the final evaluation results, we implemented a software
able to connect the different descriptors of the scenarios with
the performance paramenters of the methods. This is dis-
played in the form of tables of performance for visualization
and comparison in between methods. Figure?? shows the

performance of one technique selected??. In this case, one
can see the performance and evolution of the performance
descriptors as a function of the different scenarios measured
by density, clearness and confinement for example. In fact
this type of tables are a great help of researchers, engineers
and developers in order to asses their results and to search
for possible techniques to work in a given range conditions.

VII. C ONCLUSIONS ANDFURTHER WORK

This paper present the current state of the automatic
evaluation software for obstacle avoidance algorithms. As an
ongoing research project some aspects of the software frame-
work development could change. The initial idea is to create
an open source software system. A great effort has been
performed from a software engineering perspective to start
building an extensible and flexible framework in three mostly
independent modules. Extensibility and flexibility must be
key features on such a system. Some major aspects of the
analysis and design have been presented. Our framework
allows to include new descriptors to both, scenarios and
trajectories, that on the other hand need to be studied and
implemented to better evaluate obstacle avoidance mecha-
nisms.

The future steps include the definition and implementation
of new scenario descriptors, and a extensive scenario lists
generation as a test-bed for the algorithms. Even the system
has been developed to be multi-platform this feature has
not been tested yet, and maybe some small changes and
further development will be needed to actually have such
an application. A Developer’s Guide document and online
API documentation will be also created in order to help both
developers and users.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1998.

[2] J. Mı́nguez and I. Rãnó. Steps toward the automatic evaluation of
robot obstacle avoidance algorithms. InWorkshop of Benchmarking
in Robotics, in the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2006.

[3] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice Hall, 1991.

[4] J. Rumbaugh, I. Jacobson, and G. Booch.The UML Reference Manual.
Addison Wesley, 2004.

[5] I. Sommerville.Software Engineering. Addison Wesley, 2005.


