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Abstract— This paper proposes a multiple model method that
addresses the estimation of the EEG/MEG neural sources as
a multihypothesis, multidimensional and dynamic estimation
problem. The key aspect is the probabilistic integration of
several neural models to simultaneously estimate and integrate
the brain activity of different dynamic neural processes that
are characterized by the number of sources, the dynamic
of those sources and the initial conditions. The method was
validated with EEG data gathered in a protocol to elicit
error-related potentials, since there is evidence of the brain
region that generate those signals. The results reveal that
the proposed multiple model method is able to identify the
brain structure associated with error processing, which is a
preliminary indicator of the validity of the proposed method.

I. INTRODUCTION

Electroencephalography (EEG) and magnetoencephalog-
raphy (MEG) are non-invasive techniques that measure the
electrical activity of neurons in the brain with high temporal
resolution. However, interpretation of EEG and MEG signals
entails speculation of the brain active areas that generate
those signals. This leads to the EEG/MEG source localization
problem: to estimate the neural sources that generate the
EEG/MEG signals. This is an ill-posed problem since there
are infinite configurations of neural sources that consistently
could produce the EEG and MEG observations [1]. In
addition, depending on the cognitive tasks, the number of
brain active areas and their associated temporal dynamic
are continually changing. Therefore, the estimation of the
EEG/MEG neural sources could be seen as a multihypothe-
sis, multidimensional and dynamic estimation problem.

This paper proposes the Dynamo method, a multi-model
solution for the EEG/MEG source localization problem that
relies on the integration of many dynamic dipolar neural
models explaining multiple hypothesis of the brain activity.
A neural model is defined as an input-state-output dynamic
system that is characterized by the number of sources and
the underlying dynamic of those sources, which allows to
estimate a neural process within a recursive filter estimation
framework [2]. The underlying idea in the proposed multiple
model method is to assemble a bank of filters to simultane-
ously estimate and integrate the brain activity of different
dynamic dipolar neural processes. This provides two key
characteristics. First, the estimation of the neural sources
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is the probabilistic fusion of many available hypotheses.
Second, the simultaneous consideration of many different
neural models provides a straightforward way to deal with
the multidimensionality and the different dynamics of the
neural sources.

The method was validated with real EEG signals gathered
during the execution of an experimental protocol designed to
elicit error-related potentials, since there is evidence of the
brain region responsible for the generation of those potentials
[3], [4]. The results demonstrated that the method was able
to successfully localize the brain region associated with error
processing, which is a preliminary indicator of the validity
of the proposed method.

II. DYNAMIC MULTIPLE MODEL ESTIMATION OF
THE EEG/MEG NEURAL SOURCES

Let the EEG and MEG measurements at time t be Φt =
[ϕ1t ...ϕ

Nϕ

t ]T and bt = [b1t ...b
Nb
t ]T . Let the measurement

vector be mt = [Φt,bt]
T . Lets assume Ns dipolar sources

in the brain, which are characterized by the position rq ∈
ℜ3 and moment q ∈ ℜ3. The sources state is xt =
[r1q,q

1 . . . rNs
q ,qNs ]T , x ∈ ℜ6·Ns . The goal is to recursively

estimate xt and its associated covariance Pt given new
measurements mt. There are two physical systems involved
to solve this problem: (i) a state transition model which is
the linear random walk function with a zero-mean Gaussian
noise, and (ii) the measurement model which is linear with
respect to the moment but non-linear with respect to the
position and with a zero-mean Gaussian noise. For this
nonlinear and Gaussian system, the recursive estimation of
the neural sources leads to the Extended Kalman Filter
(EKF). Figure 1a shows a graphical representation of the
execution of the EKF algorithm for the estimation of the
EEG/MEG neural sources, which was introduced in [5]. The
intrinsic limitations of this framework are: (i) The number
of neural sources is fixed. (ii) A unique neural dynamic is
taken into account. (iii) The selection of the prior estimate of
the brain activity is fixed. In fact, these are the shortcomings
to address the present problem since it is multi-hypothesis,
multidimensional and with time-varying dynamic.

This paper addresses all these limitations in an unified
framework by the probabilistic integration of multiple neural
models. The method is illustrated in Figure 1b. The core idea
is a bank of r EKF filters (where {x,P}it|t is the sources
state and the covariance for the i-th filter) executed in parallel
estimating neural models with different number of sources,
dynamics and initial conditions, which represent different
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Fig. 1. (a) EKF estimation framework for a single neural model. (b)
Graphical representation of the Multiple Model Estimation framework.

hypotheses of the brain activity. The algorithm is executed in
three steps, (i) Interaction, (ii) Estimation, and (iii) Fusion.

A. Interaction Step

The objective in this step is to probabilistically mix
prior estimates to combine the information of all the filters
(Mixing), and to disjoin estimations that are explaining the
same hypothesis of the brain activity (Redundancy filtering).

1) Mixing: The prior mixed estimate for the i-th filter is
computed as a weighted combination of the prior estimates
given by all the filters:

xi
t−1|t−1 =

r∑
j=1

xj
t−1|t−1γ

j|i
t−1 (1)

P
i

t−1|t−1 =
∑r

j=1

[
Pj

t−1|t−1+(
xi
t−1|t−1 − xj

t−1|t−1

)
·(

xi
t−1|t−1 − xj

t−1|t−1

)T
]
γ
j|i
t−1

(2)

where Γi
t−1 = [γ

1|i
t−1, · · · , γ

r|i
t−1] is the mixing probability

vector for filter i which is defined in the previous estimation
step.

2) Redundancy Filtering: This is a random process that
re-initialize those filters that are estimating statistically sim-
ilar hypothesis of the brain activity. Lets consider the set
of prior mixed estimates

{
x,P

}1:r

t−1|t−1
. The Mahalanobis

distance between two of those estimations is defined as:

d2m|n =
(
xm
t−1|t−1 − xn

t−1|t−1

)T

·(
P

m

t−1|t−1 +P
n

t−1|t−1

)−1

·(
xm
t−1|t−1 − xn

t−1|t−1

) (3)

where m = 1, · · · , r and n = 1, · · · , r with m ̸= n. In
the case that d2m|n is lower than the inverse χ2 cumula-
tive distribution function up to a significance level, then,
both estimates are explaining statistically similar hypothesis.
Therefore, a random process re-initialize the filter with the
lower probability, e.g.:

x̂n
t−1|t−1 ∼ N (0,P0) ; P̂n

t−1|t−1 = P0 (4)

where P0 is a diagonal matrix whose elements are defined to
cover the brain, ensuring that the prior estimate falls within
the brain volume. Otherwise, both prior mixed estimates are
explaining different hypothesis.

B. Estimation Step

In this step the EKF filters run independently producing
their own estimation of the neural sources {x,P}it|t from
the prior estimate and the new available EEG/MEG mea-
surements mt. In addition, the belief of the estimation given
by each filter and the mixing probability are computed. On
the one hand, the belief of the bank of filters is repre-
sented as a state vector of posterior probabilities Ψt|t =
[ψ1

t|t, · · · , ψ
r
t|t]

T , which are normalized
∑r

i=1 ψ
i
t|t = 1. This

state vector of probabilities is recursively updated as:

Ψt|t = LtΨ
T
t|t−1 (5)

where Lt = [l1t , · · · , lrt ]T and lit = p(mt|xi
t|t) is the

likelihood function of the data given that the estimation
of the filter i is correct, which follows a normal distribu-
tion since the measurement noise is Gaussian. Furthermore,
Ψt|t−1 = [ψ1

t|t−1, · · · , ψ
r
t|t−1]

T is the predicted probability
vector defined as Ψt|t−1 = πΨt−1|t−1, where Ψt−1|t−1 =
[ψ1

t−1|t−1, · · · , ψ
r
t−1|t−1]

T is the prior probability state vec-
tor and π is a transition probability matrix kernel that follows
a homogeneous constant Markov process. The entry πji
represents the probability that at time t the selected filter
is i given that at time t−1 the selected filter had been j [6].

On the other hand, the mixing probability vector for filter
i is computed as:

γ
j|i
t =

πjiψ
j
t−1|t−1

ψi
t|t−1

, ∀ j = 1, ..., r (6)

which is used the next time instant in the interaction step.

C. Estimate Fusion

In this step, the multiple hypotheses are combined:

xt|t =

r∑
i=1

xi
t|tψ

i
t|t (7)

Pt|t =

r∑
i=1

[
Pi

t|t +
(
xt|t − xi

t|t

)(
xt|t − xi

t|t

)T
]
ψi

t|t (8)



Fig. 2. Grand difference averaged for all the subjects at channel FCz and
topography scalp maps in the EEG distribution at times 281 and 379 ms.

Notice that the final estimation {x,P}t|t is a weighted fusion
in terms of probabilities of the multiple hypotheses given by
the filters.

III. EXPERIMENTAL VALIDATION

A. Experimental protocol, instrumentation and implementa-
tion of the method

In order to assess the performance of the proposed method,
it was designed a neurophysiological protocol to evoke feed-
back error-related potentials (ErrP), since there is evidence
indicating that the main focus of neural activity is expected
to be mainly in the anterior cingulate cortex (ACC) [3]. The
feedback stimuli time-estimation protocol was followed [4].
The mental task was to estimate the duration of one second.
The subject indicates by pressing a button the end of the time
interval, and he/she receives a visual feedback that indicates
whether the estimated interval was correct or incorrect. A
visual feedback indicating incorrect performance elicits a
negative and next a positive peak that are measured mainly in
the electrodes situated over the midline, whose measurements
are much smaller if the visual feedback indicates correct
performance [7].

Five healthy male subjects participated in the experimental
sessions. For each participant 150 error trials and 150 correct
trials were evoked. EEG activity was recorded from 32 elec-
trodes arranged according to the 10/10 international system.
The ground electrode was positioned on the forehead and the
reference electrode was placed on the left earlobe. The EEG
was amplified, digitized with a sampling frequency of 256Hz,
power-line notch-filtered and bandpass-filtered between 0.5
and 60Hz. After the experimental sessions, the EEG signals
were average referenced and a time window of one second
was selected after the visual feedback stimulus onset. All
error and correct trials were then low pass filtered to 10Hz
with no phase shift. See [8] for further details.

The head was modeled by three-shell concentric spheres.
Radiuses were fixed to 86, 96 and 100mm and conductivities
were fixed to 0.33 S/m for brain and scalp and 0.0042
S/m for skull. The head model, the sources position and the
electrodes locations were defined in the coordinate system of
the realistic MNI head model. The multiple model method
was implemented with neural models of 1, 2 and 3 dipolar

(a)

(b)
Fig. 3. Neural sources estimated with the proposed multiple model method.
(a) At time 281 ms. (b) At time 379 ms.

sources (as stated in other studies, a maximum number of
three dipolar sources is sufficient to explain focalized brain
activations [9]) with 4, 8 and 16 EKF filters respectively.

B. Analysis and Results

The neural sources of the grand difference averaged for all
the subjects and for each subject individually were estimated
using the proposed method.

1) Neurophysiological process validation: The first objec-
tive was to determine whether feedback ErrP’s were elicited.
Figure 2 shows the grand average difference between error
and correct trials averaged for all the subjects at channel FCz.
The waveform reveals a negative deflexion at 281 ms and a
positive peak at 379 ms after the presentation of the feedback,
which indicates strong differences between error and correct
trials. These results point out that feedback ErrP’s are elicited
after the visual stimulus presentation. This figure also shows
the topography scalp maps at the occurrence of these two
peaks revealing focused fronto-central activity. This result
seems to indicate that the main focus of neural activity is
in a frontal-central structure of the brain, which agrees with
the results reported in [3] and [4].

2) Neural sources estimation: The neural sources respon-
sible for the generation of the grand average difference
potentials averaged for all the subjects were estimated with
the proposed method. Figure 3 shows the neural sources
estimated during the occurrence of the negative and positive
peaks showed above in figure 2. In both peaks two focus
of neural activity were estimated. One of the sources is
estimated in Brodmann area 24 that represents the anterior
cingulate. The estimation of this source is consistent with
previous studies of feedback ErrP’s [4]. Hence, these results
give evidence that Dynamo correctly estimates the focalized
brain active area associated with error processing. Further,
note also that in both peaks the additional source is estimated
in the deep brain (which also agrees with the results reported
in [4]), for the first negative peak in the occipital lobe
(visual processing center) and for the second positive peak
in the parahippocampal gyrus (associated with the encoding
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Fig. 4. Right top: waveforms of the grand average difference for all the subjects at channel FCz. Left top: number of the model with the highest probability
for all the subjects. Bottom: one of the estimated sources for all the subjects at some predefined time instants.

and recognition of scenes), which might suggest the mental
process related with the recognition of the visual feedback
cues. Importantly, although it have been stated that a single
dipole is sufficient to explain the focalized neural activity
underlying error processing [10], the estimation given by
the method could suggest that an additional neural system
is also active. This highlights one important characteristic of
the method, the number of sources is automatically estimated
allowing the estimations of several brain active areas.

3) Neural sources estimation across subjects: Figure 4
shows for all the subjects: (i) the waveforms of the grand
average difference at channel FCz (left top), (ii) one of the
estimated neural sources at predefined time instants (bottom),
and (iii) the model with the highest posterior probability
(right top). On the first hand, the estimated neural sources for
all the subjects are located quite similar, which indicates the
high robustness of the method across subjects. On the second
hand, the covariances are smaller at time instants when the
signals have large magnitude (e.g. 375 ms), although not
shown here in such cases the scalp distribution is highly
focalized. Nonetheless, the covariances are greater at time
instants when the signals have a small magnitude, in such
cases the scalp distribution is widespread (e.g. 258 ms). This
result point out an additional characteristic of the method that
is not available in traditional dipolar approaches: for those
cases when the brain activity is presumably distributed, the
uncertainty about the dipolar estimation increases revealing
that the interpretation of the brain active areas should be
taken with care. Finally, notice that for all the subjects the
model with the highest probability is changing along the
time, which indicates that models with different parameters
(e.g number of sources) are being selected. This result
explicitly shows the multi-model operation that highlights
the core of the method.

IV. CONCLUSIONS

This work describes a multi-model solution for the
EEG/MEG source localization problem that relies on the
integration of many dynamic dipolar neural models. This
provides several characteristics, (i) the consideration of dif-
ferent models allows to estimate various hypotheses of brain
activity (multihypothesis), (ii) a straightforward way to deal

with the natural changes in the number of active brain areas
(multidimensionality), (iii) the consideration of time-varying
dynamic in the neural sources (neural dynamic), and (iv) a
straightforward way to initialize the filters (multiple prior
estimates). Unlike some dipolar methods, this approach does
not to make prior assumptions about the number of active
sources. Furthermore, the method also automatically com-
putes the uncertainty matrix of the neural sources allowing
to infer whether those estimated sources are highly focalized
or not. The performance of the method was validated in real
settings with feedback ErrP’s. On the basis of the experi-
mental results, the method was able to successfully identify
not only the brain region underlying error processing, but
also brain regions related with the recognition and processing
of the visual feedback cues, which are activated during the
execution of the mental task.
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