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Abstract— This paper addresses the reactive collision avoid-
ance for robots that move in arduous environments (i.e. very
dense, complex and cluttered). To achieve this goal, the technique
simplifies the difficulty of the navigation by a divide and conquer
strategy, which is based on identifying navigational situations and
applying the corresponding motion laws. The state of the art in
reactive navigation still presents classic limitations such as the
trap situations due to U-shape obstacles, the difficulty to achieve
motion among very close obstacles, to obtain oscillation-free and
stable motion, to move over directions far from the goal direction
or towards the obstacles, or to tune the heuristic or internal
parameters. This paper presents a method that overcomes all
these limitations. As a result, navigation with this method is
successfully achieved in scenarios where existing techniques
present a high degree of difficulty to navigate. Outstanding
navigation results are reported using a wheelchair vehicle and a
discussion and comparison with existing techniques is provided.

I. INTRODUCTION

Currently, applications such as emergency response, trans-
portation, deminning, exploration, help care or ludic robots
yield the motion control to autonomous navigation systems.
The mobile devices, provided with these capabilities, greatly
improve their performance and the security of the potential
occupants or transported objects. Thus in mobile robotics, we
are carrying out a vast effort to improve the robustness of the
basic skills of the mobility task, since it is clear that they have
a large impact over the whole performance of the system.

The navigation systems work over the vehicles with full
autonomy or supervising the human operation. A good ex-
ample is a robotic wheelchair, which must support both
functionalities: complete autonomy (in high degrees of human
disability) or supervising the operator orders (in lower degrees
of disability). Furthermore, this vehicle requires motion in
unstructured, unknown and dynamic scenarios with a high
density of obstacles (e.g. moving among chairs, door traversal,
humans moving around etc). The navigation performance is
crucial for the normal development of this task (human trans-
portation). This paper focuses on the motion generation aspect,
which is the particular relevance here because collisions put in
risk the safety of the occupant and sudden motions lead to an
uncomfortable behavior. We present in this paper a technique
able to achieve this objective.

Classically, the motion planning problem is solved by com-
puting a geometrical trajectory avoiding known obstacles (see
[15] for a review of techniques). However, the general methods
for motion planning are not applicable if the environment is
dynamic with a priori unknown behavior, or if it is gradually
discovered. Moreover, when both the environment model and

robot motion are uncertain (as in the real world, because
of sensing inaccuracies) executing a theoretical geometric
trajectory is not realistic and the robot is doomed to collide
with obstacles. Hence, solving this problem involves sens-
ing directly within the motion planning and control loop.
Reactive navigation bridges the motion planning and control
loop incorporating the sensory information, thus dealing with
unknown and dynamic scenarios in a natural way. Thus, these
techniques provide a robust framework to tackle with the
mobility problem by taking into account the reality of the
environment during the motion.

The classic drawback of these reactive approaches is the
local trap situations, generally due to the motion between
two close obstacles or due to U-shape obstacles. In both situ-
ations, the Potential Field Methods [12], [14] produce potential
minima that trap the robot [13]. Similarly, the methods based
on polar histograms [6], [26], [27] present the difficulty to
navigate among close obstacles due to the tuning of a empirical
threshold that has to be modified when the obstacle density
changes. Traps due to the U-shape obstacles are not avoided by
the methods that use constrained optimizations [11], [23], [10].
This is because the optimization loses the information of the
environment structure necessary to solve these situations. The
methods based on a given path deformed in real-time [21], [8]
do not avoid traps when the path lies within U-shape obstacles
dynamically created. Recently, some approaches incorporate
the connectivity of the space (to avoid local traps) by applying
a path-planning algorithm within the control loop [7], [20],
[24], [22], [2]. However, these approaches require a large
computational load, and thus they difficulty scale to be used
in robotic applications with normal computational capabilities
or where the resources are shared with other processes.

Other difficulties of existing approaches are: (i) to compute
oscillation free motion (e.g. Potential Field Methods can
produce oscillatory motion between two close obstacles or
narrow corridors [13]), (ii) the selection of motion directions
far away from the goal direction. The reactive methods that
make a physical analogy use the goal location directly in the
motion heuristic (e.g. [12], [14], [25], [4], [3], [16]), and in
those that solve the problem with a constrained optimization
(e.g. [11], [23], [2], [10]) one of the balance terms is the goal
heading. Thus, with these methods, directions of motion far
away from the goal direction are difficult to obtain (in all
the situations where they are required). (iii) The selection
of motion directions towards the obstacles (some methods
explicitly prohibit these directions e.g. [26]). In addition,



another difficulty found in most of the collision avoidance
approaches is the tuning of the internal parameters, since
in many methods it is difficult to find the optimum values for
a good behavior in all the collision avoidance situations (e.g.
the relation among the forces in the Potential Field methods
[12], [14], [4], the internal threshold in the methods that use
a polar histogram [6], [26], [27], or the weights of the terms
in the methods that use constrained optimizations [11], [23]).

Easy-to-find obstacle configurations such as doors, corri-
dors, humans or tables and chairs forming a U-shape structure
could reveal some of the above mentioned limitations of the
existing techniques. In this case, a non desirable behavior
could be obtained seriously penalizing the task development.
We present in this paper a reactive method that overcomes
all these limitations. With this method, the trap situations due
to very close obstacles or U-shape obstacles are avoided, the
motion is oscillatory-free in narrow places, maneuvers that
require motion towards the obstacles or far away from the
goal direction are obtained when it is required, and there are
not heuristic or internal parameters to tune. The technique is
based on a “divide and conquer” strategy based on situations to
simplify the difficulty of the navigation. Next, specific actions
are implemented to each navigation context that allow to avoid
the above mentioned difficulties. This idea was previously
developed with the ND method [19]. Here, we extend the
situations with a new case and we reformulate all the motion
laws (leading to the ND+ method). We also discuss here
the outstanding navigation results obtained using a robotic
wheelchair, and we compare this method with other existing
approaches on the basis of the mentioned limitations.

II. THE “DIVIDE AND CONQUER” STRATEGY FOR
REACTIVE NAVIGATION

The situated-activity paradigm [1] is a design methodology
used to design behaviors in robotics. This paradigm is based
on defining a set of situations (exclusive and complete) and
on designing an action (to accomplish the task) associated
to each situation. In execution time, the perception and other
information relative to the task is used to identify one situation,
and the corresponding action is carried out.

Our idea is to design a reactive navigation method following
this paradigm. In general, these methods follow a perception
- action process repeated at a high rate: based on the sen-
sory information (perception) they compute the collision-free
motion command (action) to converge the robot towards the
destination. Fig. 2 outlines our reactive navigation method
design following the mentioned paradigm, that is, the set
of situations and the associated actions. The situations are
represented in such a way that only one is identified each time
based on the sensory information and the goal location. Next,
the corresponding action is carried out computing the motion
commands (that drive the vehicle towards the destination
whilst collisions are avoided). The motion is executed and
the process is resumed.

This scheme is a “divide and conquer” strategy based on
situations whose objective is to simplify the difficulty of the
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Fig. 1. (a) This Figure depicts the regions computed in a scenario full of
obstacles. (b) The configuration space of the previous scenario with some of
the tunnels to check whether a region is “navigable”.

navigation, because there is a division in navigation cases
(situations) with specific motion heuristics (actions) for each
case. The next Section describes the situations and the actions
of the reactive method.

III. THE REACTIVE COLLISION AVOIDANCE METHOD

We present in this Section the collision avoidance method
(ND+ method), assuming a circular and holonomic robot,
and the obstacle information available in the form of points
(usually the sensory information is given in this form, e.g.
laser sensors).

The reactive method works as follows: first, some inter-
mediate entities are identified from the sensory information
(described in Subsection III-A), which are used to select one
situation of a given set (presented in Subsection III-B). Then,
the associated action is carried out computing the motion
commands (described in Subsection III-C). Subsequently this
process is resumed.

A. The intermediate tools

The intermediate tools are devices that describe relations
among the entities of the reactive navigation problem: the
robot, the obstacles and the goal location.

Robot and obstacle relation. The first device is the security
zone used to discriminate whether an obstacle is dangerous
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Fig. 2. This Figure illustrates the reactive method design following the situated-activity paradigm. Using the sensory information, the robot location and the
destination, one situation is selected, and next, the associated action is executed computing the motion commands. Subsequently this process is resumed.

for the robot. We define this area with a security distance,
Ds, around the robot bounds. Fig. 1a depicts some obstacles
within the security zone in the right-hand side of the vehicle.

Robot and goal relation. The free walking area is a device
that relates both entities by means of the obstacle distribution
structure. To identify it we proceed as follows:

1) We look for discontinuities in the obstacle distribution:
(i) between two angular contiguous obstacle points
whose distance is greater than the robot diameter (e.g.
d1 and d2 in Fig. 1a), or (ii) between an obstacle point
and the absence of obstacles in the angular consecutive
correspondent (e.g. d3 . . . d6).

2) With two contiguous discontinuities we build a region
(e.g. Regions 1 . . . 3). Notice that this formulation avoids
to have regions within the U-shape obstacles (Fig. 1a).

3) We check whether the regions can be crossed by the
robot (the algorithm is described in [19]). As a result,
we know whether a region can be crossed by the robot
(e.g. Regions 1 and 2) or not (e.g. Region 3). In short,
this algorithm computes the existence of a path that joins
the robot location and significant points of the region in
a local portion of the configuration space (that we call
tunnel). For instance, in Fig 1b the tunnel that joins the
robot location and the point over d1 is not blocked (it
exist a path joining both configurations), thus Region 1
is “navigable”. However the tunnel of the point over d6

is blocked, and thus Region 3 cannot be crossed (notice
that the robot does not fit between the obstacles that
create this region).

4) Finally, we select the “navigable” region closest to the
goal location. We call this region the free walking area
(Region 1 in Fig. 1a).

Next, we use these tools to design the set of situations.

B. The situations
The objective here is to find a set of situations that: (i) fully

describe all possible obstacle configurations, and robot and
goal locations (the situation representation has to be complete),
(ii) given an obstacle configuration and a robot and goal
locations, there is only one situation that represents it (the
representation is also exclusive).

To fulfill both premises, we represent the situations using a
binary decision tree (Fig. 2). The inputs of the tree are the ob-
stacles (sensory information) and the robot and goal locations,
which allow us to identify one situation (output). The tree is
traversed using binary decision rules based on criteria that
depend on the inputs and their relations (intermediate tools,
previous Subsection). We describe next the five criteria:

Criterion 1: Safety criterion. The are two safety situations
depending on whether there are obstacles within the security
zone: (i) if there are not obstacles (High Safety, HS in Fig. 2),
see the upper figures of Fig. 3, or (ii) otherwise (Low Safety,
LS), see the bottom figures of Fig. 3.
There are three situations in High Safety (HS), see Fig. 2. We
obtain the first of them by applying the next criterion:

Criterion 2: Goal within the free walking area criterion.
1) High Safety Goal in Region (HSGR): The situation is

HSGR when there are not obstacles within the security
zone, and the goal location is within the free walking
area (Fig. 3).

If not, we obtain the next two situations by applying the
following criterion:

Criterion 3: Free walking area width criterion. To differ
between wide or narrow free walking area we use a fix angular
width.
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Fig. 3. This Figure shows examples of the situations and the actions.

2) High Safety Wide Region (HSWR): The situation is
HSWR if the free walking area is wide (Fig. 3).

3) High Safety Narrow Region (HSNR): The situation is
HSNR if the free walking area is narrow (Fig. 3).

There are three situations in Low Safety (LS), see Fig. 2. We
obtain the first of them by applying the next criterion:

Criterion 4: Goal within the free walking area criterion.
4) Low Safety Goal in Region (LSGR): The situation is

LSGR when there are obstacles within the security zone,
and the goal location is within the free walking area.

If not, we obtain the last two situations by applying the
following criterion:

Criterion 5: Dangerous obstacle distribution criterion.
5) Low Safety 1 side (LS1): The situation is LS1 when

there are obstacles within the security zone, but only on
one side of the discontinuity (closest to the goal) of the
free walking area (this discontinuity is θdisc in the LS1
figure of Fig. 3).

6) Low Safety 2 sides (LS2): The situation is LS2 when

there are obstacles within the security zone on the two
sides of the discontinuity (closest to the goal) of the
free walking area (this discontinuity is θdisc1 in the LS2
figure of Fig. 3).

This set of situations is exclusive and complete to cover all
the possibilities among the obstacle distribution and robot and
goal location. In other words, there is only one navigational
situation given an obstacle distribution, robot location and
destination. Once a situation is selected, the next step is to
execute the associated action to compute the motion. We
address the design of the actions in the next Subsection.

C. The actions

The actions associated to each situation compute the motion
commands to carry out the main task (avoid collisions whilst
moving the vehicle to the destination), but adapted to the
navigation context represented by each situation. Next, we
illustrate the computation of the motion direction, θsol in each
situation.



In High Safety there is no need to avoid obstacles, because
none of them is dangerous. The solutions drive the vehicle
towards the inside of the free walking area:

1) High Safety Goal in Region (HSGR): the direction
solution is to the goal location θsol = θgoal.

2) High Safety Wide Region (HSWR): the direction so-
lution drives the vehicle towards the side of the free
walking area (closest to the goal), plus a given angle to
prevent that the obstacle enters in the security zone.

θsol = θdisc ± α (1)

α = arcsin(
R + Ds

Ddisc
) (2)

where Ddisc and θdisc are the distance and direction of
the discontinuity (side of the free walking area). Notice
that α is the deviation that allows the robot to avoid that
the obstacle (that creates the discontinuity) enters in the
security zone.

3) High Safety Narrow Region (HSNR): the direction of
motion is to the central part of the free walking area:

θsol =
θdisc1 + θdisc2

2
(3)

where θdisc1 and θdisc2 are the directions of the discon-
tinuities (the sides of the free walking area).

In Low Safety there are risky obstacles to avoid. The solutions
drive the vehicle as it would be in High Safety but with some
additional terms that depend on the closer obstacles:

4) Low Safety Goal in Region (LSGR): the direction is
to the goal location (solution in HSGR) plus a deviation
that depends on the distance to the closest obstacle:

θsol = θgoal ± β (4)

β =
Ds − Dobs

Ds
.|(π + θobs) − θgoal| (5)

where Dobs and θobs are the distance (to the robot
bound) and the direction of the closest obstacle. The
angle β is proportional to the angle comprised between
the goal direction, θgoal, and the opposite direction to
the closest obstacle, π+θobs (complete avoidance of this
obstacle).

5) Low Safety 1 side (LS1): the direction is the same
that would be obtained in HSWR plus a deviation that
depends on the distance to the closest obstacle:

θsol = θdisc ± (α + γ) (6)

γ =
Ds − Dobs

Ds
.|(π + θobs) − |θdisc − α|| (7)

where α is given by Eq. (2) and the deviation γ is pro-
portional to the angle comprised between the direction
of the discontinuity θdisc minus α, and the opposite
direction to the closest obstacle.

6) Low Safety 2 sides (LS2): the direction is the same
that would be obtained in HSNR plus a deviation that
depends on the distances to the two closest obstacles:

θsol =
θdisc1 + θdisc2

2
± γ1 + γ2

2
(8)

where γ1 and γ2 by are given by Eq. (7) for the closest
obstacles on both sides of the discontinuity (closest to
the goal) of the free walking area. The deviation here is
the bisector of the deviations obtained for each obstacle
separately.

In summary, we have presented in this Section the design
of a reactive method that uses a “divide and conquer” strategy
based on situations. We have discussed the design of the situ-
ations and the corresponding motion laws in each navigation
case. In the next Section we show the experimental results.

IV. EXPERIMENTAL RESULTS

For experimentation, we used a commercial wheelchair that
we have equipped with two on-board computers, and with a
SICK laser. The vehicle is rectangular (1.2×0.7meters) with
two tractor wheels that work in differential-driven mode. We
set the maximum operational velocities to (vmax, wmax) =
(0.3 m

sec , 0.7 rd
sec ) due to the application context (human trans-

portation). The reactive method run at more than 2000Hz
on the on-board PentiumIII850Mhz. However, we reduced
this frequency to 5Hz (frequency of the laser) sleeping the
process in order to have a perception-action scheme.

Notice that we have presented the reactive method assuming
that the robot can move in any direction and it is circular.
In order to adapt this technique to the rectangular and non-
holonomic robot, we followed the solution proposed in [17]:
in a first step, the direction solution computed by the reactive
method is converted into commands that comply with the
kinematics and dynamics using a kinodynamic model of
the robot. Next, these commands are modified if collisions
appear due to the robot shape (rectangular here). As a result,
the commands computed tend to align the vehicle with the
instantaneous direction of motion whilst avoiding collisions.

We outline next three experiments carried out in unknown,
unstructured and dynamic office-type environment, where the
goal location was the only information provided in advance.

In the first experiment, the robot moved avoiding two large
U-shape structures (formed by furniture) to reach the goal
location (see a snapshot in Fig. 4a and the complete trajectory
and the laser points in Fig. 4d). First, the robot turned right-
hand to avoid the frontal U-shape structure, following motion
directions far away from the goal direction (some of these
directions differ in more than 90◦). Next, the vehicle moved
to the bottom part to cross the narrow corridor, whilst avoided
moving within the U-shape structure to the right-hand side.
Within the corridor the vehicle performed a smooth trajectory
without oscillations or any unstable behavior. Finally the vehi-
cle turned right-hand to reach the goal. During the experiment,
directions of motion towards obstacles were selected in almost
all the experiment, since the laser has a large field of view
(8meters) which was about the office size. The computational
load of the algorithm in each cycle was almost constant
(< 0.5msec), the experiment was accomplished in 68sec and
the velocity profiles are shown in Fig. 4g.

The next experiment was similar to the previous one but
with two added difficulties that converted the scenario in a
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Fig. 4. Experiments carried with a wheelchair vehicle in typical office enviroments.

particularly challenging one. The first one was that we opened
a narrow passage (Passage 1 in Fig. 4b) where the robot
did not fit in (in Fig. 4e it seems to be closed because it
is blurred due to the robot drift). On-line, the robot detected
that it did not fit in and moved to the right-hand avoiding
the large U-shape structure formed by the furniture and this
narrow passage. Notice that directions of motion far from
the goal direction were required to solve this situation. The
next difficulty was found in the central corridor, since it was
extremely narrowed (Passage 2 in Figs. 4b,e). Again on-line,
the vehicle detected that it was possible to cross this narrow
place and proceed to do it. While the vehicle was moving
within the corridor there was very little room to maneuver
(< 10cm on both sides). However, there were not oscillations
or unstable behaviors. Finally the robot reached the goal
location without collisions. The computational load of the
algorithm in each cycle was almost constant (< 0.5msec),

the experiment was accomplished in 125sec and the velocity
profiles are shown in Fig. 4h.

In the last experiment the vehicle was driven in the office but
with humans moving around (what converted the scenario in a
dynamic place) (Figs. 4c,f). In the first part of the experiment,
the vehicle maneuver to the right-hand to avoid the humans
that were moving towards the table on the left-hand. Then, it
was checked that the vehicle fitted in the very narrow passage
(the same size of the previous experiment) and thus proceed
to cross it. Finally other humans hindered the vehicle motion
at the exit of the passage. However, collisions were avoided
with smooth motions (see the velocities profiles, Fig. 4i) until
the vehicle reached the goal location. The experiment was
accomplished in 88sec.



V. DISCUSSION

We discuss next the advantages of this method with respect
to existing techniques on the basis of the difficulties and
limitations mentioned in Section I, some questions about the
method design and the portability among different vehicles
and sensors.

The local trap situations due to U-shape obstacles or due
to the motion among close obstacles are overcome with this
method. The vehicle avoids entering and getting trapped within
U-shape obstacles because there are no regions within these
structures, and thus these areas are not selected for motion.
Fig. 1a depicts this situation, where there is not region within
the U-shape obstacle located between the vehicle and the goal.
Thus, these situations are avoided in a natural way. In the
beginning of the first two experiments the vehicle avoided
the large U-shape structures moving to the right-hand side,
since the free walking area was located in this direction. On
the other hand, there is no difficulty to move among very
close obstacles because: (i) the possibility of whether the
vehicle fits is checked with the free walking area (see e.g.
how Passage 1 is not selected for motion and the vehicle
proceed through Passage 2 in Fig. 4b,e), and (ii) the action
in this situation (LS2) centers the vehicle among the closest
obstacles, that “a priori” is the safest motion (notice how the
vehicle navigated within the narrow Passage 2 in Fig. 4b,e).
Furthermore, when moving among very close obstacles we
observed motion free of oscillations or unstabilities (see the
smooth paths generated in Figs. 4d,e,f and the velocity profiles
of the experiments Figs. 4g,h,i).

With this method, the selection of directions far away
from the goal direction when required is not a problem. This
is because the goal direction is only used in two of the six
situations (both when the goal is within the free walking area),
which do not exhibit any difficulty. Furthermore, any deviation
from the goal direction can be obtained with this method.
This property was determinant to successfully accomplish the
experiments. For example in the first two experiments, the
only way to reach the goal was to move right-hand that implies
directions far from the goal direction. In addition, in the action
formulation of the method nothing prohibits the selection of
directions of motion towards the obstacles, thus they were
selected during all the experiments almost every time. This
is because the laser has a field of view of 8 meters and thus
moving forward implies to move towards obstacles. However,
this issue was critical when moving in narrow corridors,
because sometimes only this type of directions allows to move
safely.

There are not internal parameters with this method. Only
the security distance has to be set with a coherent value that
we chose (Ds = 0.75m the shorter side of the vehicle), and
the width of the free walking area (90◦).

We have seen how this method overcomes the limitations
and problems of previous works, which leads to the outstand-
ing results obtained in scenarios that remain very troublesome
for existing techniques. On the other hand, there are still

some open questions regarding the method design, such as (i)
how continuous is the motion among the transitions between
situations, and (ii) the implications of the computational load.

The changes in the direction of motion in the transition
between situations are smooth because, working at a high rate,
the structure of the scenario and the robot location do not have
significant changes, and as the situation and the corresponding
action are computed based on these variables, changes in direc-
tion are also smooth. Furthermore, the actions are continuous
between the common transitions among the situations
(HSGR⇐⇒LSGR or HSWR⇐⇒LS1 or HSNR⇐⇒LS2). For
instance a typical situation is when the robot is navigating
in HSGR situation, then the direction of motion is towards
the goal location (Fig. 3). Then, if an obstacle shows up in
the security zone the situation turns to be LSGR, and thus
there is a deviation from the goal direction in proportion
of how close is the obstacle from the robot (Fig. 3). This
deviation is applied until the security zone is cleared and the
situation turns to be HSGR again resuming the motion towards
the goal. This resulted in a smooth motion since the HSGR
and LSGR actions are continuous. Similar conclusions derive
for HSWR⇐⇒LS1 or HSNR⇐⇒LS2 actions (Fig. 3). This
is illustrated in the smooth velocity profiles obtained in the
real experiments (Figs. 3g,h,i), which in addition rely on a
comfortable motion with the wheelchair.

Another remaining point is the computational load because
it sets the reactivity of the system. The execution time of
the reactive method was less than 0.5msec (Figs. 4g,h,i)
on a PentiumIII850Mhz. In other words, once a new
sensor reading is available, in less than 0.5msec there is a
motion command ready to be executed (thus the reaction
is immediate). Furthermore, another advantage is that the
processor is free the majority of the time (the reactive method
consumes < 2.5%), and then it could be employed by other
modules that require higher computational loads (e.g. path
planning, simultaneous location and map building, supervisors,
etc). These experiments illustrate the advantage of using these
techniques in unknown and dynamic places, where the sensory
information is collected and the motion rapidly computed
to react to the change. Notice that using other techniques
that require higher computational loads (e.g. path planning
methods) do not have these benefits, and thus they have a
limited applicability in such circumstances.

An important issue is the method usage in different vehicles.
In this paper we have adopted the solution proposed in [17],
that allows to convert a direction of motion to commands that
comply with the shape, kinematic and dynamic constraints of
a given vehicle. This procedure is based on a kinodynamic
model, and it has been followed to use a reactive method in
robots of different laboratories (five indoor and one outdoor
robots). Similarly, this procedure could be followed to install
the method in other vehicle (easy portability). Recently, it has
been proposed a solution to adapt reactive navigation methods
to vehicles that exhibit non circular shapes, and kinematic and
dynamic constraints [18]. This technique is based on a spatial
representation that abstracts the vehicle characteristics from



the reactive method. As a result, when the reactive methods
are used over this spatial representation (abstraction layer) the
motions comply with all these issues. This solution could also
be adopted here. Finally, very linked with the vehicles are the
on-board sensors. We have presented the method abstracted
from the sensor to achieve the maximum generality. Thus,
issues as the sensor noise have not been addressed. This is
because we believe that external modules should process the
sensory information in order to deal with noisy sensors (e.g.
[5], [9]). However, strategies such as increasing the security
distance according to the sensor uncertainty could be designed.

VI. CONCLUSIONS

This paper presents a reactive collision avoidance method
that simplifies the difficulty of the navigation by a divide and
conquer strategy, which is based on identifying a navigation
situation and applying the corresponding motion heuristic.
This type of idea was previously proposed in [19] by means
of the design of a reactive method in symbolic level, in such
a way that reactive methods are implemented following these
design guidelines. The reactive method presented in this paper
extends the situation definition and proposes a design of the
actions to have continuity among them.

The advantage of the proposed technique is that it avoids
the common limitations identified in existing techniques, thus
it significantly overcomes the results obtained with other
methods. Although this is the advantage of the method, another
key point is the simplicity. Taking a look to Fig. 3 one can
devise how simple is the method formulation and thus the
real implementation. Furthermore, similar methods have been
straightforward extended to different vehicles using the same
solution adopted here. Thus, the authors think that it might also
be direct to use this technique in other platforms (portability).

The usage of this method does not avoid the problems
inherent to the local nature of reactive navigation methods:
the global trap situations persist. This issue is far beyond
the scope of this work, however, this method could be used
together with techniques that aim to increase the locality of
reactive methods, such as those described in [27], [7], [20],
[24]. Then, these undesirable situations would be mitigated.
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