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Abstract

We address the problem of applying reactive naviga-
tion methods to non-holonomic robots. Rather than
embedding the motion constraints when designing a
navigation method, we propose to introduce the robot’s
kinematic constraints directly in the spatial represen-
tation. In this space - the Ego-Kinematic Space - the
robot moves as a “free-flying object”. Hence, stan-
dard reactive navigation methods applied to this space
will automatically take into account the robot’s kine-
matic constraints, without additional modifications.
This methodology can be used with a large class of
constrained mobile platforms (e.g. differential-driven
robots, car-like robots, tri-cycle robots). We show ex-
periments involving non-holonomic robots with two re-
active navigation methods whose original formulation
does not take the robot kinematic constraints into ac-
count (the Nearness Diagram Navigation and a Po-
tential Field method).

1 Introduction

In this paper we address the problem of reactive nav-
igation for non-holonomic robots. Even though the
majority of robots exhibit kinematic constraints, most
reactive navigation methods do not take these con-
straints into account and treat the robot as a “free-
flying object”. Example of these methods include,
the Potential Field Methods [1], the Vector Field His-
togram [2], the Elastic Band [7], the Elastic Strips
[11], and the Nearness Diagram Navigation [12]. With
these methods, the robot can only approximately ex-
ecute the motion generated by the reactive schemes.
In other reactive navigation methods, the robot mo-
tion constraints are used directly in the process of
determining the robot motion. However, with this
approach each reactive navigation method must be

designed from scratch to incorporate the constraints
of a given robot. This process does not give gen-
eral solutions to take into account the kinematic con-
straints, and it only provides particular solutions for
each method. Examples of such methods include the
Dynamic Window Approach [6], the Curvature Veloc-
ity method [5], the Vector Field Histogram+ [2], the
Steering Angle Approach [4], and the non-holonomic
Elastic Band [8].
Instead, we propose to use the kinematic constraints
to construct a novel spatial representation, the Ego-
Kinematic Space, where the robot moves as a ”free-
flying object”. Hence, standard reactive methods can
be applied in this space, implicitly taking into account
the kinematic constraints. This methodology provides
a general solution to apply (off-the-shelf) reactive nav-
igation methods to non-holonomic robots.
We show that the Ego-Kinematic Transformation can
be used to transform either the robot Workspace or
(a simplification of) the Configuration space, as both
can be represented with the same structure (IR2) in
the context of reactive navigation. Thus, the Ego-
Kinematic Space can be used with most reactive nav-
igation methods.
As an example, we use this methodology to generalize
two reactive schemes that do not take into account the
kinematic constraints (the Nearness Diagram Naviga-
tion [12], and a Potential Field method [1]), to work
with non-holonomic robots.
The paper is organized in five sections: In Section 2
we introduce the kinematics of the case study robots;
we discuss the role of reactive navigation methods and
some properties of the Workspace and Configuration
space. The Ego-Kinematic Space is described in detail
in Section 3. In Section 4 we present experiments with
two reactive navigation methods, and in Section 5 we
draw our conclusions.
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2 Background & Preliminaries

In this section we introduce and review some con-
cepts that will be used in the remaining part of the
paper. We begin by presenting the robot’s kinemat-
ics that will be covered in our analysis. Second, we
discuss the technique used to generate the collision-
free motion (the reactive navigation methods), and the
spaces where these methods usually apply. Finally, the
robots’ kinematic model is used to derive some prop-
erties of the spaces where the reactive methods apply.

2.1 Robot’s Kinematics

We consider robots moving on a flat surface with the
classical hypothesis “rolling without slipping”. The
Workspace and Configuration space are given by W =
IR2 and C = IR2 × S1, respectively. The robot config-
uration is represented by its location and the orien-
tation q = (x, y, θ). We shall focus our attention on
robots whose motion is constrained by:

−ẋsinθ + ẏcosθ = 0 (1)

This is a non-holonomic equality constraint, which has
the effect of reducing by one the dimension of the space
of possible differential motions at any given configu-
ration [9]. Hence, a motion command of such mobile
robot can be fully described by two motion parameters
only.
We now briefly describe the kinematic model of the
two-driving wheels and the car-like mobile robots.
These robots are representative examples of mobile
platforms (see Fig. 1) that verify the constraint of
Equation (1). We refer to [10] for a deeper descrip-
tion of both models.
The kinematic model of both, the two-driving wheels
and car-like robots, can be expressed by the following
equation by applying a change of variable, as detailed
in [10]: 

 ẋ
ẏ

θ̇


 =


 cosθ

sinθ
0


 v+


 0

0
1


 w (2)

where v and w denote the linear and angular velocities.
The main difference between these two platforms is
that the car-like robot has a mechanical constraint,
which imposes a maximum curvature γmax (or min-
imum turning radius rmin = 1/γmax) of the path
executed by the robot. There are other robots (e.g.
tri-cycle robots) whose kinematic models can also be
expressed by Equation (2) and verify Equation (1).
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Figure 1: a)Two-driving wheels robot. b)Car-like robot.

2.2 Reactive Navigation Methods

To address the goals of this paper, we turn to a dis-
cussion of the role of reactive navigation methods in
generating collision-free motion.
Reactive navigation methods attempt to calculate a
motion command that generates a collision-free mo-
tion for the next sampling period T , while simultane-
ously driving the robot towards the goal. The result
of applying iteratively a reactive navigation method is
a sequence of motion commands that move the robot
from the initial location towards the final location,
while avoiding collisions.
In general, reactive navigation methods can be applied
either to the Workspace (e.g. the Vector Field His-
togram [2], the Dynamic Window Approach [6], the
Steering Angle Field Approach [4], the Curvature Ve-
locity Method [5], the Elastic Strips [11]) or to the
Configuration space [9] (e.g. the Potential field meth-
ods [1], the Vector Field Histogram+ [3], the Elastic
Band [7]).

2.3 Properties of the Workspace and
Configuration space

The approach described in this paper consists of intro-
ducing a spatial transformation - prior to the applica-
tion of a reactive navigation method - such that the
robot kinematic constraints are directly represented.
This transformation must be applied to the robot
Workspace or Configuration space, depending on the
class of navigation method used.
Based on the kinematic models of the robots under
study, we will show that, within the context of reac-
tive navigation, both the Workspace and a subset of
the Configuration space - the Reachable Set of a sin-
gle Motion Command - are fully represented by IR2.
Moreover, as far as the goal is to avoid obstacles, we
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show that the obstacle information in both spaces is
also completely represented by IR2. Hence, a transfor-
mation defined over IR2 has full generality.
As the Workspace is readily defined as IR2, we will
focus on the Configuration space. The Configuration
space, C = IR2 × S1, describes the robot position and
orientation. In the context of reactive navigation we
only need to consider those paths in the Configuration
space that can be obtained as the consequence of the
execution of one single motion command. The set of
all the configurations reachable by such paths define a
subset of the Configuration space - the Reachable Set
of a single Motion Command - that we will denote by
R1mc.
Naturally, the structure of R1mc will depend on the
kinematic model of a specific mobile robot, subject
to its own motion constraints. As in [6] we assume
that, for the robots discussed in Section 2.1, the tra-
jectories obtained by the execution of a single motion
command can be approximated by arcs of circle and
line segments. When the robot is on a circular path,
its orientation at each point is constrained by:

tanθ − 2xy

y2 − x2
= 0 (3)

which is expressed in the robot’s frame of reference.
This equation is a holonomic equality constraint,
which has the effect of reducing the dimension of the
Configuration space by one [9]. Therefore, the Reach-
able Set of a single motion command R1mc (i.e. the
set of all the configurations that can be reached by a
straight segment or an arc of a circle) is a function of
only two parameters, and can be represented by IR2.
A configuration in R1mc is expressed by q1mc = (x, y).
A point worth mentioning here is the fact that both
the robot Workspace, W, and the Reachable Set of a
single Motion Command, R1mc, can be described in
IR2.
For reactive navigation we still need to map the ob-
stacles, that are usually defined in the Workspace W,
into the Reachable Set of a single Motion Command
R1mc.
We assume that obstacles are represented in W by
a set of points (x, y) ∈ IR2. Each obstacle point is
mapped to a region in R1mc, named C-obstacle [9].
Details of this simple algorithm are beyond of the
scope of this paper, but let us note in passing that
this region is calculated by considering the paths in-
duced to reach a given point, as well as the shape of
the robot. The union of the C-obstacles is called the
C-obstacle region, R1mc

obs ⊂ R1mc. Since the bound-
ary of each C-obstacle can be discretized into points,

R1mc
obs can be approximated by a list of points, which

delimit the particular boundary R1mc
obs .

A point obstacle in the Workspace is (x, y) ∈ IR2.
Moreover, it maps into the Reachable Set of a single
Motion Command, R1mc, as a region whose boundary
can be approximated by points (xi, yi) ∈ IR2. As such,
the obstacle information in both spaces (W and R1mc)
is fully represented by a set of points in IR2. As a con-
sequence, we can define a coordinate transformation
over IR2, that represents either W or R1mc.
In the following we will introduce the Ego-Kinematic
Transformation, which maps IR2 to the Ego-
Kinematic Space, where the non-holonomic con-
straints are implicitly represented.

3 The Ego-Kinematic Space

The Ego-Kinematic Space (EK-space) is constructed
by mapping points of IR2 into: (1) descriptors of ad-
missible paths leading to these points, and (2) the
distances to reach these points measured over the ad-
missible paths. This is made by means of the Ego-
Kinematic Transformation. Since the kinematic con-
straints are embedded in the Ego-Kinematic Transfor-
mation, the admissible paths are mapped onto straight
lines in the transformed space, and each point of the
EK-space can be reached by a straight line motion
“free-flying behavior”.
To introduce the Ego-Kinematic Transformation
(EKT), we focus our attention on those robots whose
admissible paths were characterized by straight lines
and arcs of a circle.
The EKT maps each point expressed in the robot’s
frame of reference into the EK-space, which we repre-
sent in polar coordinates for convenience. This map-
ping is a function of the circular arc length L and the
radius R of the unique circular path leading to that
point (see Fig. 2).
We then have:

EKT:IR2 → IR+ × S1

(x, y) → (d, α) = (fd(L,R), fα(R))
(4)

• The parameter d expresses the distance to a point
(x, y) ∈ IR2, measured along the circular path centered
on the y-axis and containing (x, y) and the origin of
the robot’s reference frame. Let R = x2+y2

2y
1 be the

radius of this circle. From the two possible values of
arc length (L and 2π|R| −L), the shortest distance is
selected. This distance is calculated as:

1R < 0 represent circles whose center lies in y < 0.
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fd : IR2 → IR+

(x, y) → d = fd(x, y) =

{
|R.acos(x2−y2

x2+y2 )|, y �= 0

|x|, y = 0

Fig. 2 shows two points (x1, y1) and (x2, y2) in the
robot’s frame of reference and the arcs d1 = L1 and
d2 = L2 calculated by this function.
• The angle α parameterizes the family of circular
paths arising from the kinematic constraints. Instead
of using R ∈ [0,∞[ to parameterize the circles, we
chose to use an angular descriptor in order to have a
bounded representation.
We use the function α = arctan(R/rp), that converts
into an index the comparison between a circular path
with radius R, and one with standard radius rp (where
dm = 2.rp is the diameter of the circular region to
transform).

fα : IR2 → [−π, π]

(x, y) → α = fα(x, y) =

{
π
2
− arctan( |R|

rp
), x ≥ 0

−π
2
− arctan( |R|

rp
), x < 0

A different value of α is used to distinguish the two
possible paths over the same circle.
Figure 3a shows an example of the EKT applied to
a discrete set of points of a polygon. Each side of
the polygon is numbered to see how it transforms into
the EK-space, illustrated in Figure 3b. The angles
α ∈]α1, π − α1[ correspond to 0 < R < R1, whereas
the angles α ∈]α2,−π − α2[ result from 0 > R > R2.
The values of α = 0 and α = π correspond to both,
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Figure 3: a) Space to be transformed. b) EK-space.

the straight forward and backward paths respectively
along the x-axis.
The admissible paths to a point are represented as
straight lines in the EK-space, as if the robot were
free of kinematic constraints. Hence, the Euclidean
distance in this space adequately describes the real
distance from the robot to a point.
The Ego-Kinematic transformation is invertible. Once
a pair (d, α) ∈ EK-space is selected, it determines un-
equivocally a pair (x, y) ∈ IR2, and implicitly a θ ∈ S1,
see Equation ( 3). It is worth to stress that when a
value of α is fixed, a unique radius of turn is also fixed.

3.1 Forward Motion and Curvature
Constraints

We next give guidelines for extending the Ego-
Kinematic Transformation to be used for robots with
additional motion and curvature constraints. First we
consider the case of robots that can only perform for-
ward motion. Then, we analyze the case of vehicles
with curvature constraints, such as car-like robots.
The EKT transforms each point into parameters that
unequivocally define a path towards that point. So
far we have considered circular paths, where forward
and backward motion are allowed. Here, we use the
additional constraint of forbidding backward motion.
This is easily added to the EKT by imposing a sense
of direction when moving over a circle towards a given
point. Fig. 2 illustrates this idea. To reach (x1, y1) we
chose L′

1, instead of L1 that would be selected by the
standard EKT.
Let us suppose now that the system has a minimum
turning radius rmin (or a maximum curvature con-
straint γmax), the case of a car-like robot. This can
be easily incorporated in the EKT by the change of
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variable R′ = R − rmin, such that the space with
|R| < rmin is not transformed. (Since this region of
the space cannot be reached in the execution of a sin-
gle motion command, there is no need to transform
it).

4 Using the EK-space for Reac-
tive Navigation

We finally address the generation of collision-free mo-
tion for non-holonomic robots by using reactive navi-
gation methods.
Without taking the robot kinematic constraints into
account, the execution of the motion generated by a
reactive method is doomed to rely on some approx-
imations. Instead, we use the EK-space to represent
the robot kinematic constraints. Then, reactive meth-
ods, which are not designed for non-holonomic robots,
can be applied over the EK-space with full general-
ity, irrespective whether the method is formulated in
the Workspace or Configuration space. Finally, the
reactive method solution is transformed back to the
Workspace to calculate the motion command for the
robot.
At each sampling time T , the procedure to use the
EK-space is the following:

1. The obstacle information is reduced to points ex-
pressed in the robot’s frame of reference. If the
reactive method is defined over the Workspace W,
the EKT is directly applied to the obstacle points.
Otherwise, if the reactive method applies to the
Configuration space, we first have to build the C
obstacle region R1mc

obs as described in Section 2,
to use the EKT. In both cases the result is the
obstacle information expressed in the EK-space.

2. The reactive method is then applied in the EK-
space to compute the desired motion direction α.

3. A turning radius is calculated by R =
EKT−1(α). Finally, a motion command that
preserves this turning radius is obtained, having
v = ωR.

To demonstrate this methodology we have conducted
some experiments using two very different reactive
navigation methods, whose original formulation does
not take the kinematic constraints into account.
Firstly, we discuss the Nearness Diagram Navigation
[12], applied to the workspace and which allows for-
ward motion only. Secondly, we use a Potential Field
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Figure 4: a)Workspace . b)EK-space. c) Labmate robot.

d) Experiment.

Method [1], defined in the Configuration space and
allowing both forward and backward motion.
We remark that the results obtained are not bench
marked with other methods. This is motivated by the
fact that the scope of the paper is the spatial repre-
sentation, not the reactive method itself. The partic-
ular results are completely dependent on the reactive
method used and the specific implementation.

4.1 Nearness Diagram Navigation

The Nearness Diagram Navigation (ND) [12] is a reac-
tive navigation method that does not take into account
the kinematic constraints in its formulation.
The ND method is based on the situated-activity
methodology of design [13]. First, a set of five sit-
uations that fully describe the relative state of the
robot, obstacle distribution, and goal location are de-
fined. Subsequently, one action is designed for each
situation. In real-time the perception is used to iden-
tify the current situation, and the associated action is
executed, which generates the motion commands.
To identify the current situation, some high level infor-
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mation of the environment is searched: gaps, regions,
free walking areas. And some criteria are also applied:
a security criterion, a free walking area criterion, etc.
The individual action designs are based on a geomet-
rical implementation.
We next use the EK-space to apply the ND method
to robots with kinematic constraints.
At each sample period the following procedure is re-
peated:

1. The obstacle information in the Workspace (Fig.
4a) is transformed into the EK-space (Fig. 4b).

2. The ND method is applied in the EK-space to
calculate the most suitable motion direction α∗

(represented in Fig. 4b as the ND solution). In
Fig. 4b we also show some information used by
the ND to calculate the solution (the gaps, re-
gions, and the free walking area are also shown in
Fig. 4a).

3. This direction α∗ is transformed back to the
Workspace as a turning radius R∗ = EKT−1(α∗),
see Fig. 4a. Finally, a motion command that pre-
serves this turning radius is calculated.

We have tested our approach in a Labmate robot,
Fig 4c, to generate reactive collision-free motion. The
platform is a two-driving wheels robot with a square
geometry that we approximate by a circle due to ND
implementation requeriments. The main sensor is a
3D laser. Fig 4d shows an experiment where the robot
was safely driven towards the goal location - the only
information given a priori to the robot. The execution
time of the algorithm (construction of the EK-space
and reactive method usage) is around 150msec on a
100MHz microSun SparcII, which was adequate for
real time.

4.2 Potential Field Method

Potential Field Methods (PFM) [1] have been widely
used by many researchers, in spite of the fact that they
cannot be applied to non-holonomic robots.
The robot is considered as a particle in the Configura-
tion space, moving under the influence of an artificial
potential field. While the goal creates a potential that
attracts the particle, the obstacle information creates
a repulsive one. The motion is generated to follow the
direction of the artificial force induced by the sum of
the two potentials.
This framework cannot be used with non-holonomic
robots, because the gradient direction of the poten-
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Figure 5: (a) Workspace. (b) Reachable Obstacle Set of

a single motion command R1mc
obs induced by the robot’s

admissible paths and geometry. (c) EK-space. (d) Exper-

imental result.

tial does not preserve the non-holonomic constraint of
Equation (1). In other words, the potential structure
does not represent that not all differential motions are
allowed in the Configuration space.
Using the EK-space, we can apply the PFM to non-
holonomic robots, repeating the following procedure
at each sampling instant:

1. The obstacle points in the workspace, Fig. 5a, are
used to construct the C-obstacle region R1mc

obs in
the Reachable Set of a single Motion Command,
see Fig. 5b. Then, the EKT is applied to R1mc

obs ,
yielding the obstacle information in the EK-space,
which is illustrated in Fig. 5c.

2. The Potential Field Method is applied to the EK-
space to calculate the most promising direction
of motion α∗, represented in Fig. 5c as the PFM
solution.

3. This direction α∗ is transformed back to the
workspace as a turning radius (see Fig. 5a), de-
termined by R∗ = EKT−1(α∗). Finally a mo-
tion command that preserves this turning radius
is calculated.
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We also tested this procedure in the Labmate plat-
form. In this case the robot geometry is directly taken
into account due to the PFM formulation. We have
used the potential field functions proposed in [14].
Fig. 5d shows an experiment performed in the real
platform, showing how this method was able to drive
the constrained platform free of collisions to the goal
location - the only information given a priori to the
robot. The execution time of the algorithm (construc-
tion of the Reachable Set of a single Motion Com-
mand, EK-space and reactive method usage) is about
250msec, hence was well suite for real-time.

5 Conclusions

In this paper we have addressed the problem of ap-
plying reactive navigation methods to non-holonomic
robots.
Our approach to this problem is based on the idea of
using a representation of the space, that is consistent
with the motion constraints of a given vehicle. We call
this spatial representation the Ego-Kinematic Space.
We have defined the Ego-Kinematic Transformation
that maps the Euclidean space to the Ego Kinematic
Space, by taking the non-holonomic constraints of the
vehicle into account.
The advantage of using the Ego-Kinematic Space is
that reactive navigation methods can be directly ap-
plied to this space, and as a consequence, verify the
vehicle kinematic constraints without having to ad-
dress them explicitly. This methodology provides a
general solution to apply reactive navigation methods
to non-holonomic systems.
The Ego-Kinematic Space construction does not im-
pose a critical time penalty and it can be used in
real time. The Ego-Kinematic Transformation is a
bi-dimensional transformation, and the complexity of
the algorithm increase linearly with the number of ob-
stacle points considered to transform.
We have shown how the Ego-Kinematic Transforma-
tion can be used for many types of mobile platforms.
Moreover, the Ego-Kinematic transformation can map
either the Workspace or to the so-called Reachable Set
of a single Motion Command. Thus, it can be used
with a large number of reactive methods. We have
shown experiments with two reactive navigation meth-
ods that do not take into account the kinematic con-
straints. Making use of the EK-space, these methods
succeeded in driving a kinematicaly and geometrically
constrained platform towards a given location, while
avoiding collisions.
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