
An Architecture for Sensor-Based Navigation in
Realistic Dynamic and Troublesome Scenarios

Javier Minguez Luis Montesano Luis Montano
Instituto de Investigación en Ingenierı́a de Aragón

Dept. Informática e Ingenierı́a de Sistemas Universidad de Zaragoza, Spain
Email: {jminguez,lmontesano,montano}@unizar.es

Abstract— We address here a sensor-based navigation sys-
tem to safely drive vehicles in realistic scenarios. The system is
composed by three modules with the following functionalities:
model builder, planning and reactive motion. These modules
are integrated within a planner - reactor architecture that
supervises and coordinates them in order to carry out the
motion task. The advantage of our system is to achieve a
robust and trustworthy navigation in difficult scenarios, which
remain troublesome for many of the existing systems. In
order to validate the system, we present experiments with
a wheelchair vehicle transporting a human among locations
in an office type scenario.

I. INTRODUCTION

Everyday, it increases the research and industrial inter-
ests of the robotics community in improving the autonomy
degree of the systems. This is driving the development
of robots that work within an ample rank of conditions,
which are really useful when they operate during long
periods of time without human intervention. One of the
key aspects in this development is the mobility because
this ability opens the possibility of adding a great variety of
subsystems with other functionalities (increasing the degree
of autonomy). The nature of the surroundings where the
robot carries out the task is closely bound with the mobility
aspect. For example, in applications like wheelchair robots,
surveillance robots or service robots, the environment is
not completely specifiable with an a priori map and can be
dynamic. In these circumstances, it is clear the necessity of
sensors to collect information of the environment in order
to adapt the movement to any new contingency or event.
The sensor-based navigation systems appear as a natural
choice in these circumstances. Nevertheless, the difficulty
of these techniques is to move vehicles in very complicated
environments, that normally are those where there is very
little room to maneuvre, are highly dynamic or create the
well-known trap situations. We address here the navigation
with a wheelchair vehicle under these work conditions.

Within the mobility of the vehicle, the sensor-based
motion system is the part in charge of generating move-
ment free of collisions between successive positions. The
design of these systems is determined by diverse factors
involved in this question, like the model construction, the
deliberative planning and the motion generation. The model
builder constructs a representation which is the base for the
deliberation and which provides with memory the reactive
behavior, the planner module generates global plans and

the reactive module computes the local motion. The sensor-
based systems made up as synthesis of modules with these
functionalities mainly differ in the interaction between the
planner and the reactor (i.e. how the reactive navigation
uses the information available of the planner), and in the
tools used to implement each module. We present next
related work following these two premises.

To specify the interaction between deliberation and reac-
tion, one possibility is to see the planning like a component
that fixes the composition of different behaviors during
the execution [2]. These behaviors are implemented with
potential fields [14], so that modifying its weights modifies
the global behavior of the system. Another possibility is to
use the planning like advisor of the reactive control [1],
or like a system that adapts parameters of the reactive
component based on the evolution of the surroundings [17].
In both cases, the planner has a tactical role leaving the
execution degree of freedom to the reactor. In this context,
a common strategy is to compute a path and use its course
to direct the reactive module [23], [20], [8]. Other methods
compute a path, which is deformed according with the
changes in scenario (the path is computed in the workspace
[9] or in the configuration space [22]). Other techniques
create trees of paths obtained a number of stages before
the execution [26]. Another possibility is to compute a
channel of free space that contains sets of ways, leaving
to the execution the selection of one of them [10].

Closely bound with this issues is the choice and imple-
mentation of the techniques for each module. With regard
to the construction of a model, in indoor environments, the
occupancy grids are usually used with ultrasounds [11],
[6], [23] and with laser [8], [20], [4]. With regard to the
planners, these systems use efficient numerical techniques
on grids that are executed in real time [5], [25]. Another
key issue is the reactive method, where some existing
systems use the potential field methods [14], [15], those
based on sets intermediate of commands [7], [24], [13], or
those based on high-level information [19], [21].

We describe here the design and verification of a sensor-
based system made up of three modules whose synergy
carries out the motion task. The model builder constructs
and manages an occupancy grid and uses a scan-matching
technique to improve the vehicle odometry [16]. The
planner module is a new technique based on computing the
existence of a tunnel of free space to reach the destination,
and the reactive module is a technique that employs a ”di-



vide and conquer” strategy based on situations to simplify
the difficulty of the navigation [21], [19]. The synthesis of
these modules is carried out within a synchronous planner-
reactor architecture [17].

Although the design of sensor-based systems is not new,
what remains still inaccessible for the great majority of
the above mentioned techniques is to carry out a robust
and trustworthy navigation when the environments are very
complicated. Our system differs from previous works in the
choice and implementation of the particular techniques and
in the architecture of integration. All these aspects together,
compose a system that avoids the limitations of related
works, robustly navigating in these problematic scenarios.
To validate the system we used a commercial wheelchair
equipped with two on-board computers and with a planar
laser range-finder.

II. OVERVIEW OF THE SYSTEM

We give in this Section a global vision of the sensor-
based system, which is formed by an architecture that
integrates three modules with the following functionalities:
model construction, motion planning and reactive naviga-
tion:
• Model Builder Module: construction of a model of

the environment (to increase the spatial domain of the
planning and used as local memory for the reactivity).
We use a binary occupancy grid that is updated
whenever a new sensory measurement is available.
The grid has a limited size and travels centred with
the robot. Furthermore, we employ a scan matching
technique to improve the vehicle odometry before
integrating any new measure in the grid. Although,
a scan matching technique does not guarantee global
consistency, its precision is enough to build the local
map needed by the other modules.

• Planner Module: extraction of the connectivity of the
free space (used to avoid the cyclical motions and
trap situations). We have developed a new planner that
computes the existence of a path that joins the robot
and goal locations. The planner constructs iteratively
a graph whose nodes are locations in the space and the
arcs are tunnels of free space that joins them. When
the goal is reached, the current tunnel contains a path
to the goal. This planner avoids the local minima and
is very efficient so that it can be executed in real time.

• Reactive Navigation Module: computation of the
collision-free motion. We chose the Nearness Diagram
Navigation (ND method in short), which is based on
selecting at every moment a navigational situation and
to apply a motion law adapted for each one. This
method has demonstrated to be very efficient and
robust in environments with little space to maneuver.

Globally the system works as follows (Figure 1): given
a laser scan and the odometry of the vehicle, the model
builder incorporates this information into the existing
model. Next, the information of obstacles and free space
in the grid is used by the planner module to compute the
course to follow to reach the goal. Finally, the reactive

REACTIVE
MOTION

ACTION
− Motion

PERCEPTION
− Laser scan
− Odometry

PLANNING

MODELLING

ROBOT

ControllerSensors

Fig. 1. Overview of the sensor-based navigation system

module uses the information of the obstacles contained in
the grid and information of this tactical planner to generate
the motion (to drive the vehicle free of collisions towards
the goal). The motion is executed by the vehicle controller
and the process restarts with a new sensorial measurement.
It is important to stress that the three modules work
synchronously within the perception - action cycle. Next,
we address the design of the modules and the integration
architecture.

III. MODULE DESIGN AND INTEGRATION

We describe in this Section the model builder module
(Subsection III-A), the planner module (Subsection III-B),
the reactive method (Subsection III-C) and the architecture
of integration (Subsection III-D).

A. Model Builder Module

The function of this module is to integrate the sensorial
measures to construct a model of the environment (in
our case a local map). We chose a binary occupancy
grid because is an efficient structure to use from which
it turns out simple to obtain the free space (the one of
interest for the movement). The cells are occupied and
free since the laser used has a high precision in indoor
environments (we do not use traversability factors). The
grid has a fixed size that represents a limited part of the
workspace (large enough to represent the portion of space
necessary to solve the navigation) and whose position is
recomputed to maintain the robot in its central zone (the
obstacles required to avoid collisions are always around the
robot). The design and supervision of this module include
three parts: (i) the use of a technique of scan matching to
improve the vehicle odometry. (ii) the integration of the
laser measures in the model, and (iii) the supervision of
model position to maintain the robot centred:

• To improve the odometry of the vehicle we use a
scan matching technique, which refines the odometry
readings using the information provided by the laser.
We use the Iterative Dual Correspondence algorithm
[16], which search for corresponces between two



GOAL

20 meters

Init

GOAL

20 meters

Sensor
visibility

Risky
obstacles

GOAL

(a) (b) (c)

Fig. 2. These Figures show the performance of the model in a real experiment. (a) The trajectory of the robot given by the odometry and the laser
data. (b) The model constructed in execution and the trajectory of the robot provided by the scan matching technique. (c) Model available when the
vehicle was crossing a door and the risky obstacles are not detected by the laser, but they are available in the grid.

consecutive laser scans in order to estimate the rigid
motion. This algorithm does not require to extract
any specific kind of features and consequently is well
suited to unstructured environments.

• To integrate a scan in the model, the cells that
corresponds to the position of the obstacle points are
placed occupied, and all the cells over the lines that
join the sensor position and the obstacle points are
filled up free. We implemented this procedure using
the Bresenham algorithm [12] which is optimal in the
number of cells visited to project a line in a grid.
The use of this algorithm considerably reduces the
integration time of a sensorial measurement.

• To keep the robot located in the central zone of the
grid, we define an area denominated control zone.
When the robot leaves this zone, the new position
of grid is recomputed to centre the robot within it.
With this strategy the robot is always in the central
zone of grid whose position does not change until
the robot does not leave it. The recomputation of the
grid position is always made in multiples of the cell’s
dimension and the rotation is not allowed (this strategy
reduces the dissemination of false information of the
obstacles in the cells, which is an important source
of error). In addition, this strategy can be efficiently
implemented with displacements of memory to reduce
the computation time.

We discuss next this module on the basis of a run
depicted in Figure 2, where the system drove the vehicle
until the destination in a partially dynamic environment.
We show in Figure 2a the complete trajectory of the
experiment and the scans integrated using the odometry.
This odometry information is so bad that successive scans
cannot be used for the avoidance of non visible obstacles
at each moment, and after some meters the robot is
completely lost. Figure 2b shows the grid (400 × 400
cells and 0.05m each cell) computed by the model builder
using the previous information. Notice how the grid reflects
information of obstacles non detected with the last scan
(since they are stored in the grid that maintains the robot

in the center), which can be used for obstacle avoidance
(Figure 2c), and how the model is suitable for planning
purposes. There are also other issues to stand out: (i)
the last laser scan integrated in the grid does not have
odometry errors with respect to the present position. Only
the cells not updated with this scan accumulate odometry
errors, which are, however, mitigated by the scan matching
technique. (ii) The grid reflects the change in dynamic
environments rapidly updating all the area covered by the
last scan (although it is not evident from the Figures, in
the free space of the room there was a person moving)
and (iii) the spurious measures are eliminated from the
grid as new measures are added. For all these reasons we
think that this model is well suited as representation for
the planning and local memory for the reactive module.

With respect to the functional and computational aspects
of this module, with a grid of these characteristics we
construct a model that represents an environment of 20×
20 meters around the robot (portion of the environment
sufficiently large to include the goal where we have to
drive the robot). The module takes about 0.02sec (enough
to work in real time).

B. Planning Module

This module uses a motion planner to obtain tactical
information to avoid the trap situations and the cyclic
motions. The idea behind our planner is to compute a
portion of the space (that we call tunnel) that contains at
least one path to the goal, but not to compute an analytical
path as many classical planners do. This is because the
course of the tunnel contains enough tactical information
to avoid the trap situations, and an explicit path to the
goal is not required. We illustrate the idea in Figure 3b,
where the course of the tunnel that joins the initial and final
configurations is enough to avoid the U-shape obstacle in
between the initial and goal locations.

The planner constructs progressively a graph of connec-
tivity, where the nodes are points in the free space and
an arc between nodes means that at least exists one path
between them. The process starts from the initial location



1.3

1.1.2

Init
node

C−obstacle
Obstacle

Node 1
Node 4

Node 3

Node 2

ROBOT
Goal

1.2

1.1

Init
1

1.3.1

Instantaneous
motion direction

(course)

1.1.2

1.3

Tunnel

1.3.2

1.3.2.1

(a) (b)

Instantaneous
motion
direction

Passage
open

Goal
Passage
closed

Instantaneous
motion
direction

Goal

(c) (d)

Fig. 3. These Figures show the performance of the planning module.
(a) The expansion of a node, (b) computation of the tunnel of free space
and course to follow in a scenario with a U-shape obstacle, (c) and (d)
similar but in a real experiment.

and expands a node as follows: (i) from the position
of the node we calculate the directions where there is a
discontinuity between obstacles or where an obstacle ends,
and we place a node there (as long as that space was not
occupied by another node). Then, we compute for each
new node whether it is accessible from the current node.
More precisely, we calculate the existence of a tunnel of
free space that contains a path that joins both positions
(procedure detailed in [19]). If it exists, we incorporate this
new node to the graph. For example in Figure 3a the tunnel
in the configuration space for the nodes 1 and 4 is not
blocked and thus they are accessible from the initial node
(there is at least one path that joins both configurations).
On the other hand, the tunnels corresponding to the nodes
2 and 3 are blocked, because the robot does not fit between
these obstacles. (ii) We select the following node to expand
by computing the distance covered from the initial location
to this node plus the distance to the goal (cost). The process
ends once the goal location is reached.

Figure 3b shows the incremental construction of the
graph and the tunnel that joins the initial and goal locations.
From the tunnel we obtain two types of information: first,
if it is possible to reach the goal from the present position
(since if the path exists the algorithm finds the tunnel
that contains it). Secondly the tactical motion direction
(main course of the first part of the tunnel). Notice that
this direction will not be used to direct the vehicle (since
this degree of freedom will be handled by the following

module), but as the main course of the motion.
Figures 3c,d depict an experiment to show how the

planner works over the available model and avoids one trap
situation. Initially, in order to reach the goal the planner
computed a course that aims towards a passage (Figure
3c). Suddenly, the passage was closed creating an end-zone
(Figure 3d). However, the planner computed the new tunnel
that pointed the way to the exit (backwards). Following this
course the reactive method easily drove the vehicle out if
this situation. The computation time of this algorithm is
very dependent on the structure of the scenario since it
guides the expansion of the nodes. In our typical indoor
scenarios it works at medium rates of 0.03sec (enough for
real-time).

C. Reactive Module

The ND+ method [21] is an improvement of the ND
method [19], which is based on a methodology to design
behaviors denominated the situated - activity paradigm (see
[3] for a collection of works in this direction). In order
to use this methodology, initially we describe a set of
situations to represent the navigational problem and how to
act in each of them (actions). Here, the situations represent
an abstraction of all the cases between positions of the
robot, obstacles and goal position (navigational situations).
In addition, for each of these cases we associate a motion
law (action). During the execution phase, at every moment
we use information available of the obstacles and the
position of the robot and the destination to identify one of
these situations. Next the corresponding action is applied
to compute the motion. This motion is executed by the
robot and the process restarts.

The definition of the situations is based on criteria such
as the security and entities that depend on the structure
of the environment (e.g. areas of motion). The situations
are represented using a binary decision tree, so that only
one of them is chosen at every moment, and the motion
laws are designed to obtain the behavior desired in each
navigational situation.

The advantage of this method is that it employs a divide
and conquer strategy based on situations to simplify the
difficulty of navigation, thus this technique is able to deal
with more complex navigation cases than other methods
(usually these cases arise in environments where there is
little space to maneuver like for example a narrow door).
In particular, the ND+ method avoids most of the problems
that other techniques present in these circumstances, like
the local trap situations, the oscillating movements, or the
impossibility to move towards certain zones with high
obstacle density or far away from the goal direction (see
[19] for a discussion on this topic). As it will be illustrated
in the experimental results, these properties are determinant
to navigate in the majority of realistic environments. The
ND+ method improves the previous ND method with new
navigational situations and a new design of the motion laws
(to have motion continuity in the most common transitions
between situations). Another advantage of the ND+ method
is that works at more than 1000Hz, thus the reaction to the



Sensors
MODELLING

PLANNING

GOAL

direction
Instant.

Grid

REACTIVE
MOTION

(v,w)

(0,w)

Failure
flag

Failure
flag

Actuators
Grid

Fig. 4. This Figure depicts the integration architecture.

evolution of the scenario is very rapid and it can be used
when required without imposing a significant time penalty.

D. Integration Architecture

The architecture integrates the modules considering the
limitations and restrictions imposed by the mechanical
(sensors and actuators) and logical parts (computers) of the
robot. The architecture has a synchronous planner - reactor
configuration, where both parts use the model constructed
in execution time (Figure 4). The functionality of the
modules is the model construction, the computation of the
tactical motion direction (to guide the reactive method),
and the motion command generation.

There are situations where the modules produce failures
which are managed by the architecture:

• Exception in the planning module: in some circum-
stances the planner does not find a solution, either
because it does not exist (for example when the goal
falls upon an obstacle) or because the module takes
to much time and a time out is launched.

• Exception in the reactive module: the robot is com-
pletely surrounded by obstacles when there are not
areas of motion (internal piece of information of the
ND+ method), and thus the robot cannot progress.

In both cases, we set flags to carry out strategies that
allow to close the control loop (Figure 4). In the first case,
the reactive module directly uses the goal location instead
of the information of the planner, and in the second one
the robot stops and turns on itself (this behavior updates
the model in all the directions hoping that a new passage
is open).

The modules are executed in the following sequence:
model - planner - reactor, dictated by the flow of data
between modules. This flow is unidirectional, from the
model module towards both the planner and the reactive
module (with bandwidth of ' 200kbytessec ) and from the
planner towards the reactive module (with bandwidth of
' 10 bytessec ). The modules assure their time constraints to
work synchronously with the sensor rate 0.25sec. We have
assigned time-outs of (0.05, 0.08 and 0.02sec) to each
module so that we always close the motion control loop
(the maximum execution time is 0.15sec).

This hybrid architecture allows to concentrate the best
of worlds both (deliberative and reactive), since the infor-

mation of the planning allows to guide the motion towards
zones in which trap situations do not take place, and the
reactive component directs the execution with fast reactions
to the evolution of the environment (considering in addi-
tion non visible zones from the present position available
in the model). All the modules have been integrated in
such a way that the control loop is always closed with
a motion command available (there are no dead states).
Furthermore, the modular structure of the system allows to
replace the different modules easily, since the functional
and computational aspects and their interfaces are clearly
specified.

IV. EXPERIMENTAL RESULTS

For experimentation, we used a commercial wheelchair
that we have equipped with a SICK laser and with two on-
board computers (two PentiumIII850Mhz, one of them
is used for motion control purposes and in the other one
the computations associated to the architecture were carried
out). The vehicle is rectangular (1.2×0.7meters) with two
driving wheels that work in differential-driven mode. We
set the maximum operational velocities to (vmax, wmax) =
(0.3 m

sec , 0.5
rd
sec ) due to the application context (human

transportation).
The experiments outlined here are particularly difficult

due to the vehicle used, the type of task and to the nature of
the surroundings. The wheelchair is a non holonomic robot
with the driving wheels in the back part, thus it cannot
move in any direction and sweeps an ample area when it
turns. In addition, the vehicle transports humans that do
not accept the abrupt movements and shaking behaviors
(i.e. the vehicle has geometric, kinematic and dynamic
constraints). The laser sensor is placed in the front part of
the robot (0.72m) and has a 180◦ field of view, thus some
obstacles to avoid are not visible from the present position.
Furthermore, the ground was just polished and the vehicle
slides constantly with an adverse effect on the odometry.
On the other hand the surroundings are not known, since
there are elements in the office like chairs, tables whose
position cannot be established a priori (although the walls
could be known, unfortunately they are not visible by the
sensor since the furniture covers them). This scenario is not
prepared to move a wheelchair and in many places there
is little room to move. In addition, people working in the
office turn the scenario in a dynamic and unpredictable
place, and as well, sometimes the structure is modified
creating global trap situations.

In the experiment the wheelchair had to drive the human
until a position outside the office. First, the vehicle moved
towards the closest visible door (snapshot 1 of Figure 5a).
During the motion, a person closed the right leaf of the
door so that the wheelchair did not fit. Quickly the vehicle
modified its way returning backwards (snapshot 2 of Figure
5a) in order to find the exit. During this passage the robot
avoided collisions with the furniture and a person who
moved bothering the normal progression of the vehicle
(snapshot 3 of Figure 5a). In the centre of the office, the
chair detected a very narrow door but sufficiently wide



WheelchairDoor open
Door closed

Human

Door open

Human

Door traversed

Second door

Goal First door

Init

(a) (b)

Goal

Init
0 20 40 60 80 100 120 140 160 180

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

m
/s

ec

TRANSLATIONAL VELOCITY

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

Time (sec)

ra
d/

se
c

ROTATIONAL VELOCITY

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

CONTROL TIC

T
im

e 
(s

ec
)

Modeler

Planner

Reactor

<1msec

(c) (d) (e)

Fig. 5. These Figures show one experiment where the wheelchair drove a human out of the office. (a) Some snapshots of the experiment, (b) the
model built during the experiment and the vehicle trajectory, (c) real laser data and trajectory using the odometry, (d) motion commands and (e)
computation time of each module.

to fit in, thus the vehicle moved towards this door and
maneuvered until crossing it and leaving the office reaching
the final position (snapshot 4 of Figure 5a).

The data obtained from the laser and the odometry
during the experiment are shown in Figure 5c, from which
the main conclusion is that the odometry is quite bad
and hardly could be used to deliberate or to compute
motion. Nevertheless, the modelling module manages this
information and constructs a reasonable model (Figure 5b).
This is because the scan matching technique improves the
odometry so that the information is properly integrated
in the grid, and the vehicle approaches nearer to the
destination. In addition, the model represents rapidly the
change (the surroundings are not known and dynamic).
This is because the complete area swept by the last scan
is updated in the grid (the occupied and free space are
updated), so that the new obstacle information is included
and those obstacles that currently are not present are
eliminated. The benefits of this model are shared by the
planning and the reactive modules, because there is a model
available to compute courses to follow and the information
of the non visible obstacles from the present position is

also available (this case is understood when the door was
crossed, snapshot 4 of Figure 5a), since once the sensor
has passed the door the frame is not detected).

The planner computed at any moment the tactical infor-
mation needed to guide the vehicle out of the trap situa-
tions. The most representative situation happened when the
door was open and suddenly was closed next (snapshots 1
and 2 of Figures 5a). The course of the planner, previously
pointing towards the door, rapidly changed aiming back-
wards (that directed the motion towards the outside of the
end zone). This part of the run is depicted step by step in
Figure 3c,d. This system avoids the trap situations and the
cyclic behaviors by computing the course in each iteration.

The reactive module computed the collision free motion
during the complete experiment taking into account the
geometric, kinematic and dynamic constraints of the vehi-
cle [18]. The performance of this module was determinant
in some circumstances, specially when the vehicle was
driven among very narrow zones [like for example when
it crossed the door (snapshot 4 of Figure 5a)]. In addition,
during the passage, the ND+ method computed motion
between very near obstacles, and this movement was free



of oscillations and irregular behaviors (see the velocity
profiles in the Figure 5d and the vehicle path in Figure 5b),
and at the same time was directed towards zones with great
density of obstacles or far away form the final position
(any direction of movement can be obtained). That is, the
method achieves robust navigation in difficult and realistic
scenarios avoiding the technical limitations of many other
existing techniques.

We show the computation time of each module in the
Figure 5e. The average execution time is 0.02sec for the
model module, 0.03sec for the planner and lower than
0.001sec for the reactive method. With this rates all the
modules worked synchronously within the cycle of the
sensor, and none of the time outs were launched.

To conclude, this experiment illustrates how the system
proposed here generates robust and trustworthy navigation
in unknown, dynamic and difficult scenarios. That is, to
move vehicles in realistic environments where the things
are not where one likes, people move around, there is little
site to maneuver and the well-known trap situations are
usual.

V. CONCLUSION

We have presented in this paper a sensor-based naviga-
tion system which is made up of three modules: a model
constructor, a planning method and a reactive navigation
method. Although some of these techniques derive from
already existing works, the main contribution here is their
integration to compose a complete system. The synergy of
these modules carries out the navigation task achieving a
higher level of performance and robustness.

The advantage of the system is that it is able to move
vehicles in realistic scenarios, which are usually compli-
cated, there is very little room to maneuver, are highly
dynamic or create the well-known trap situations. We have
demonstrated the usage of the system with a wheelchair
vehicle under these work conditions.

VI. ACKNOWLEDGEMENT

This project was partially supported by Spanish Min-
isterio de Educación y Ciencia under the project MCYT
DPI2003-07986.

REFERENCES

[1] P. Agree and D. Chapman. What are the plans for. Journal for
Robotics and Autonomous Systems, 6:17–34, 1990.

[2] R. Arkin. Motor schema based navigation for a mobile robot:
An approach to programming by behavior. In IEEE International
Conference on Robotics and Automation, pages 264–271, Raleigh,
USA, 1987.

[3] R. Arkin. Behavior-Based Robotics. The MIT Press, 1999.
[4] K. Arras, J. Persson, N. Tomatis, and R. Siegwart. Real-time

Obstacle Avoidance for Polygonal Robots with a Reduced Dynamic
Window. In IEEE Int. Conf. on Robotics and Automation, pages
3050–3055, Washington, USA, 2002.

[5] J. Barraquand and J. Latombe. On nonholonomic mobile robots
and optimal maneuvering. In Intelligent Symposium on Intelligent
Control, pages 340–346, Albany, 1989.

[6] J. Borenstein and Y. Koren. Histogramic in-Motion Mapping for
Mobile Robot Obstacle Avoidance. IEEE Journal on Robotics and
Automation, 7(4):535–539, 1991.

[7] J. Borenstein and Y. Koren. The Vector Field Histogram–Fast
Obstacle Avoidance for Mobile Robots. IEEE Transactions on
Robotics and Automation, 7:278–288, 1991.

[8] O. Brock and O. Khatib. High-Speed Navigation Using the Global
Dynamic Window Approach. In IEEE Int. Conf. on Robotics and
Automation, pages 341–346, Detroit, MI, 1999.

[9] O. Brock and O. Khatib. Real-Time Replanning in High-
Dimensional Configuration Spaces using Sets of Homotopic Paths.
In IEEE Int. Conf. on Robotics and Automation, pages 550–555,
San Francisco, USA, 2000.

[10] W. Choi and J. Latombe. A reactive architecture for planning and
executing robot motion with incomplete knowledge. In IEEE/RSJ
International Workshop on Intelligent Robots and Systems, pages
24–29, Osaka, Japon, 1991.

[11] A. Elfes. Sonar-based Real-world Mapping and Navigation. IEEE
Journal on Robotics and Automation, 3(3):249–265, 1987.

[12] J. Foley, A. V. Dam, S. Feiner, and J. Hughes. Computer Graphics,
principles and practice. Addison Wesley edition 2nd, 1990.

[13] D. Fox, W. Burgard, and S. Thrun. The Dynamic Window Approach
to Collision Avoidance. IEEE Robotics and Automation Magazine,
4(1), 1997.

[14] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots. Int. Journal of Robotics Research, 5:90–98, 1986.

[15] B. H. Krogh and C. E. Thorpe. Integrated Path Planning and
Dynamic Steering control for Autonomous Vehicles. In IEEE
Int. Conf. on Robotics and Automation, pages 1664–1669, San
Francisco, USA, 1986.

[16] F. Lu and E. Milios. Robot pose estimation in unknown environ-
ments by matching 2d range scans. Intelligent and Robotic Systems,
18:249–275, 1997.

[17] D. Lyons and A. Hendriks. Planning, reactive. In S. Saphiro
and J. Wiley, editors, Encyclopedia of Artificial Intelligence, pages
1171–1182. 1992.

[18] J. Minguez and L. Montano. Robot Navigation in Very Complex
Dense and Cluttered Indoor/Outdoor Environments. In 15th IFAC
World Congress, Barcelona, Spain, 2002.

[19] J. Minguez and L. Montano. Nearness Diagram (ND) Navigation:
Collision Avoidance in Troublesome Scenarios. IEEE Transactions
on Robotics and Automation, 20(1):45–59, 2004.

[20] J. Minguez, L. Montano, N. Simeon, and R. Alami. Global Nearness
Diagram Navigation (GND). In IEEE Int. Conf. on Robotics and
Automation, pages 33–39, Seoul, Korea, 2001.

[21] J. Minguez, J. Osuna, and L. Montano. A divide and conquer
strategy to achieve reactive collision avoidance in troublesome
scenarios. In International Conference on Robotics and Automation,
Minessota, USA, 2004.

[22] S. Quinlan and O. Khatib. Elastic Bands: Connecting Path Planning
and Control. In IEEE Int. Conf. on Robotics and Automation,
volume 2, pages 802–807, Atlanta, USA, 1993.

[23] S. Ratering and M. Gini. Robot navigation in a known environment
with unknown moving obstacles. In International Conference on
Robotics and Automation, pages 25–30, Atlanta, USA, 1993.

[24] R. Simmons. The Curvature-Velocity Method for Local Obstacle
Avoidance. In IEEE Int. Conf. on Robotics and Automation, pages
3375–3382, Minneapolis, USA, 1996.

[25] A. Stenz. The focussed d∗ algorithm for real-time replanning. In
International Joint Conference on Artificial Intelligence (IJCAI),
pages 1652–1659, Montreal, CA, 1995.

[26] I. Ulrich and J. Borenstein. VFH+: Reliable Obstacle Avoidance for
Fast Mobile Robots. In IEEE Int. Conf. on Robotics and Automation,
pages 1572–1577, 1998.


