
Performance Analysis of Apache Storm Applications using Stochastic Petri Nets

J. I. Requeno and J. Merseguer

Dpto. de Informática e Ing. de Sistemas
Universidad de Zaragoza, Spain

{nrequeno, jmerse}@unizar.es

S. Bernardi

Centro Universitario de la Defensa
AGM, Spain

simonab@unizar.es

Abstract—Real-time data-processing applications, such as
those developed using Apache Storm, need to address highly
demanding performance requirements. Engineers should assess
these performance requirements while they configure their
Storm designs to specific execution contexts, i.e., multi-user
private or public cloud infrastructures. To this end, we propose
a quality-driven framework for Apache Storm, that covers the
following steps. The design with UML, using a novel profile for
Apache Storm, allowing performance metrics definition. The
transformation of the design into a performance model, con-
cretely stochastic Petri nets. Last but not least, the simulation
of the performance model and the retrieval of performance
results.

Keywords-Apache Storm; Performance analysis; Petri net;

I. INTRODUCTION

The Apache Storm technology [1] is currently used by

a large number of companies and products, such as in

Twitter, Yahoo! or Flipboard. Storm helps for improving

real-time analysis, the customization of searches, news and

advertisements, and the optimization of a wide range of

online services that require low-latency processing. Appli-

cations developed using the Storm technology are then very

demanding in terms of performance and, definitely, they are

also highly customizable by parameters that greatly impact

their end to end performance.

A Capgemini research [2] shows that only 13% of orga-

nizations have achieved full-scale production for their Big

Data applications. As a Big Data technology, the case of

Storm is not different, we could even say that it is worse

due to the youthfulness of the technology. Thus, there is now

an urgent need for novel, performance oriented, software

engineering methodologies and tools capable of dealing with

the complexity of such a new environment.

In this paper, we present an approach for performance

assessment of Apache Storm applications. In particular, we

offer a modeling approach and a novel UML profile for

a better performance characterization of a Storm design.

We define transformations for these UML Storm designs

into suitable models that are used for performance analysis,

concretely stochastic Petri nets.

Our approach, with its corresponding tools and for-

malisms, can be applied to predict the behaviour of the

application for future demands or to study the impact, in

some performance parameters (e.g., response time, through-

put or utilization), of highly varying workloads. Besides, the

detection of performance bottlenecks using formal methods

can be more effective and easier than in a real-world testbed.

On the modeling side, the profiled-UML allows to work with

the Apache Storm performance parameters in the very same

model used for the workflow and deployment definitions.

Moreover, the developer takes advantage of all the facilities

provided by a UML software development environment.

These reasons recommend the UML modeling, instead of

doing it directly with the stochastic Petri net, that can be

merely obtained by transformation.

Several approaches have been already presented in the

literature for the modeling and performance assessment of

stream applications [3], [4] or big data platforms [5], [6].

Some of these studies use variants of Petri nets, and they

are applied in a generic context for stream processing [4]

or distributed systems [7], [8]. Definitely, to the best of

our knowledge, this is the first work devoted to the Apache

Storm performance evaluation using formal methods.

The rest of the paper is organized as follows. Section II

presents the basics on Apache Storm, focussing on the

parameters that mainly affect the performance of an ap-

plication. Section III presents our performance modeling

approach for Apache Storm applications. Section IV details

the transformation to get a performance model out of a

Storm design. Section V is devoted to the validation of

the approach. Finally, Section VI draws a conclusion and

presents future work.

II. STORM AND PERFORMANCE

Storm is a distributed real-time computation system for

processing large volumes of high-velocity data [1]. A Storm

application is usually designed as a directed acyclic graph

(DAG) whose nodes are the points where the information is

generated or processed, and the edges define the connections
for the transmission of data from one node to another. Two

classes of nodes are considered in the topology. On the one

hand, spouts are sources of information that inject streams
of data into the topology at a certain rate. On the other hand,

bolts elaborate input data and produce results which, in turn,

are emitted towards other bolts of the topology. The notions

of tuples and messages are equivalent. By default, a Storm

2017 IEEE International Conference on Information Reuse and Integration

978-0-7695-6243-8/17 $31.00 © 2017 IEEE

DOI 10.1109/IRI.2017.64

411

2017 IEEE International Conference on Information Reuse and Integration (IRI)

978-1-5386-1562-1/17 $31.00 © 2017 IEEE

DOI 10.1109/IRI.2017.64

411

2017 IEEE International Conference on Information Reuse and Integration

978-1-5386-1562-1/17 $31.00 © 2017 IEEE

DOI 10.1109/IRI.2017.64

411

application runs indefinitely until killed. Figure 1 represents

the DAG of a Storm application made of two spouts and

three bolts in a pipeline layout.

spout_1

spout_2

weight=5
grouping=all

bolt_1

bolt_2

parallelism=2
synchronous

parallelism=2
asynchronous

bolt_3

weight=5
grouping=shu e

weight=5
grouping=shu e

Figure 1. A Storm Application

A bolt is a generic processing component that requires n
tuples for producing m results. This asymmetry is captured

by the weights in the arcs of the DAG. They represent the

number of tuples the next bolt requires for emitting a new

message. Besides, different synchronization policies shall be

considered. A bolt receiving messages from two or more

sources can select to either a) progress, if at least a tuple

from any of the sources is available (asynchronously), or b)
wait for a message from all the sources (synchronously).
A Storm application is also configurable by the paral-

lelism of the nodes, the stream grouping and the scheduling.

The parallelism specifies the number of concurrent threads

executing the same task (spout or bolt). The stream grouping
determines the way a message is propagated to and handled

by the receiving nodes. By default, a message is broadcasted

to every successor of the current node. Once the message

arrives to a bolt, it is either redirected randomly to any of

the multiple internal threads (shuffle), copied to all of them

(all) or copied to a specific subset of threads according to

some criteria (e.g, field, global, etc.).
Finally, the Storm scheduling algorithm deploys statically

the spouts and bolts to the computational resources of

the cluster, at the beginning of the execution. Complex

schedulers may take into account the available computational

resources and the software requirements (memory and CPU

consumption) for defining an optimal distribution of the

tasks.

In summary, a Storm framework is highly configurable by

various parameters that will influence the final performance

of the application (see Table I).

III. MODELLING STORM APPLICATIONS WITH UML

Our modelling approach for Storm applications is oriented

to performance evaluation and, initially, it uses UML dia-

grams. At least, we need to model the Storm topology, i.e.,

the DAG, the performance parameters already identified in

Section II and the deployment. Therefore, we will work with

activity diagrams complemented with deployment diagrams.

Table I
STORM CONCEPTS FOR PERFORMANCE

Concept Meaning
1. Spout (task) Source of information
2. Rate No. of tuples per unit of time

produced by a spout
3. Bolt (task) Data elaboration
4. Weight No. of tuples required by a bolt
5. Asynchronous The bolt progresses when at least

policy one input tuple is available
6. Synchronous The bolt progresses when all input

policy tuples are available
7. Parallelism No. of concurrent threads per task
8. Grouping Tuple propagation policy (e.g., all)
9. Scheduling Deployment of tasks

A. UML Diagrams for Storm

Figure 2 shows the UML activity diagram for the example

of the Storm topology in Figure 1. A UML activity diagram

for Storm will always start with a set of initial nodes

connected to the spout tasks because they are the sources of

information responsible of inserting tuples in the topology.

The rest of the tasks (i.e., bolts) will follow according

to the Storm synchronization policy declared for them. In

particular, when a given bolt is declared as synchronous then
we collapse all its incoming edges into a join node (bar).

See, for example, bolt_1 in Figure 2 that was declared as

synchronous in Figure 1. This means that bolt_1 will not

progress until all incoming tuples are ready. When, instead, a

bolt is asynchronous then we collapse all its incoming edges

into a merge node (diamond). See, for example, bolt_2 in

Figure 2 that was declared as asynchronous in Figure 1.

This means that bolt_2 will progress when the very first

tuple arrives.

In our approach, a UML activity diagram is interpreted

as the DAG of a particular Storm topology. The semantic is

different from the standard one of a UML activity diagram.

In our case, the actions (rounded rectangles representing

spouts and bolts) are tasks that continuously process streams

according to the characteristics of the Storm technology. The

standard UML semantic considers the actions as tasks that

finalize once they have processed the input data. Besides, the

arcs connecting activities do not represent a logical succes-

sion of actions, as in standard UML, but a communication

channel between two tasks (i.e., spouts and/or bolts).

B. A UML Profile for Storm

Once the Storm topology and synchronization policies

have been represented, we still need to address the rest

of concepts in Table I. We decided to convert them into

stereotypes and tags, which are the extension mechanisms

offered by UML. Therefore, we devised a UML profile

for Storm. A UML profile is a set of stereotypes that can

be applied to UML model elements for extending their

semantics [9], [10]. In our case, we are extending UML

with the Storm concepts that impact on performance.

412412412

Figure 2. An Activity Diagram for Storm with Profile Annotations

Figure 3. A Deployment Diagram for Storm

The Storm profile heavily relies on the standard MARTE

profile [11]. This is because MARTE offers the GQAM

sub-profile, a complete framework for quantitative analysis,

which is indeed specialized for performance analysis, then

perfectly matching to our purposes. Moreover, MARTE

offers the NFPs and VSL sub-profiles. The NFP sub-profile

aims to describe the non-functional properties of a system,

performance in our case. The latter, the VSL sub-profile,

provides a concrete textual language for specifying the

values of metrics, constraints, properties, and parameters

related to performance, in our particular case.

VSL expressions are used in Storm-profiled models with

two main goals: (i) to specify the input parameters of the

model and (ii) to specify the performance metric(s) that will

be computed for the model (i.e., the output results). An

example of a VSL expression for a host demand tagged

value of type NFP_Duration is:

expr=$b1, unit=ms, statQ=mean, source=est

(1) (2) (3) (4)

This expression specifies that bolt_1 in Figure 2 demands

$b1 (1) milliseconds (2) of processing time, whose mean

value (3) will be obtained from an estimation in the real

system (4). $b1 is a variable that can be set with concrete

values during the analysis of the model.

Another interesting VSL expression is the definition of

the performance metric to be calculated, the utilization in

the example of Figure 2 :

expr=$use, unit=%, statQ=mean, source=calc

(1) (2) (3) (4)

This expression specifies that we want to calculate (4) the

utilization, as a percentage of time (2), of the whole

413413413

system or a specific resource, whose mean value (3) will be

assigned to variable $use (1). Such a value is obviously

obtained from the performance model.

On the other hand, the nodes (actions, joins and merges)

in the UML activity diagram are grouped by partitions (e.g.,

Partition1 and Partition2, in Figure 2). Each partition is

mapped to a computational resource in the UML deployment

diagram following the scheduling policy defined for the

topology. Figure 3 shows the deployment diagram, which

complements the previous activity diagram. Each computa-

tional resource is stereotyped as GaExecHost and defines its

resource multiplicity, i.e., number of cores. The deployment

also allows one to know which messages exchanged by

tasks can introduce network delays, i.e., tuples exchanged

between cores in different physical machines, which is of

importance for the eventual performance model. Therefore,

we use the GaCommHost stereotype. Both stereotypes are

inherited from MARTE GQAM.

Apart from the two aforementioned stereotypes, the

Storm profile also provides genuine stereotypes (see Ta-

ble II) for representing those parameters not already ad-

dressed, i.e., concepts 1–4, 7 and 8 in Table I. Bolts
and spouts have independent stereotypes because they are

conceptually different, however they both inherit from

MARTE::GQAM::GaStep stereotype since they are com-

putational steps. Moreover, they share the parallelism, or

number of concurrent threads executing the task, which is

specified by the tag parallelism. On the other hand, the

spouts add the tag avgEmitRate, which represents the

rate at which the spout produces tuples. Finally, the bolts

use the hostDemand tag from GaStep for defining the task

execution time.

The Storm concept of stream is captured by the Storm-
StreamStep stereotype. It also inherits from the MARTE::

GQAM::GaStep stereotype, which enables to apply it to the

control flow arcs of the activity diagram. The stereotype has

three tags: numTuples and grouping match the weight
and grouping concepts, respectively; the probFields is

an array of reals that is used when the type of grouping
is equal to field. The array specifies the probabilities pi that a
message, transmitted through the StormStreamStep, arrives
to the threads ti of the target bolt. The value of pi can

be obtained at runtime experimentally, i.e., by tracing the

messages grouped by the bolt thread.

IV. TRANSFORMATION OF THE UML DESIGN

For evaluation of the already defined metrics (e.g., utiliza-

tion or throughput), we need to transform the Storm design

into a performance model. We choose as target performance

model Generalized Stochastic Petri Nets (GSPN) [12]. Petri

nets are suitable for modelling software systems (see Ap-

pendix VII). In the following, we propose a set of original

transformation patterns; each pattern takes as input a part

of the Storm design and produces a GSPN subnet. These

Table II
STORM PROFILE EXTENSIONS

Storm Stereotype Tag
concept

Bolt �StormBolt�
Exec. Time hostDemand
Spout �StormSpout�
Rate avgEmitRate
Parallelism parallelism

Stream �StormStreamStep�
Weight numTuples
Grouping grouping

probFields
Scheduling �GaExecHost� resMult
Partition

�GaCommHost� capacity

patterns have been used to implement a model-to-model

transformation (M2M) [13] that automatically generates

the GSPN model. The correctness and compositionality of

the transformation patterns are validated experimentally in

Section V.

A. Activity Diagram Transformation

Figures 4–5 show the patterns for the activity and deploy-

ment diagrams. For each figure, the left hand side presents

the input of the pattern, i.e., the UML model elements,

possibly stereotyped with the Storm profile. The right hand

side indicates the corresponding GSPN subnet. For an easier

understanding of the transformation, we depicted: a) text in

bold to match input and output elements; b) interfaces with

other patterns as dotted grey elements, because they actually

do not belong to the pattern.

Patterns P1 and P2 map spout and bolt tasks, respectively.

Both spout and bolt subnets become structurally similar

when the bolt subnet is merged with a P3–P5 pattern.

The subnet consists of two places, a timed transition, an

immediate transition, and a set of arcs. Places pA1 and pA2

represent, respectively, the idle state and the processing state

of incoming messages. The place pA1 is marked with as

many tokens as the parallelism tagged-value associated to

the task denotes ($n0). The rate of the timed transition is

equal to either the emission rate ($rate) of the spout or

the inverse of the host demand of the bolt (1/ $time). The
timed transitions have an infinite server semantics because

the production of tuples is already constrained by the number

of available threads (tokens) defined by the parallelism.

The immediate transition in the spout subnet does not have

source places because it models the continuous arrival of

new messages.

Patterns P3, P4 and P5 map the reception of a stream of

tuples by a bolt. In P3 the source of the stream is only one

task, whereas in P4 and P5 there are multiple sources. In

particular, the pattern P4 represents the synchronous case

and the pattern P5 is the asynchronous one. In P3–P5
subnets, the interface transition tA refers to the transition

414414414

P1

P3

P4

P5

P6

P7

A B

A

C

B

A

«StormSpout»
avgEmitRate=
(expr=$rate, unit=Hz,
source=est, statQ=mean)
parallelism=$n0

P2

«StormBolt»
hostDemand=
(expr=$time, unit=s,
source=est, statQ=mean)
parallelism=$n0

A

D
ep

lo
ym

en
t

A
ct

iv
ity

Node(R)

A

«GaExecHost»
resMult=
(expr=$size)

UML PATTERN PETRI NET PATTERN

A

Partition(R)

A1M(p)=$n0pA1

tA

r(tA)=$rate

pA2

A1M(p)=$n0

tA

r(tA)=1/$time

pA1

pA2

tA
pB2

B1M(p)=$n0

pB1

tA

tB

C1M(p)=$n0

pC2

pC1

tA

tA

tB

pC1

C1M(p)=$n0

pC2

M(p)=$size
R

tA

pA2

pA1

pR

A1M(p)=$n0

A

B

C

A

Figure 4. Transformation Patterns for Storm I

in P2 with the same name. Pattern P6 maps the final node

to a transition without output places. This is a sink transition

that represents the end of the stream processing and could

potentially act as interface with subsequent systems (i.e.,

injecting tuples in another Storm application).

Patterns P8–P11 detail the transformation of the numTu-
ples and grouping tagged-values of a given stream step.

Therefore, these patterns refine patterns P3, P4 and P5.
The numTuples indicates the number of input tuples that

the receiving bolt requires for producing a message. Then,

such a value is mapped to the weight of the arcs a2 (P8
subnet), a1 (P9–P10 subnets), and ai (P11 subnet).

Additionally, the grouping defines how the stream should

be partitioned among the next bolt’s threads. If the grouping

is set to all, every thread of the receiving bolt will process

a copy of the tuple, then the weight of the arc a1 in the

GSPN subnet is equal to the parallelism of the bolt B (P8).
Otherwise, only one thread of the receiving bolt will process

the tuple, therefore, the weight will be set to the default value

(i.e., 1). If the grouping policy is shuffle, the target execution
thread of B is selected randomly among the idle ones (P9).
In the case of global policy, the entire stream goes to the

bolt’s thread with the lowest id (P10). The initial marking

of place pBG, in the GSPN subnet, is set to a single token

for restricting the access to just one thread. Finally, the field
grouping policy divides the outgoing stream of A by value

(P11) and all the messages having the same value are sent

to the same threads of the receiving bolt. The transformation

creates a GSPN subnet with n basic subnets, where n is the

number of different stream values. This number is limited by

the number of parallel threads (parallelism tagged-value) in

B. When an incoming message arrives to the receiving bolt,

it is redirected to one of the basic subnets according to the

probabilities $probi assigned to the immediate transitions

tB1i .

The rest of the Apache Storm grouping policies are not

considered neither by the Profile nor the transformation

yet. They are variants of the previous ones and both the

profile and the transformation can be adapted accordingly.

For instance, the partial key grouping is a field grouping

that balances the stream load between two downstream tasks

instead of a single one. The local and none groupings

are equivalent to a shuffle grouping, but they prioritize

stream connections among spouts and bolts inside the same

computational node. Finally, the direct grouping specifies an

explicit connection between threads of A and B.

B. Deployment Diagram Transformation

Pattern P7 (Figure 4) illustrates the modifications intro-

duced in the GSPN model by the profile extensions in the

deployment diagram. The Storm tasks are first logically

grouped into partitions in the activity diagram, later they

are deployed as artifacts and mapped to physical execution

nodes (GaExecHost stereotype) in the deployment diagram.

In particular, P7 maps the GaExecHost to a new place pR in

the GSPN, with an initial marking that represents the number

of computational cores of the node (resMult tagged-value).
The addition of such place restricts the logical concurrency,

that is the number of threads of the Storm tasks, to the

number of available cores. The pattern corresponds to the

acquire/release operations of the cores by the spouts and

bolts.

C. Performance Model and Implementation

Figure 6 shows the final GSPN model for the Storm design

in Figures 2 and 3. It has been obtained by applying the

patterns and combining the subnets through the interfaces.

The image of the GSPN model has been simplified for

readability purposes.

415415415

PETRI NET PATTERN
P8

P9

UML PATTERN

«StormStreamStep»
numTuples=$n1
grouping=all

A B

«StormStreamStep»
numTuples=$n1
grouping=shuffle

A B

«StormStreamStep»
numTuples=$n1
grouping=global

A B

P11

«StormStreamStep»
numTuples=$n1

probFields=
$prob1 n,...,$prob

grouping= eld

A B

B1M(p)=$n0

pB2

pB1

a2

tA

a1

W(a)=$n12

W(a)=B.parallelism1

W(a)=$n11

B1M(p)=$n0

pB2

pB1

a1

tA

pBG2

pB1

tBG

BG1M(p)=1BG1p

r(tBG)=r(tB)
a1

tA

W(a)=$n11

B1M(p)=$n0

a1

W(a)=$n1i

Prob(tB1_i)=$probi

tA

an

pB1

B1_iM(p)=$n0/n

tB2_1

B1_1p

pB2_1

r(tB2_i)=r(tB)

tB1_1

tB2_n
pB2_n

B1_np

tB1_n

P10

][

Figure 5. Transformation Patterns for Storm II

The spout_1 has parallelism $n0 and the spout_2 has

parallelism $n1. The bolt_1 requires $nS6 messages from

spout_1 and $nS5 messages from spout_2 with all grouping
policy. The bolt_2 requires $nS1 messages from spout_1 or

$nS2 messages from spout_2 with shuffle grouping policy.

Finally, the bolt_3 requires $nS3 messages from bolt_1 or

$nS4 messages from bolt_2 with shuffle grouping policy.

The Storm profile, the transformation patterns, and the

evaluation of performance metrics have been implemented

for the Papyrus Modelling environment in Eclipse. In par-

ticular, they are completely integrated within the DICE

Simulation plugin for Eclipse.

The transformation of the UML models to stochastic Petri

nets, as well as the evaluation of the performance metrics,

are fully automatized and they are transparent to the end

user. Firstly, the transformation uses QVT-MOF 2.0 [14] to

obtain a Petri Net Markup Language file (PNML) [15], an

ISO standard for XML-based interchange format for Petri

nets. A trace file is created during the M2M transformation.

This file links the elements of the Petri net with the source

components of the UML. It helps for the identification of the

items in the Petri net that the tool needs to inspect during the

performance analysis. Later on, Acceleo [16] has been used

to implement a model-to-text (M2T) transformation from

PNML into a GSPN tool specific format, concretely for the

GreatSPN tool [17].

The UML Profile for Storm is published inside the

DICE Profile [9] and can be downloaded from [18]. The

transformation of UML profiled models into Petri nets is

implemented in the DICE Simulation tool [19]. The code

of the transformation and the DICE Simulation tool are

publicly available. They can be downloaded from [20].

spout_1
$n0

$sp1
$nS6$n4

$n4

$n2$n1

spout_2

bolt_1

bolt_2

$nS1

$nS2

$nS5

$sp2

$nS3

$nS4

$n3
bolt_3

1/$b1

1/$b2

1/$b3

$c1

$c2

stream_S5

stream_S1

$ni
$cj
$spk
1/$bl
$nSx

Level of Task Parallelism
Number of Available Cores in Node j
Spout k Emit Rate
Bolt l Execution Time
Number of Input Tuples in Stream X

Legend

Figure 6. GSPN for the design in Figs. 2 and 3

V. VALIDATION OF THE PERFORMANCE MODEL

This section addresses the validation of the transformation

patterns we have proposed and implemented. To this aim,

we first applied the transformation to get automatically

the GSPN model in Figure 6 from the UML models in

Figures 2 and 3. Then, we analysed the GSPN using event

driven simulation techniques to estimate the performance

metrics. Later, we deployed the Storm application, specified

in Figures 2 and 3, and we compared the estimated results,

obtained via simulation, to the results measured by monitor-

ing the Storm application in operation.

The aforementioned deployment was distributed in a clus-

ter with two workstations. All the workstations were charac-

terized by Intel(R) Core(TM) i7-6700 CPUs (3.40GHz) with

8 cores, 32GBytes of RAM, a Gigabit ethernet and Ubuntu

Linux OS (version 14.04).

416416416

Emission rate or %Utilization
host Demand (ms) (%Relative error)

$spi $b1 $b2 $b3 bolt_1 bolt_2 bolt_3

20 100 100 100 97,6 (2,45) 100 (9,91) 39,0 (3,71)
30 100 100 100 100 (2,91) 100 (4,48) 43,2 (6,05)
40 100 100 100 100 (1,00) 99,5 (0,40) 38,1 (4,50)
50 100 100 100 83,1 (4,61) 78,0 (2,07) 33,1 (2,42)
100 100 100 100 39,4 (0,06) 38,7 (3,27) 17,0 (4,18)
20 20 30 40 41,2 (2,90) 56,4 (5,85) 32,0 (0,26)
30 20 30 40 26,9 (0,68) 40,1 (0,46) 20,8 (2,86)
40 20 30 40 21,2 (6,05) 29,9 (0,19) 16,6 (4,05)
50 20 30 40 16,5 (3,39) 24,7 (3,21) 12,8 (0,09)
100 20 30 40 9,5 (15,7) 11,9 (0,95) 7,3 (12,61)

Table III
RESULTS OF THE EXPERIMENTS

The parameters of the Storm configuration were as fol-

lows. The rates of the spouts and the host demands of the

bolts were parameterized ($spi and $bi), in the GSPN model

and in the real application. The parallelism for the spouts

and bolts was set to 2, respectively. The number of input

tuples required for the bolts were set to 5 for all bolts (cf.,

arc weights $nS_i for i=1..6, in Figure 6).

The performance metric of reference for the validation

was the utilization. In particular, we considered the utiliza-

tion of each bolt, i.e., the percentage of time that the threads

associated to a bolt are active and processing tuples.

Concerning the performance analysis of the GSPN model,

we used the event-driven simulator of the GreatSPN tool [17]

(confidence level of 99% and accuracy of 3%). Analytical

solvers and structural analysers are also integrated into

the GreatSPN tool. They can be invoked for studying the

properties of the GSPN. In the GSPN model (see P2, Fig. 4),
the utilization is the mean number of tokens in the place

pA2 divided by the initial marking of the place pA1. On the

other hand, the Apache Storm monitoring platform provided

us with the result of the bolts utilization.

Table III shows the utilization of each bolt measured

by monitoring the Storm application and, in parenthesis,

the relative error with respect to the result estimated by

simulation of the GSPN model. The utilization estimated

by simulation of the GSPN model is not provided for space

limitation reason. Each row of the table represents a different

emission rate (spouts) and host demand (bolts).

For all cases but one, the relative error is lower than 15%.

Accordingly, we can consider that the GSPN estimations

are quite good. From the experiments, we get the following

insight. When the spouts insert tuples at a low rate (e.g.,

every 100 ms) and the bolts execute low time-consuming

functions (e.g., $b_1 with execution time of 20 ms), the bolt

threads will be idle most of the time (e.g., 9.5% utilization of

bolt_1 in Table III). Conversely, some bolts will be saturated

(e.g., 100% utilization of bolt_2 in Table III) in case of high

production rate of the spouts (e.g., every 40 ms or less) with

respect to the bolts execution times (e.g., 100 ms).

VI. CONCLUSION

The paper presents a novel approach for the modeling and

performance analysis of Storm applications. The goal is to

guide software engineers for increasing the quality of their

systems during the design. For example, they can assess

the performance impact on a specific server or cluster, by

predicting response times, throughputs or utilizations. The

experimental results confirm the feasibility of the approach.

The approach is unique in some aspects. We have intro-

duced a new UML profile for Storm, which captures the con-

cepts needed for performance evaluation. We have proposed

transformation patterns to get a performance model. We have

used Generalized Stochastic Petri Nets as the formalism for

performance analysis. Last but not least, we have integrated

the approach (profiling, UML-to-GSPN transformation and

analysis via event-driven simulation) in a publicly available

tool [20].

VII. APPENDIX: PETRI NETS

A GSPN is a Petri net with a stochastic time interpretation,

therefore suitable for performance analysis purposes. A

GSPN model is a bipartite graph of two types of vertices:

places and transitions. Places are graphically depicted as

circles and may contain tokens. A token distribution, namely

a marking, represents a state of the modelled system. The

dynamics are governed by the transition enabling and firing

rules, where places represent pre- and post-conditions for

transitions. In particular, the firing of a transition removes

(adds) as many tokens from its input (output) places as the

weights of the corresponding input (output) arcs. Transitions

can be immediate, those that fire in zero time; or timed, those

that fire after a delay which is sampled from a (negative)

exponentially distributed random variable.

In our Storm performance model, places represent the

intermediate steps of the stream processing. Transitions

represent the execution of Storm tasks and fire when certain

conditions are met (e.g., the synchronous or asynchronous

reception of messages in a bolt) or the associated time delay

has elapsed (e.g., production of a processing result from

input tuples by a bolt). Besides, tokens represent either

the messages sent between tasks or the resources of the

application in case of multi-threading.

ACKNOWLEDGMENT

This work has received funding from: the EU H2020,

grant agreement No.644869 (DICE), the Spanish MINECO

project CyCriSec [TIN2014-58457-R] and the Aragonese

Government Ref. T27 – DISCO research group.

REFERENCES

[1] Apache Storm. URL:http://storm.apache.org/.

417417417

[2] M. Colas et al., “Cracking the Data Conundrum: How Suc-
cessful Companies Make Big Data Operational,” Capgem-
ini consulting, Tech. Rep., 2014, URL: https://www.
capgemini-consulting.com/cracking-the-data-conundrum.

[3] F. Nalepa et al., “Model for Performance Analysis of Dis-
tributed Stream Processing Applications,” in Procs. 20th
DEXA. Springer, 2015, pp. 520–533.

[4] ——, “Performance Analysis of Distributed Stream Process-
ing Applications Through Colored Petri Nets,” in Procs. 10th
MEMICS. Springer, 2015, pp. 93–106.

[5] R. Ranjan, “Modeling and Simulation in Performance Opti-
mization of Big Data Processing Frameworks,” IEEE Cloud
Computing, vol. 1, no. 4, pp. 14–19, 2014.

[6] R. Singhal and A. Verma, “Predicting Job Completion Time
in Heterogeneous MapReduce Environments,” in Procs. 30th
IEEE IPDPS. IEEE, 2016, pp. 17–27.

[7] S. Samolej and T. Rak, “Simulation and Performance Analy-
sis of Distributed Internet Systems using TCPNs,” Informat-
ica, vol. 33, no. 4, 2009.

[8] T. Rak, “Response Time Analysis of Distributed Web Systems
using QPNs,” Mathematical Problems in Engineering, 2015.

[9] “DICE Consortium Tech. Reports. Design and Quality Ab-
stractions [21].”

[10] A. Gómez et al., “Towards a UML Profile for Data Intensive
Applications,” in Procs. 2nd QUDOS, 2016, pp. 18–23.

[11] OMG, “UML Profile for MARTE: Modeling and Analy-
sis of Real-time Embedded Systems, Version 1.1,” URL:
http://www.omg.org/spec/MARTE/1.1/, Object Management
Group, Juny 2011.

[12] M. A. Marsan et al., Modelling with Generalized Stochastic
Petri nets, 1st ed. NY, USA: John Wiley & Sons, 1994.

[13] S. Kent, “Model Driven Engineering,” in Procs. 3rd iFM, ser.
LNCS, vol. 2335. Springer, 2002, pp. 286–298.

[14] OMG, “Meta Object Facility (MOF) 2.0 Query/-
View/Transformation Specification, Version 1.1,” Object
Management Group, January 2011. [Online]. Available:
http://www.omg.org/spec/QVT/1.1/

[15] ISO, “Systems and software engineering – High-level Petri
nets – Part 2: Transfer format,” Geneva, Switzerland, ISO/IEC
15909-2:2011, 2008.

[16] The Eclipse Foundation & Obeo, “Acceleo,” 2015, URL:
https://eclipse.org/acceleo/.

[17] Dip. di informatica, Universitá di Torino, “GRaphical Editor
and Analyzer for Timed and Stochastic Petri Nets,” 2015,
URL: http://www.di.unito.it/~greatspn/index.html.

[18] DICE Consortium, “DICE Profile,” 2017, URL: https://github.
com/dice-project/DICE-Profiles.

[19] “DICE Consortium Tech. Reports. Transformations to Anal-
ysis Models [21].”

[20] DICE Consortium, “DICE Simulation Tool,” 2017, URL:https:
//github.com/dice-project/DICE-Simulation/.

[21] ——, “Technical Reports,” 2016-2017, URL: http://www.
dice-h2020.eu/deliverables/.

418418418

