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Abstract— This paper addresses the scan matching problem in
three dimensional workspaces. The novel concept is to modify
the metric used in the Iterative Closest Point (ICP) framework.
The new distance compensates sensor translation and rotation
simultaneously. The contribution here is the development of all
the mathematical tools required to formulate the ICP with this
new metric. Furthermore, we show preliminary results of 3D
scan alignment to validate the development.

I. INTRODUCTION

A key issue in mobile robotics is to keep track of the robot
position using on-board sensors. To deal with this problem,
one solution is scan matching. The principle is to compute the
sensor displacement between two consecutive configurations
by maximizing the overlap between the range measurements
obtained at each configuration. This paper describes a tech-
nique to solve this problem in 3D workspaces (Figure 1).

The most popular scan matching methods usually follow
the Iterative Closest Point (ICP) algorithm (principle borrowed
from the computer vision community [2]). The ICP algorithm
addresses this problem with an iterative process in two steps.
At each iteration:

1) matching: establishment of correspondent points in be-
tween scans with a closest point criterion,

2) minimization: computation of the sensor displacement
by a least square minimization of the error of the
correspondences.

In two dimensions, a common feature of most versions of
ICP is the usage of the Euclidean distance to establish the
correspondences and to estimate the displacement [6], [3], [1].
As pointed out by [4], the limitation of this distance is the
difficulty to capture the sensor rotation. Recently, a new metric
was proposed to compensate translation and rotation simulta-
neously improving the performance of previous methods in 2D
[5]. Despite many geometric ICP variants have been proposed
in the vision community to deal with the registration problem
(see [7] for a survey), the use of a metric capturing translation
and rotation has not been explored.

This paper describes the extension of this new metric to
three dimensional workspaces. The emphasis of the work is on
the development of all the mathematical formulation required
to address the scan matching problem in three dimensional
workspaces with this new metric. Furthermore, we also show
preliminary results of 3D scan alignment.
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Fig. 1. Example of the scan matching problem. (a) Three dimensional and
(b) projection to the XY plane views of the two sensory measurements at
different locations. The solution of the scan matching problem is to compute
the relative motion between both locations that maximizes the overlap between
both measurements ((c) and (d)). This alignment has been obtained with the
method proposed in this paper.

II. MATHEMATICAL TOOLS

A. Expression of the Metric distance

A rigid body transformation in R3 can be decomposed into
a rotation of angle θ (−π < θ < π) about a unit vector
n = (nx, ny, nz) and a translation of vector (x, y, z), and thus
uniquely defined by vector q = (x, y, z, θ nx, θ ny, θ nz). We
define the norm of q as :

‖q‖ =
√

x2 + y2 + z2 + L2θ2 (1)

where L is a positive real number homogeneous to a length.
Given two points p1 = (p1x, p1y, p1z) and p2 = (p2x, p2y, p2z)
in R3, we define the distance between p1 and p2 as the
minimum norm among the rigid body transformations that
move p1 to p2:

dp(p1, p2) = min{‖q‖ such that q(p1) = p2} (2)

where
q(p1) = R(n, θ)p1 + T (3)



with T the translation vector (x, y, z) and R(n, θ) the matrix
of rotation of angle θ about the unit vector n = (nx, ny, nz).
Unfortunately there is no closed form expression of dp with
respect to the coordinates of the points. However, we can
compute an approximation valid for transformations with small
rotations. Linearizing (3) about θ = 0, we have cos θ ≈ 1 and
sin θ ≈ θ. Developing, we obtain:

dap
p (p1, p2) =

√
‖δ‖2 − ‖p1 × δ‖2

||p1||2 + L2
(4)

where δ = p2−p1. This is the expression of an approximation
of our new metric distance in 3D. One can demonstrate that
the isodistance surfaces are ellipsoids centered on p1 (the
isodistance surfaces of the Euclidean distance are spheres).
Furthermore, their dimensions depend on ||p1|| and the value
of L. In fact, L balances the trade-off between translation
and rotation. When L → ∞, the new distance tends to the
Euclidean distance (see equation (4)).

B. Expressions for the Correspondence Step

In this section, we use our new distance to establish pairs
in the matching step of the ICP algorithm. To cope with the
discrete nature of the data (Figure 1), we assume a local
structure in the reference scan. In two dimensions this implies
building segments in between points of the reference scan
[4]. However, in three dimensions we need to build a mesh
composed by patches (in our case triangles among neighbour
points (Figure 2)). In order to derive the expression of the
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Fig. 2. Example of the mesh for the reference scan of Figure 1.

distance point to patch, we need to introduce first the distance
point to segment and point to plane.

The distance dap
ps of a point p1 to a segment [s1 s2] with

the new metric is:

dap
ps(p1, [s1 s2]) ≈




dp(p1, s1), if λ < 0
dp(p1, s2), if λ > 1√

−n2+mt
m

, if 0 ≤ λ ≤ 1
(5)

where λ = n
m and

m = ‖u2‖2 − ‖p1 × u2‖2

k

n = −δT
1 u2 +

(p1 × δ)T (p1 × u2)

k

t = ‖δ1‖2 − ‖p1 × δ1‖2

k

with u2 = s2 − s1, δ1 = s1 − p1, and k = ‖p1‖2 + L2.
The distance dap

pp of a point p1 to the plane [v1 v2 v3] with
the new metric is:

dap
pp(p1, [v1 v2 v3])2 =

ae2 + bd2 − 2cde

c2 − ab
+ f (6)

where the coefficients are:

a = ‖u1‖2 − ‖p1 × u1‖2

k

b = ‖u2‖2 − ‖p1 × u2‖2

k

c = uT
1 u2 −

(p1 × u1)
T (p1 × u2)

k

d = −δT
1 u1 +

(p1 × δ1)
T (p1 × u1)

k

e = −δT
1 u2 +

(p1 × δ1)
T (p1 × u2)

k

f = ‖δ1‖2 − ‖p1 × δ1‖2

k

where u1 = v3 − v1, u2 = v2 − v1, δ1 = v1 − p1 and
k = ‖p1‖2 + L2. Furthermore, the closest point p0 on the
plane is given by:

p0 = v1 + λ01u1 + λ02u2 (7)

with (λ01, λ02) =
(

a c
c b

)−1 (
d
e

)
.

Finally, the distance from a point p1 to the patch �v1,v2,v3

formed by v1, v2 and v3 depends on the relative position
location between the closest point to p1 in the plane [v1, v2, v3]
(point p0 computed by (7)) and the the patch �v1,v2,v3 on this
plane. Next figure summarizes the distance.

v1

v2

v3
ap

1 1 3psd   (p  , [v  v  ])

d   (p  , [v  v  ])1 1ps 2
ap

d   (p  , [v  v  ])1 3ps 2
ap

else

1 1ps
ap

1 1ps 2
ap

d   (p  , [v  v  ])

d   (p  , [v  v  ])3

if d<0 then 

else

1ps
ap

1 1ps
ap

d   (p  , [v  v  ])

3

if d<a then 

3

d   (p  , [v  v  ])2

else

1ps
ap

1 1ps
ap

d   (p  , [v  v  ])

3d   (p  , [v  v  ])

if e<b then 

2

1

Fig. 3. This Figure depicts the different zones where the closest point to
p1 in the plane defined by [v1 v2 v3] could lie, and the expression of the
distance point to patch dap

p�(p1,�v1,v2,v3 ) in each of these cases. When p0

is in the triangle, the distance is dap
p (p1, p0).

C. Expression for the minimization

Let be pi = (pix, piy, piz) and p′′i = (p′′ix, p′′iy, p′′iz) two
correspondent points. The expression to minimize is:

Edist(q) =
n∑

i=1

dap
pp(pi, q(p′′i ))2 = δT

i (q)Mδi(q) (8)



where δi(q) = pi − q(p′′i ) ≈ pi − p′′i + U(p′′i )r − T and

U(p′′
i ) =


 0 −p′′

iz p′′
iy

p′′
iz 0 −p′′

ix

−p′′
iy p′′

ix 0




M =


 p2

ix + L2 pixpiy pixpiz

pixpiy p2
iy + L2 piypiz

pixpiz piypiz p2
iz + L2




Finally, the q that minimizes expression (8) is:

qmin =


∑n

i=1


 M −MU(p′′

i )

−UT (p′′
i )M UT (p′′

i )MU(p′′
i )







−1

·

·
∑n

i=1 Mδ

In summary, in this section we have presented the mathe-
matical tools in order to introduce the new metric in all the
steps of the ICP framework.

III. EXPERIMENTAL RESULTS

This section describes preliminary experimental results ob-
tained over a data set collected with a TRC 3D laser sensor
mounted on a robot (Figure 1). The sensor has a field of view
of 240◦ and a range of 6.5m and each scan gathers 4800
points with pan and tilt resolution of 5◦ and 0.5◦. The data
corresponds to a travel of approximately 20 meters.

We have created a prototype of the new scan matching
technique and tested it with these data (the best results were
obtained with L = 3). Figure 4 shows the reconstruction
of the scenario projected to the XY plane using only the
odometry and using the new algorithm. The figure shows how
the scan matching technique ameliorates the odometry since
(i) the walls are thinner and (ii) it better aligns the walls
of the building. This is the expected result that validates the
mathematical formulation proposed in this paper. Notice that
although the vehicle moves in a 2D world, random noise was
added to the odometry readings to simulate error in the six
degrees of freedom. In other words, the algorithm works in
a fully three dimensional world and has to estimate the six
coordinates of q.

Alternatively, we have compared the performance of this
technique with the standard ICP algorithm. We have done this
by matching each scan with itself adding random noise up to
0.4m in translation and 15◦ in the rotation vector (like this we
know the ground truth (0, 0, 0)). We repeated this procedure
with 20 scans and 1000 times for each scan. The preliminary
results show that the new technique slightly ameliorates the
ICP in terms of robustness, precision and convergence rate.
However, the improvement is not as large as that reported in
the two dimensional case. We think that this is due to the
nature of the data collected (the scenario is very structured
and not dense).

IV. CONCLUSIONS AND FUTURE WORK

This paper describes the extension of 2D metric-based
scan matching to three dimensional workspaces. The emphasis
of the work is on the development of all the mathematical
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Fig. 4. Projection to the XY plane of the reconstruction using the vehicle
odometry (top) and using the new scan matching method (bottom).

formulation required to address the scan matching problem in
three dimensional workspaces with these new metric.

The future work is to improve the experimental validation
of the method. Although we find the results very encouraging,
we plan to collect a more complete data set to provide a more
rigorous comparison with other methods as was shown in the
two dimensional case by [5].
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