
Journal of Computer Virology and Hacking Techniques
https://doi.org/10.1007/s11416-022-00444-z

INV ITED PAPER

An approach for the automatic verification of blockchain protocols:
the Tweetchain case study

Mariapia Raimondo1 · Simona Bernardi2 · Stefano Marrone1 · José Merseguer2

Received: 14 November 2021 / Accepted: 4 June 2022
© The Author(s) 2022

Abstract
This paper proposes a model-driven approach for the security modelling and analysis of blockchain based protocols. The
modelling is built upon the definition of a UML profile, which is able to capture transaction-oriented information. The analysis
is based on existing formal analysis tools. In particular, the paper considers the Tweetchain protocol, a recent proposal that
leverages online social networks, i.e., Twitter, for extending blockchain to domains with small-value transactions, such as
IoT. A specialized textual notation is added to the UML profile to capture features of this protocol. Furthermore, a model
transformation is defined to generate a Tamarin model, from the UML models, via an intermediate well-known notation, i.e.,
the Alice&Bob notation. Finally, Tamarin Prover is used to verify the model of the protocol against some security properties.
This work extends a previous one, where the Tamarin formal models were generated by hand. A comparison on the analysis
results, both under the functional and non-functional aspects, is reported here too.

Keywords Distributed ledger technology · Formal modelling, Automatic model generation ·Vulnerability discovery · Formal
verification · UML profile

1 Introduction

Blockchain is a software layer that provides the basis for ver-
ification, validation, recording, and integrity of digital assets
transfers, e.g., digital currencies [1]. Blockchain security is
therefore a must, which is why it has attracted researchers
since its inception. In fact, blockchain technologies are

Mariapia Raimondo, Simona Bernardi, Stefano Marrone and José
Merseguer were contributed equally to the realization of the paper.

B Stefano Marrone
stefano.marrone@unicampania.it

Mariapia Raimondo
mariapia.raimondo@unicampania.it

Simona Bernardi
simonab@unizar.es

José Merseguer
jmerse@unizar.es

1 Dipartimento di Matematica e Fisica,
Università della Campania “Luigi Vanvitelli”,
viale Lincoln, 5, 81100 Caserta, Italy

2 Departamento de Informática e Ingeniería de Sistemas,
Universidad de Zaragoza, C. Maria de Luna, 1, 50018
Zaragoza, Spain

touted as being extremely secure due to the tamper resistant
design [2]. However, as also explained in [2], blockchain
applications are not immune to malicious actors, who can
exploit vulnerabilities and attack them just like websites or
applications are attacked today.

Our interest is on the verification of blockchain security
properties using a mathematical standpoint. This topic has
been successfully addressed in the literature. In particular,
model checking, theorem proving or simulation are tech-
niques that have offered good results, aswe explore in Sect. 2.
Among them, the Tamarin Prover [3] has been used in differ-
ent works [4,5] to successfully model and analyze security
protocols. However, we are concerned with the develop-
ment of blockchain applications, and there is still a huge
gap between the software development process and the for-
mal verification of the blockchain security properties. This
work aims to bridge this gap by offering an approach to rec-
oncile both fields: software design and formal verification
of blockchain security properties, i.e., to integrate the lat-
ter in the development field. Consider that the development
of blockchain applications is a growing huge market that,
among many others, includes wallets, smart contracts and
decentralized applications. Moreover, it may affect almost
any industrial sector, among them financial or logistics.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-022-00444-z&domain=pdf
http://orcid.org/0000-0003-1927-6173

M. Raimondo et al.

The paper contributes to the state of the art as follows.
First, we present an approach for the automatic verifica-
tion of blockchain protocols. The main idea is to fit the
approach within the software development process. Second,
the approach proposes guidelines for creating a UML pro-
file, that helps in the modelling and analysis of the protocols,
developing a part of this profile. Third, the paper proposes
an automatic transformation of UML-profiled models into
AnB [6], a formal language based on Alice and Bob nota-
tion. Fourth, the approach is applied to a case study: the
Tweetchain protocol [7]. The modelling and analysis of the
protocol have confirmed the feasibility of the approach.

The analysis of the Tweetchain confirms the validity of
the generatedmodel since the analysis of the considered lem-
mas gives the same results in both, generated and hand-made
Tamarin model. Furthermore, a quantitative analysis drives
the definition of a first optimization in the translation, which
produces a versionwith smaller execution times andmemory
occupation.

The Tweetchain protocol has been chosen as a case study
because, although being a lightweight blockchain proto-
col, it contains characteristics needed to perform a security
analysis, such as coordination, sharing or irrevocability of
transactions. Tweetchain was introduced to apply blockchain
technology in domains where some of its features, such as
the mining power, are little suitable. For example, the IoT
domain.

This paper extends the work in [8] as follows. The
approach for automatic verification is entirely new. Con-
cretely, regarding[8], the approach: (1) introduces a new
UML profile; (2) applies the profile to model Tweetchain;
(3) models Tweetchain using the AnB language; and (4) gets
a new Tamarin model, which has been validated with the
hand-made model from [8] and it has been used to verify
new properties.

The rest of the paper is structured as follows. Section 2
revises related works. Section 3 presents our approach for an
automatic verification of blockchain protocols in the devel-
opment process. Section 4 accomplishes the modelling of
the Tweetchain. Section 5 accomplishes the analysis of the
Tweetchain and reports a first optimization experience. Sec-
tion 6 concludes the paper.

2 Related work

In this section, we revise the contributions in the literature
concerning the main aspects of our proposals, that is: (a)
formal modelling and analysis of blockchain-based systems,
(b) blockchain standards and proposals of reference models,
and (c) UML profiling approaches supporting system secu-
rity analysis.

Blockchain formal modelling and analysis
In the past few years, blockchain has been one of the major
focus for security research, resulting in a large number of
contributions in the formalization and analysis of blockchain-
based systems. The survey [9] discusses 35 papers from 2015
to 2019 just focusing on formalization of smart-contracts.
Results from the survey indicate that theorem proving is the
most common technique used with the purpose of verifying
security properties. Like our proposal, the following revised
works rely upon already existing formalisms and techniques.
They target either generic systems [4,10,11] or specific pro-
tocols [12–14].

Similar to our approach, Duan et al. [10] start from a
high-level specification language. In particular, they use the
Specification and Description Language (SDL) to define a
generic model of a blockchain system. However, the main
goal in [10] is different, they aim at verifying the correctness
of the specification using simulation and model-checking
engines of the Telelogic Tau tool. They use simulation to
check whether all the modelled functionalities are opera-
tional, whereas model-checking is used to verify the classic
logical properties of state-based systems, such as, absence of
deadlocks or livelocks, boundedness or reachability.

Boyd et al. [4] define a formal model of blockchain
in Tamarin Prover [3] to support the security analysis of
cross chain trading protocols based on hash time lock con-
tract. They enhance the blockchain modelling capability of
Tamarin by defining domain specific rules to add a transac-
tion to a block, global time rules to specify the time instant
of a block being added to the blockchain, as well as HTLC
rules for the contract initiator and the responder.

Egger et al. [11] present a framework for defining and
analyse the security of distributed ledgers. Thus, a gen-
eral functionality is defined that aims to cover both, classic
blockchains and non-blockchain distributed ledgers, in a uni-
fied way. The work considers protocol composability and the
framework [15] supports modular analysis of different types
of protocols under various security settings.

In the case of specific protocols, their formalization is
mainly aimed at enabling analysis for security assessment.
Maung et al. [12], for example, formally specify the Ten-
dermint proof-of-stake consensus protocol with CSP# [16]
language and analyse it with the Process Analysis Toolkit
(PAT) [17] LTL model-checker. CSP# is an extension of
CSP (Communicating Sequential Process) with embedding
of data operations. The analysis is carried out on the model
under normal conditions, as well as against specific attacks
in Byzantine environment, e.g., censorship attacks.

Modesti et al. [14] formally model and analyse the pay-
ment protocol standard BIP70, which is built on top of
the blockchain Bitcoin protocol and specifies how payment
in bitcoin is performed by merchants and customers. The
authors use AnB [6], a formal language based on Alice and

123

An approach for the automatic verification of blockchain protocols: the Tweetchain case study

Bobnotation thatwe also consider in our approach, to formal-
ize the protocol and perform the analysis with the symbolic
model-checker OFMG [18].

Tolmach et al. [13] focus instead on decentralized finance
(DeFi) protocols, which are one of the most prominent appli-
cations of blockchain and smart contracts. Similarly to [12],
they use theCPS#modelling language for the specification of
the DeFi protocols and the PAT model-checker for the anal-
ysis. They propose a compositional approach for the formal
analysis of two concrete DeFi protocols, namely Curve and
Compound.

Blockchain standards and reference models
Standardization of blockchain distributed ledger technolo-
gies (DLTs) is an important step towards a common concept,
interoperability and possible regulation since the software
industry starts to suffer from the excessive fragmentation
of the DLTs market. The survey [19] provides an overview
on existing standardization efforts, where international stan-
dardization organizations include the National Institute of
Standards and Technologies (NIST), ANSI Accredited Stan-
dards Committee X9, International Organization for Stan-
dardization (ISO), the European Union Agency for Cyber-
security (ENISA), International Telecommunication Union
(ITU), and European Committee for Electrotechnical Stan-
dardization (CENELEC). Besides, the Object Management
Group launched a Request For Information [20] to consider
interoperability issues across blockchain and DLTs, however
no public documents are currently available.

Concerning the definition of reference conceptual mod-
els, we mention two works [21,22] that contribute to define
domain models for the blockchain ecosystem and are closely
related to our approach. Ellervee et al. [21] propose a compre-
hensive model of the blockchain and DLT. In particular, their
data model represents the basic concepts of transactions and
blocks. In our proposal, we rely upon the NIST standard [2],
then we refine the transaction concept with the input and
output assets that were not considered in [21]. Skotnica and
Pergl [22] define a domain-specific language for specifying
smart-contracts to support automated code generation. Such
language is defined as a meta-model using UML class dia-
grams.Also our proposal defines a domain-specific language,
but with a different goal: the security analysis of blockchain
protocols. Moreover, we apply UML profiling techniques.

UML profiling for security analysis
There is no UML standard profile—i.e., a UML profile
defined by the Object Management Group—devoted to the
security analysis of blockchain-based protocols and applica-
tions. However, the QoS&FT profile [23] provides general
support for the specification of Quality of Service (QoS)
characteristics and for risk assessment. Moreover, there are
contributions that propose UML profiling as an approach for
the definition of domain specific languages for the modelling

and analysis of security properties of software systems, such
as SecureUML [24], UMLSec [25] and SecAM [26]. Never-
theless, none of the profiles mentioned address the domain
of blockchain-based systems.

SecureUML [24] focuses on the access-control mecha-
nisms and automatic generation of access control infrastruc-
tures. Automated analysis of SecureUML models is also
proposed [27], where the security properties to be verified
are specified as formulawith theObject Constraint Language
(OCL).

UMLSec [25] provides instead a support for the spec-
ification of security requirements as logical constraints
(confidentiality and integrity properties) and the require-
ments assessment via formal analysis. For example, in [28] a
tool-support is proposed where UMLSec models are verified
against the specified requirements. The automatic checking
is carried out using a theorem-prover for first-order logic (e-
SETHEO).

SecAM [26] enables the security specification and mod-
elling of critical infrastructures. In particular, it consists of
several packages, each one defining extensions for a specific
aspect of security (resilience, cryptographic, security mech-
anisms and access-control): SeCAMprovides support for the
survivability analysis of critical infrastructure using amodel-
driven approach.

3 Approach for automatic verification

Our idea is to automatically verify security properties of
blockchain protocols using a mathematical standpoint. How-
ever, we propose to model the very same protocol using a
software design standpoint, which is important to facilitate
the integration of verification activities within the develop-
ment cycle. At this regard, the model-driven engineering
(MDE) paradigm [29] offers solutions, for bridging different
technologies, through the concept of technical space [30]. A
technical space is a working context, with a set of concepts,
a body of knowledge, tools, required skills, and possibil-
ities [31]. Hence, as proposed by Bézivin et al. [32] we
propose to bridge the gap between our technical spaces, i.e.,
the software design and the mathematical verification, using
model transformations.

According to previous MDE premise, our statement is
that starting from software models, representing (part of) the
behaviour of the protocol and the security properties to verify,
mathematical formalmodels canbeautomatically generated.
Then, such models can be used for the formal analysis of the
security properties using existing tools.

3.1 Overview of the approach

A practical realization of the previous general statement is
presented in Fig. 1, which conforms to our proposal for

123

M. Raimondo et al.

ProtocolScen1

ProtocolScen2

ProtocolScen2

Modelling step

Protocol ProtocolScen2:
Knowledge:
...
Actions:
[m1] p1 -> p2: content;
[m2] p2 -> p1: ...;
Goals:
[auth1] p1 non-injectively agrees with p2 on TR1;
....

AnB model

Tamarin model
Tamarin prover

Formal Verification step

M2M transformation

Program input

P2

P1

Theory ProtocolScen2
begin
....
rule ...
...
lemma ...
....
end

p1:P1

m1

p2:P2
«Participant» «Participant»

Authenticity

Template for
security properties

....

m2m2

Fig. 1 Approach overview

automatic verification. The figure highlights the state of the
art languages and tools, in the model-driven context, that
we have selected. Initially, the engineer models a particu-
lar blockchain protocol feature using UML (Modelling step
in the figure). As a second step, the UML models together
with the security properties to be verified will be automat-
ically transformed to Alice and Bob (AnB) notation (the
two red arrows from Template for security properties and
UML models to the AnB model, in the figure). In a third
step, the AnB models are automatically transformed to the
Tamarin language (the red arrow from the AnB model to the
Tamarin model). Finally, the Tamarin Prover [3] will exe-
cute the Tamarin model to verify the desired properties of
the protocol (the blue arrow).

Before exploring each step of the approach, we need to
discuss some practical and implicit assumptions that under-
lie the approach. Assuming that UML is closer than Tamarin
to the engineer interests, for example the very same models
can be reused for code generation, a question arises: Why
not transform the UML models directly in the Tamarin lan-
guage? In other words, what is the practical need for having
AnB as intermediate notation? Certainly, this would also be a
plausible solution, that we do not belittle. However, Basin et
al. [5] have already proposed a transformation ofAnBmodels
into Tamarin models, moreover they have implemented such
transformation, which in practicemeans to have an automatic
transformation at hand.

On the other side, we can find tools (e.g., [33,34]) that
convert UML sequence diagrams to Alice and Bob notation,
and vice versa, although such transformations are purely syn-
tactical. Consequently, it is clear that currently, we are closer
to find an automated solution by leveraging the AnB notation
than by proposing a direct transformation to Tamarin. Nev-
ertheless, as a conceptual solution, we see more elegant the
direct transformation, but a considerable benefit of the AnB

notation is that it can also be transformed to other models for
different analyses.

The first step of the approach (Modelling step in the fig-
ure) addresses both: a) the modelling of the target blockchain
protocol, e.g., Tweetchain, and b) the definition of the proto-
col security properties, that the engineer needs to verify. For
the first, we have chosen UML, since it is usually defined as a
suitable tool for designing software models. This is true con-
sidering that in a given project, the same UML models can
be leveraged by the engineer, in the MDE context, for multi-
ple purposes. For example, UML models are useful for code
generation, as previously mentioned, for automatic testing,
and also for performance assessment [35] and dependability
assessment [36]. However, UML falls short for representing
those specific concepts of the blockchain domain that will
be eventually needed for proving the security properties. For
example, the attributes of a block chain transaction, which
will be needed to prove security properties such as trans-
action authenticity, integrity and no repudiation. A common
solution to this problem is to extend the UML semantics with
the concepts of the target domain, in this case the blockchain
protocols. This process is known as the creation of a “profile”
for UML. An alternative, also promoted in theMDE context,
is to create a domain specific modelling language (DSML),
in this case it would mean to create a “blockchain specific”
modelling language, as proposed in [22] for smart-contracts.
In this paper, the UML Profile case is adopted to avoid the
limited reusability ofDSML in different contexts. Section 3.2
offers the main ideas for developing a UML profile suit-
able for the verification of security of blockchain protocols.
Regardless of using a DSML or a UML profile, a benefit is
that the same language guides the modelling step. For exam-
ple, the basic constructs of a UML profile, i.e. stereotypes,
indicate the modeller the concepts that need to be addressed

123

An approach for the automatic verification of blockchain protocols: the Tweetchain case study

Fig. 2 Approach for UML
profile definition, taken
from [39]

complete?[no]

Completeness
assessment of
the Blockchain

model

Design of the Blockchain
profile

Definition of
Blockchain stereotypes

Definition of
Blockchain library

[yes]

Blockchain profile
assessment

all requirements
satisfied?

[no]

Literature review

1- Blockchain standards and reference
 models
2- Blockchain formal modeling and analysis
3- UML profiling for security analysis

Definition of
Blockchain

domain model

requirement
checklist

[yes]

and how they need to be used. Section 3.2 makes this guid-
ance explicit through the concept of ‘blockchain transaction’.

On the other hand, UML also falls short regarding the
definition of security properties. We envision two possible
strategies. The first one is to provide extensions within the
UML profile for the specification of the properties to be ver-
ified as well. We think that this is a viable solution in case
of “easy to specify” properties, i.e., properties related to sin-
gle model elements, such as the above-mentioned properties
related to a transaction. Such properties do not require a spe-
cific syntax, such asOCL. The second strategy is to define the
security properties as parametric query templates, as in [37],
which allows addressing properties involving various model
elements. These queries will be instantiated by binding the
model elements to parameters, via a proper GUI. The latter
strategy enables to specify finer grained security properties.

In the case study, we have adopted a hybrid approach, by
proposing some query templates but letting that their instan-
tiation could be driven by simple specification of transaction
id. For sake of simplicity, this specification is not made in
the UML model, but delegated to command-line tools.

The second step of the approach addresses a transforma-
tion (the two red arrows fromTemplate for security properties
and UML models to the AnB model, in the figure). The pro-
tocol model in UML and the security properties to be verified
are transformed into the AnB model. The latter is also lever-
aged to model blockchain-specific constructs. In the third
step (the red arrow from the AnB model to the Tamarin
model), we reuse and customize the transformation proposed
in [5]. Hence, the AnB model is automatically transformed
into a Tamarin model. Customization is indeed needed, since
the original proposal considers general cryptographic proto-
cols, i.e., not blockchain specific. The fourth step (the blue
arrow) consists in the formal analysis, with the Tamarin
Prover tool [3], of the Tamarin model already obtained.
We remark that the tool enables to check the lemmas (e.g.,
first-order logic formulas over symbols, which express the
security properties to be verified), via model state-space
exploration, under the Dolev–Yao adversary model [38].

3.2 Towards a UML profile for blockchain protocols

The construction of a UML profile is a well-known process,
which does not mean to be easy. The authors have previously
proposed different profiles [39,40] following recommenda-
tions from Selic [41] and Lagarde et al. [42]. Figure 2
summarizes the main steps for producing a technically cor-
rect, high-quality UML profile.

For the literature review, we propose to study the main
blockchain standards and reference models, the blockchain
literature on formal modeling and analysis and the existing
UML profiles for security modeling and analysis. An ini-
tial work on these subjects has been presented in Sect. 2.
The output of this first step will be a requirements checklist,
whichwill be useful for the definition of a blockchain domain
model.

The domain model must represent main blockchain con-
cepts that will be useful for both, themodeling of the protocol
and its analysis. Figure 3 depicts, for illustrative purposes,
how tomodel the concept of blockchain transaction. For this
step we envision the need of creating a core domain model
with the core concepts of the blockchain technology, as given
for example in the NIST document [2]. Such domain model
will be complemented with specific concepts of the target
blockchain protocol, in case they exist. For example, specific
concepts of the Tweetchain protocol. Finally, an assessment
on the completeness of the domain model is proposed, this
must ensure that each requirement in the checklist is properly
addressed in the domain model.

The next step means the design of the profile. We need
to map the concepts in the domain models to UML. Since
a profile is made of UML extensions (stereotypes, tags, and
constraints), we need to adjust each concept in the domain
model to a proper UML extension. In general, we advise
defining a minimum, yet powerful, set of stereotypes. In the
end, each stereotype will be used to annotate concrete model
elements in the UML models representing the protocols, see
Fig. 5 for different examples. For this to work, we need to
select the appropriate UML metaclasses for each stereotype.

123

M. Raimondo et al.

Fig. 3 Domain model of transactions

Table 1 UML extensions of the profile, mapped from the domain model in Fig. 3

Stereotype Model element Tag Description

Participant Lifeline Transactions List of transactions associated to a participant

InputAsset MessageOccurrenceSpecification Data Message content sent (list of string values)

Provenance Source transaction of the asset

OutputAsset MessageOccurrenceSpecification Data Message content received (list of string values)

ReceiverAddress Asset recipient (a Participant)

Conditions Conditions to be met by the recipient

New types Kind Tag Description

Transaction Datatype id Transaction identifier (TransactionID)

SenderPubKey Sender public key

SenderAddress Sender (a Participant)

digitalSignature Sender digital signature

TimeStamp Time stamp

InputAssets List of input assets

OutputAssets List of output assets

TransactionID Primitive

Table 1 shows the stereotypes corresponding to the concepts
identified in the domain model of Fig. 3, and included in
the profile. For this step, we will need to create the UML
extensions corresponding to the core domain model and the
UML extensions for the specific domain model of the tar-
get protocol. A BNF grammar can be an alternative to the
protocol-specific UML extensions. The specification lan-
guage of a particular blockchain protocol will be the sum of
both extensions, obviously. Finally, another assessment pro-
cess is advised to ensure that all the concepts proposed have
been correctly mapped to UML extensions.

4 Case study: modelling

This section focuses on applying the first three steps,
described in Sect. 3.1, to the Tweetchain case study. The
fourth step will be carried out in Sect. 5. For the first step,
Sect. 4.1 presents the UML model of the Tweetchain pro-
tocol. For the second step, Sect. 4.2 describes a model
transformation to yield an AnB model. For the third step,
Sect. 4.3 reports a Tweetchain Tamarin model (partially)
obtained by applying the transformation in [5].

123

An approach for the automatic verification of blockchain protocols: the Tweetchain case study

Fig. 4 Use Case diagram of the Tweetchain protocol

4.1 UMLmodelling

The UMLmodel of the Tweetchain protocol is made of a use
case diagram, see Fig. 4, and a sequence diagram, see Fig. 5.

The use case diagram defines the context of the system
and it is made of four use cases: Registration, RequestLegit-
imacyVerification, TransactionGeneration and Transaction-
Verification. For our purposes, only the first two use cases are
considered. The other two use cases are explained in [43].

The sequence diagram details the interactions, among
actors, carried out in the two use cases of interest. Hence,
each lifeline represents the involved actors: the User (x),
the WelcomeProfile (W) and the Verifier (y). The sequence
diagram starts when each party signs in Twitter. Then, a par-
ticipant x publishes a hello tweet message to register itself
to W . Such message contains the first elements, HC1

X and
HC1

W , of the hash-chains of x and W , respectively. So, W
verifies the tweet and sends as a response a welcome tweet.
This response contains the hash value HCi

W , computed on
the base of its hash-chain, the hash-chain of x (HC1

x) and the
Twitter id (T I D1

x), which is unique in Twitter for each tweet.
After that, x chooses, among the members of the community,
its set of verifiers. Then, it sends them a private followership
request. After checking the legitimacy of the request, each
verifier y confirms and follows the user x and publishes a
follow_welcome tweet. Consequently, the sequence diagram
ends and the registration of x has been completed, also con-
sidering the verification of the legitimacy of its request.

The following aspects are of interest in the sequence
diagram:

• The verifiers are chosen on the base of a publicly known
algorithm and by a public seed. As a seed, the protocol
may use the Twitter user id, that is unique and publicly
available, as proposed by [7]. The use of publicly ver-
ifiable information, in this phase, is motivated by the
necessity of assuring that each party in the community
does not choose its set of verifiers in a malicious way.

• Each lifeline is stereotyped as Participant. According
to Table 1, each participant has transactions and each
transaction is made of different fields. The outputAsset
and inputAsset fields summarize the sets of events, sent
and received, composing the transaction defined by the
lifeline. Moreover, the fields senderPubKey and digi-
talSignature represent the shared knowledge.

• Each message m is characterized by a pair of send
and receive events, (mSE,mRE): such events are
the MessageOccurrenceSpecification model elements
as in Table 1. However, only events stereotyped as
«InputAsset» («OutputAsset») belong to
security-sensitive messages, which are depicted as thick
arrows. By “security-sensitive” message, we mean a
message that is relevant for the formal analysis of the
protocol, then it will be dealt with in the model trans-
formation. These assets have a data tag, whose type,
according to Table 1, is a list of strings. This list rep-
resents the content of the exchanged message, and its
semantics is protocol-specific. Therefore, it needs to be
provided by a protocol-specific UML profile or, alterna-
tively, by a BNF grammar. For the case study, we have
developed the BNF grammar described in the following.

123

M. Raimondo et al.

Fig. 5 Sequence diagram detailing the Registration use case

123

An approach for the automatic verification of blockchain protocols: the Tweetchain case study

Table 2 Data specification notation for the Tweetchain protocol

Protocol-specific textual notation
Table 2 reports part of the BNF grammar. The grammar has
been implemented by means of the SableCC compiler gen-
erator tool.1 All the artefacts, described in this work, are
publicly available in their full version in a public Git Hub
repository.2

Among all themessages considered in theTweetchain pro-
tocol, the BNF grammar reports two of them—e.g., hello
and welcome—for the sake of simplicity (see lines 3 and 4).
The grammar also describes the format of the keywords (i.e.,
‘Hello’ for the hellomessage and ‘Welcome’ for thewelcome
one), and of the response status of the verification (i.e., ‘1’ for
valid transactions, ‘0’ otherwise). It is important to underline
that this grammar does not refer to any concrete environment
and hence some clarifications are due: curly brackets indi-
cate the labels related the different cases of a production rule
(e.g., hello_msg, welcome_msg); on the other hand, square
brackets report optional information.

4.2 FromUML to AnB

Algorithm 1 proposes a transformation of the UML model
presented in previous section into an AnB model. The algo-
rithm receives as inputs the very same UML model and the
name of the Tweetchain welcome profile wp. Then, it pro-
duces the corresponding AnB model, anb. An AnB model is
structured into four parts (see Appendix A.2 for details):

• A Declaration section—where user-defined func-
tions and helpers are reported. This part is not relevant in
this paper;

• A Knowledge section—devoted to declare the infor-
mation that each participant knows about the other ones;

1 https://sablecc.org/.
2 Security4Blockchain repository URL: https://github.com/
stefanomarrone/security4blockchain.

• An Actions section—that is related to the messages
exchanged by the participants;

• A Goals section—which includes the security proper-
ties to verify.

Algorithm 1 UML-to-AnB
1: procedure uml2anb(model,wp)
2: anb ← None
3: parts ← model.get Participants()
4: msgs ← model.getMessages()
5: for all p ∈ parts do
6: temp ← knowledge(p, parts, wp)
7: anb.update(temp)
8: end for
9: for all m ∈ msgs do
10: temp ← action(m)

11: anb.update(temp)
12: end for
13: return anb
14: end procedure

Algorithm 1 starts extracting from the model the list of
participants parts, which are the lifelines stereotyped as
«Participant» in the model, and the list of messages
msgs. The algorithm proceeds applying the knowledge()
and action() procedures to all participants and mes-
sages, respectively. These procedures are detailed by Algo-
rithms 2 and 3, respectively.

Algorithm 2 creates the Knowledge section of the AnB
model for a participant part , Listing 1 presents an excerpt
of such section produced by the Algorithm 2. The algo-
rithm relies on the functions root Hash(part), hash(z) and
pk(other), as follows:

• root Hash(part)generates thefirst hashof part (knowl-
edge portionsroot_HC_part for the participant part
in the Listing 1);

123

https://sablecc.org/
https://github.com/stefanomarrone/security4blockchain
https://github.com/stefanomarrone/security4blockchain

M. Raimondo et al.

Algorithm 2 Knowledge generation
1: procedure knowledge(part ,list ,wp)
2: retval ← part
3: retval.append(root Hash(part))
4: retval.append(hash(root Hash(wp)))
5: for all other ∈ list − {part} do
6: retval.append(other)
7: retval.append(pk(other))
8: end for
9: return retval
10: end procedure

• hash(z) generates the hash value of z (knowledge por-
tions h(root_HC_part) for the participant part);

• pk(other) generates the public key of other (knowledge
portions pk(other)).

Listing 1 Example of the Knowledge section
1 Knowledge:
2 W : pk(x), pk(y), root_HC_W , h(root_HC_W), x, y;
3 x : pk(W), pk(y), root_HC_x , h(root_HC_W), W, y;
4 y : pk(W), pk(x), root_HC_y , h(root_HC_W), W, x;
5 end

Algorithm 3 creates the Actions section of the AnB
model, Listing 2 presents an excerpt of such section.
The algorithm only processes those messages stereotyped
as «InputAsset» or «OutputAsset», i.e., secure-
sensitive messages, which are translated into AnB rules as
indicated by lines 4-10. Function msg.get ST () extracts the
information contained in these stereotypes. In particular, the
data tagged-value contains information to decide the rules to
generate, getT V (′′data′′) extracts such information, which
is then parsed by a compiler based on the grammar presented
in Sect. 4.1, see oasset function in line 6. The algorithm
determines the kind of the message, msgKind(data), and
for each kind of message writes the specific actions in the
model. Lines 8-10 process messages of the kind Hello, then
generating specific actions for hello_tweet messages. The
other kind of messages are processed in the same way, so the
algorithm does not repeat such lines, see line 11.

Listing 2 Example of the Action section
1 Actions:
2 [Hello_1] x -> W (TID_1_x):
3 x.h(root_HC_x).h(root_HC_W).’Hello ’.W.

TID_1_x.aenc{x.h(root_HC_x).h(
root_HC_W).’Hello ’.W.TID_1_x}sk(x);

4
5 [Hello_out_2] x -> y:
6 x.h(root_HC_x).TID_1_x.aenc{x.h(root_HC_x

).TID_1_x}sk(x);

Algorithm 3 Action generation
1: procedure action(msg)
2: retval ← []
3: secureMsg ←

msg.hasST (′′ I nput Asset ′′)&&
msg.hasST (′′Output Asset ′′)

4: if secureMsg = True then
5: oasset ← msg.get ST (′′Output Asset ′′)
6: data ← oasset .getT V (′′data′′)
7: kind ← msgKind(data)
8: if kind =′ Hello′ then
9: retval ← genHello(msg, data)
10: end if
11: ...
12: end if
13: return retval
14: end procedure

Listing 2 details the actions created in the AnB model for
a hello_tweet message:

• The first action (lines 2–3) corresponds to the message
sent from x toW . It is built on the information contained
in the model (x ,W), in data (root_HC_x, root_HC_W),
in the message (TID_1_x) and in labels (Hello_1);

• The second action (lines 5-6) corresponds to the mes-
sage sent by x to all the participants to inform about
its TID_1_x, which is publicly available in Twitter. This
rule is replicated for each participant in the sequence
diagram.

While, in the long run, the generation of the goals to verify
will be done from their specification in the UML model (see
Sect. 3), this paper sketches transformation rules from UML
to Tamarin query templates or by generating AnB goals. The
first case is described in Sect. 4.3 while the second is dis-
cussed in Sect. 5.2. Both the cases can be implemented by
command-line tools.

4.3 The Tamarin model

The security rules mentioned in previous subsection must be
added to the Tamarin model automatically produced by the
approach in [5]. In particular, we add a rule to consider the
theft of the private keys of the participants by an adversary.
Moreover, we need to add lemmas, expressing the expected
properties, and labels to the rules. By doing so, we cer-
tainly could compare our analysis results with those from [8].
Listing 3 shows an an example of label, highlighted in
green.

123

An approach for the automatic verification of blockchain protocols: the Tweetchain case study

Listing 3 Hello Tweet rule

1 rule hel_twe_x:
2 [St_init_x(TID_1_x , W, r,

root_HC_x , x, y, sk(k_x), pk(k_W), pk(
k_r),

3 pk(k_x), pk(k_y), alpha)
4]
5 −−[HELLO_sent(x, W, TID_1_x)]−>
6 [Out(<x, h(root_HC_x), alpha , ’

Hello ’, W, TID_1_x , aenc{<x, h(
root_HC_x

7), alpha , ’Hello ’, W, TID_1_x >}
sk(k_x)>),

8 St_hel_twe_x(TID_1_x , W, r,
root_HC_x , x, y, sk(k_x), pk(k_W), pk(
k_r)

9 , pk(k_x), pk(k_y), alpha)
10]

The lemmas added to the Tamarin model mean to consider
the authenticity of the data transmitted, that can be verified
for each exchanged message. In fact, it corresponds to check
the following property “If user x receives a message m from
user y, then y has sent m to x earlier”. In the model, the
authenticity of the sender is obtained by signing themessages
with his/her private key. Then, any user can verify the identity
of the sender using the built-in message theory of Tamarin,
that defines a signature scheme. Thus, for a given message
m, two different query templates account for the capability of
the adversary to steal the private key of the parties involved
in the communication: the fake_trace and trace. In the
former, the adversary can steal the private keys, whereas in
the latter, he/she is not. Listing 4 reports the query template of
the trace property, the text between two semicolons needs
to be instantiated.

Listing 4 Template of trace lemma

1 lemma ;lemma_name ;:
2 " All ;sndr; ;rcvr; ;tid; #i.
3 (; msg_lbl ;(; sndr; , ;rcvr; , ;tid;)

@i
4 & not (Ex #r. RevLtk (;rcvr;) @r)
5 & not (Ex #r. RevLtk (;sndr;) @r))
6 ==>
7 Ex #j.
8 ;prev_lbl ;(; rcvr; , ;sndr; , ;tid;)

@j & j<i "

For instantiating the lemma in Listing 4 let us consider
the specification of a transaction (tid) in the UML model.
By navigating the UML model, it is possible to extract the
messages related to tid, then the variables to be instantiated
in the lemma can be computed from them. Given a tid, a list
ofmessages is considered and for eachmessage the following
information can be obtained:

a ;lemma_name; is obtained by concatenating: trace
(name of the template), tid and the position of the mes-
sage in the transaction’s list;

b ;sndr; and ;rcvr; are the names of the sender and receiver
participants, respectively;

c ;msg_lbl; and ;prev_lbl; are the labels of the messages
as they have been added in the Tamarin rules.

d RevLtk is a label added after generating the AnB.

It is worth noticing that the model transformation
described above is in its design stage, and the implemen-
tation of such a tool is an ongoing work.

5 Case study: validation and verification

This section has two main goals. First, the validation of the
Tamarin model proposed in this paper. Second, the verifica-
tion of the transaction authenticity in the registration scenario
of the case study (cfr. Fig. 5).

All the analyses have been carried out by running the
Tamarin Prover tool version 1.6.0 in batch mode using the
following HW/SW configuration: a Linux Ubuntu Server
20.04.1 LTS running on a quad-code Intel(R) Xeon(R) CPU
E5-2650L v4 1.70GHz, with 8 Gb of RAM.

5.1 Model validation

The validation of the Tamarin model, generated using the
proposed two-staged transformation, is carried out by com-
paring it with the hand-made model in [8]. The comparison
is twofold. First, we assess the correctness of the model by
checking whether the Tamarin Prover produces the same
results as the ones obtained for the hand-made model. Sec-
ond, we assess performance by comparing the execution
times needed to analyze the two models.

Correctness assessment
Let us consider the Tamarin model describing the registra-
tion scenario of the Tweetchain protocol and the security
goals. All the considered security properties hold, assuring
that the adversary did not compromise the asymmetric cryp-
tographic system. The types of security goals addressed in
this analysis concern the authenticity of each exchanged
message in the protocol. In particular, for each message
two different lemmas have been defined that account of the
capability of the adversary to steal the private key of the par-
ticipants. Such lemmas are labelled as fake_trace ...
and trace ...: in the former, the adversary is able to steal
confidential data (i.e., the private keys) whereas in the lat-
ter, he/she is not. Table 3 reports the analysis results of the
considered lemmas: true indicates that the property holds,
whilst false indicates that the tool has returned a coun-
terexample representing an attack scenario that violates the
desired property.

123

M. Raimondo et al.

Table 3 Authenticity of messages in the Registration scenario (Fig. 5):
results of lemmas proof

Message Lemma type Result

Publishes hello tweet Fake_trace False

Trace True

Publishes welcome tweet Fake_trace False

Trace True

Send private followership request Fake_trace False

Trace True

Publishes follow_welcome tweet Fake_trace False

Trace True

The results of the lemmas’ verification correspond to the
ones obtained with the analysis of the hand-made model
in [8].

Performance assessment
The objective is to compare the execution times of both mod-
els. Hence, the two models (named, respectively, generated
and manual), are solved on the machine described above.
Furthermore, regarding the generated model, we performed
some simplifications at the AnB level: this simplifications
are derived from the assumption that some parties (e.g., y)
already belong to the Tweetchain community and hence their
TID is already known. Practically, this makes a change in the
AnB model Knowledge section as in the following:

y : pk(W), pk(x),TID_y, root_HC_y,W , x;

With respect to Listing1, the previous line changes
root_HC_y into TID_y inhibiting Tamarin Prover to regen-
erate such an information in its analysis. This version can
be generated by modifying Algorithm 2. Another change is
related to the Action section, which can be managed by a
small change in the Algorithm 3. The full discussion of opti-
mization opportunities is out of the scope of this paper and
will be considered in future research. In the rest of this paper,
this model is named as generated (simpl.) since it
will be used in Sect. 5.2.

The executions of Tamarin Prover have been instrumented
to capture both CPU times and the peak memory occu-
pation. The executions refer to the verification of all the
security properties considered in the previous analysis. All
the measures have been computed by using the Linux pro-
gram /usr/bin/timewith the -v option. Table 4 reports
such numeric results: these values represent themean and the
standard deviation computed on 30 repetitions of the analy-
sis.

From the performance results, we can conclude that the
manual model performs better than the generated one. This
is due to the reuse of existing tool chains (i.e., the Keller’s

Table 4 Comparison of the Tamarin model executions

CPU time (s) Peak memory (MBs)

Generated 1067.68 ± 10.01 6322.32 ± 70.13

Generated (simpl.) 15.68 ± 0.37 103.53 ± 7.16

Manual 264.36 ± 1.66 2017.99 ± 34.76

transformation) while hand-made code allows implicit opti-
mization the modeller introduces. Moreover, the first attempt
of model optimization/simplification strongly improves per-
formance: even if the Keller’s tool has been used for this as
an opaque box and the optimization opportunities are at the
first steps, the analysis is boosted meaningfully.

Afinal consideration concerns themodelling effort. Hand-
made models are hard to build by a non-expert and they are
long to debug and tune. We estimate that, the first working
version of the hand-made model has taken approximately
three weeks to be done, and almost two weeks to be tuned.
The model-driven process applied to the case study has dras-
tically shortened the time to build the formal model reducing
it to few hours.

5.2 Verification of transaction authenticity

Further analysis has been carried out in the Tamarin model
generated from the AnB, by leveraging the feature of the
automatic translation. In particular, it is possible to add in the
Goals section of the AnB model a statement expressing the
injective agreement between two participants. As explained
in [44], an injective agreement goal aims at checking that
whenever a participant A completes a run of the protocol—
apparently with B—then B has been running the protocol—
apparently with A—and the two participants agree on the
message m. This property can be checked from the point of
view of both participants.

Regarding the Tweetchain protocol, this kind of property
has been checked by stating an injective agreement goal, on
the transaction identifier, for each ordered pair of participants
to the protocol. In fact, the aim was to check that, in the
Registration phase of x, each of the involved participants (y
andW) run the protocol with x agreeing on the transaction id
used by him/her to achieve the registration to the community.
Thus, four statements have been added to the Goals section
of AnB, expressing the agreement between x and W, and x
and y, from the points of view of both the participants. The
analysis has been carried out assuming that the adversarywas
not able to steal the private keys of the participants.

The injective agreement properties have been checked in
the hand-generated model, too. This has been accomplished
by adding the necessary labels to the rules and by writing the
lemmas in the proper way. The results are reported in Table 5.

123

An approach for the automatic verification of blockchain protocols: the Tweetchain case study

Table 5 Transaction authenticity in the Registration scenario (Fig. 5):
results of lemmas proof

Participants interaction Generated Manual

(x,W) True True

(W.x) True True

(x,y) True True

(y,x) False False

It is possible to notice that the lemma aimed at checking
the injective agreement between x and y, from the point of
view of y, resulted false in both the models. This means
that from the point of view of y it cannot be guaranteed that
the agreement has been done between x and y themselves.
Moreover, by analysing the protocol with the Tamarin Prover
in the interactive mode, the generated counterexample graph
shows the steps of a possible replay attack.

A final remark is related to the automatic generation of the
properties to check. At the contrary of the cases described
in Sect. 5.1, the generation of the goals is not mediated by
Tamarin’s lemma templates but are injected directly into the
AnB. The reason is the support for this kind of analysis by
Keller’s tool. Such goals are reported in Listing 5 and are
easy to generate from the UML model given the id of the
transaction to verify.

Listing 5 AnB goals for injective agreement analysis

1 [IA_x_W] x injectively agrees with W
on TID_1_x;

2 [IA_W_x] W injectively agrees with x
on TID_1_x;

3 [IA_x_y] x injectively agrees with y
on TID_1_x;

4 [IA_y_x] y injectively agrees with x
on TID_1_x;

6 Conclusions and future works

This paper presents a model-driven approach for the auto-
mated generation of formal models, oriented to the security
analysis of blockchain-based protocols. The automated pro-
cess has been applied to the specific case study of the
Tweetchain protocol. At the current point of development,
the paper means a first experiment in the application of
model-driven principles to blockchain protocols design and
verification. The experimentation leads to the definition of a
first UML profile for the definition of generic transaction-
based systems, and also to the definition of a specific
notation for the Tweetchain data and messages, as well as on
model-to-model transformations. The transformations gen-
erate analyzable Tamarin models from UML specifications.

The Tamarin models can be easily analyzed, and first opti-
mization/simplification approaches show a meaningful per-
formance andmemory occupation improvement with respect
to the hand-made model. Furthermore, MDE approaches
enable a more reproducible modelling experience for the
engineering since UML is a well-known language. Guide-
lines would complete the support to the modeller.

This experience means a first effort in the proposed
toolchain. More work is needed to consolidate it by: (a)
developing the profile according to the approach in Fig. 2,
(b) improving it by improving security goals specification,
and (c) applying the query-template approach at AnB level.
Other, deeper future research threads could be considered:

• To explore other blockchain-based protocols to refine
both the modelling and the generational approach;

• To explore A&B-level performance-optimized models
and their generation fromUML. This could be done in an
open framework where optimization-oriented toolchain
“bricks” may produce scalable code;

• To use and extend theUMLprofile to bridge the twomain
investigation lines of the blockchain modelling research,
i.e., protocols (as in this work) and applications (e.g.,
smart contract generation and verification).

Acknowledgements The work of Mariapia Raimondo was formerly
funded by the grant “Orio Carlini” for young researchers 2019—
GARR Consortium (Italy). Currently, she is granted by INPS—Istituto
Nazionale di Previdenza Sociale (Italy)—with the XXXVI cycle PhD
program. S. Bernardi and J. Merseguer were supported by the Spanish
Ministry of Science and Innovation [ref. PID2020-113969RB-I00].

Funding Open access funding provided by Università degli Studi della
Campania Luigi Vanvitelli within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Background

A.1 UML and profiling

The Unified Modeling Language (UML) [45] is a gen-
eral purpose, Object Management Group (OMG) standard,
modeling language for software system specification. The

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

M. Raimondo et al.

semantics ofUMLdiagrams is expressed in natural language,
while their abstract syntax is provided in terms ofUMLmeta-
models, which are models of a modelling language. UML
encompasses different types of diagrams which enable to
model both the structure and the behavior of a software sys-
tem. Besides, UML has been also suggested in [1] for the
design of decentralized blockchain applications.

In this work, we consider two types of behavioral dia-
grams:UMLuses cases and sequence diagrams. In particular,
the former are used to define the context of the protocol, in
terms of the roles of the participants and the protocol phases.
The latter is the most suitable diagram to be used for the
protocol specification, that is the participants involved in the
protocol and their interactions.

The UML profiling is a lightweight meta-modelling tech-
nique to extend UML, since the standard semantics of UML
model elements can be refined in a strictly additive manner.
Stereotypes and tags are themain extensionmechanismsused
to define a UML profile. In particular, a stereotype extends
one or more UML meta-classes and can be applied to those
UML model elements that are instantiations of the extended
meta-classes. For example, in Table 1, theParticipant stereo-
type extends the Lifeline meta-class, then the former can be
applied to a lifeline of a sequence diagram (Fig. 5). Just like
classes, a stereotype can have properties which are referred
to as attributes or tags. When a stereotype is applied to a
model element, the value assigned to a stereotype property
is called tagged-value. In the previous example, transactions
is a tag of Participant stereotype, with multiplicity “*” and
type Transaction: thus, a tagged-value is a list of Transac-
tion-typed values.

A.2 Alice and Bob notation

The Alice & Bob notation is a simple and intuitive language
useful to specify communication protocols.

More in detail, the principals involved in an A&B proto-
col are in a finite number and usually denoted with Alice,
Bob, Charlie, ..., and a protocol, in this notation, is a list of
messages.

The structure of a message clearly depends on the com-
munication type, but in general it is of the following type:

A → B : msg

in which A and B are honest principals and A sends a mes-
sage msg to B. As an example, a message could consist of a
plaintext ciphered with the public key ofB or a nonce authen-
ticated with the secret key of A, and the A&B notation would
be, respectively:

A → B : {plaintext}pk(B)

A → B : {nonce}sk(A)
The AnB language [6], used in the automatic translation

from AnB to Tamarin [44], is a formal language based on
the Alice and Bob notation. In particular, there are four main
blocks in an AnB protocol specification that might be used.
First, a Declaration block can be used to explicitly state
user-defined functions, in order to be able to use them in
the protocol. Then, for each participant there might be the
need to describe its initial Knowledge, that describes the val-
ues that are known to a principal at the very beginning (i.e.,
before the sending of the firstmessage) and at any time during
protocol execution. Then, there is an Actions block, which
is mandatory, since it specifies the protocol itself; it consists
of a sequence of messages, as stated before, but in this case
they have the following form

[label] A → B (n1, . . . , ny) : msg

where label is a unique identifier given to the specific mes-
sage exchange and (n1, . . . , ny) are fresh variables used in
msg.

Finally, there is a Goals block that includes the specifica-
tion of the security properties to be verified. The properties
concern the secrecy and authenticity of messages.

An example of authenticity property is the following:

[auth] A injectively agrees with B on n

The meaning of this goal is that whenever A completes
a run of the protocol—apparently with B—then B has been
running the protocol—apparently with A—and the two par-
ticipants have a consistent view on n (that is, they have the
same value for it).

A.3 Tamarin prover

The Tamarin Prover [3] is a symbolic model checker largely
used for the modeling and analysis of cryptographic proto-
cols. According to the classical model checking approach, a
security protocol model and a specification of the desired
properties have to be fed to the Tamarin Prover to begin
the analysis process; furthermore, the tool also allows the
user to add rules to check the behaviour of the adversary.
Protocols and properties can be specified, respectively, with
labeled multiset rewriting rules and first order logic formulas
over symbols (i.e., the lemmas). The adversary model, set by
default, is the Dolev–Yaomodel [38]: such an adversary con-
trols the network and can delete, inject, modify and intercept
messages on the network.

There are two ways of constructing proofs (i.e., analysing
the model): the automated mode, that combines deduction
and equation reasoning with heuristic to guide the proof

123

An approach for the automatic verification of blockchain protocols: the Tweetchain case study

search; and the interactive mode, which allows the user to
manually guide the proof search while still exploiting the
automated proof search efficiency. In both the cases, the
Tamarin Prover generates a Labeled Transition System from
the protocol and the adversary models, where: (1) the states
are multisets of facts, and the initial state is the empty set;
and (2) each transition transforms a state (i.e., a multiset of
facts) into another state, according to the used rewrite rule.
Security properties to be verified are specified using lemmas,
which are identified by a name and a guarded first-order for-
mula over the action facts (i.e., the transition labels). There
are two types of lemmas: exists-trace lemmas, to check the
existence of a trace holding the property, and all-traces, to
verify whether the property holds for all the possible traces.
An example of the latter type is shown in Listing 6.

Listing 6 All-traces lemma

1 lemma propertytocheck:
2 " All A B m #i. Message_received(A,B,m)

@i
3 ==>
4 Ex #j. Message_sent(A,B,m) @j & j<i"

Moreover, it is possible to constrain the state-space explo-
ration by means of special lemmas named restriction, which
allow the analyst to define properties that each trace must
satisfy. Finally, when modelling a non-trivial protocol, it
might happen to run into the partial deconstruction, which
can lead to non-termination when verifying lemmas. A way
to overcome this problem is to use the keyword sources in
some lemmas, which will help in the pre-computation phase.
Recently, the Tamarin Prover developers have improved the
tool providing support to the users by automating the gener-
ation of sources lemmas [46].

References

1. Ramamurthy, B.: Blockchain in Action. Manning, Shelter Island
(2020)

2. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain Technology
Overview. Technical report, National Institute of Standards and
Technology (2018). https://doi.org/10.6028/NIST.IR.8202

3. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN
Prover for the Symbolic Analysis of Security Protocols. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 8044
LNCS, pp. 696–701 (2013). https://doi.org/10.1007/978-3-642-
39799-8_48

4. Boyd, C., Gjøsteen, K., Wu, S.: A Blockchain Model in Tamarin
and Formal Analysis of Hash Time Lock Contract. In: Bernardo,
B., Marmsoler, D. (eds.) 2nd Workshop on Formal Methods
for Blockchains, FMBC@CAV 2020, July 20-21, 2020, (Vir-
tual Conference). OASIcs, vol. 84, pp. 5–1513. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, Los Angeles (USA) (2020).
https://doi.org/10.4230/OASIcs.FMBC.2020.5

5. Basin, D., Keller, M., Radomirović, S., Sasse, R.: Alice and Bob
Meet Equational Theories. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 9200, pp. 160–180 (2015).
https://doi.org/10.1007/978-3-319-23165-5_7

6. Mödersheim, S.: Algebraic Properties in Alice and Bob Notation.
In: Proceedings of theTheForth InternationalConference onAvail-
ability, Reliability and Security, ARES 2009, March 16–19, 2009,
pp. 433–440. IEEEComputer Society, Fukuoka (2009). https://doi.
org/10.1109/ARES.2009.95

7. Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A.: Overcoming
Limits of Blockchain for IoT Applications. In: ACM International
Conference Proceeding Series, vol. Part F130521 (2017). https://
doi.org/10.1145/3098954.3098983

8. Raimondo, M., Bernardi, S., Marrone, S.: On formalising and
analysing the Tweetchain protocol. In: ICISSP 2021—Proceedings
of the 7th International Conference on Information Systems Secu-
rity and Privacy, pp. 781–791 (2021)

9. Singh, A., Parizi, R.M., Zhang, Q., Choo, K.-K.R., Dehghantanha,
A.: Blockchain smart contracts formalization: approaches and
challenges to address vulnerabilities. Comput. Secur. 88, 101654
(2020). https://doi.org/10.1016/j.cose.2019.101654

10. Duan, Z., Mao, H., Chen, Z., Bai, X., Hu, K., Talpin, J.P.: Formal
modeling and verification of blockchain system. In: Proceedings of
the 10th International Conference onComputerModeling and Sim-
ulation. ICCMS 2018, pp. 231–235. Association for Computing
Machinery, New York (2018). https://doi.org/10.1145/3177457.
3177485

11. Egger, C., Graf, M., Küsters, R., Rausch, D., Ronge, V., Schröder,
D.: A Security Framework for Distributed Ledgers. IACR Cryptol.
ePrint Arch., vol. 145 (2021)

12. Thin, W.Y.M., Dong, N., Bai, G., Dong, J.S.: Formal analysis of
a proof-of-stake blockchain. In: 2018 23rd International Confer-
ence on Engineering of Complex Computer Systems (ICECCS),
pp. 197–200 (2018). https://doi.org/10.1109/ICECCS2018.2018.
00031

13. Tolmach, P., Li, Y., Lin, S.-W., Liu, Y.: Formal Analysis of Com-
posable DeFi Protocols. In: Bernhard, M., Bracciali, A., Gudgeon,
L., Haines, T., Klages-Mundt, A., Matsuo, S., Perez, D., Sala,
M., Werner, S. (eds.) Financial Cryptography and Data Security.
FC 2021 International Workshops, pp. 149–161. Springer, Berlin
(2021)

14. Modesti, P., Shahandashti, S.F., McCorry, P., Hao, F.: Formal mod-
elling and security analysis ofBitcoin’s payment protocol. Comput.
Secur. 107, 102279 (2021). https://doi.org/10.1016/j.cose.2021.
102279

15. Camenisch, J.,Krenn, S.,Küsters,R.,Rausch,D.: iUC:flexible uni-
versal composability made simple. In: Advances in Cryptology—
ASIACRYPT 2019—25th International Conference on the Theory
and Application of Cryptology and Information Security, Decem-
ber 8–12, 2019, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 11923, pp. 191–221. Springer, Kobe (2019)

16. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating Specification and
Programs for System Modeling and Verification. In: 2009 Third
IEEE International SymposiumonTheoreticalAspects of Software
Engineering, pp. 127–135 (2009). https://doi.org/10.1109/TASE.
2009.32

17. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verifi-
cation under fairness. In: Bouajjani, A., Maler, O. (eds.) Computer
Aided Verification, pp. 709–714. Springer, Berlin (2009)

18. Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: a symbolic
model checker for security protocols. Int. J. Inf. Secur. 4(3), 181–
208 (2005). https://doi.org/10.1007/s10207-004-0055-7

19. König, L., Korobeinikova, Y., Tjoa, S., Kieseberg, P.: Compar-
ing blockchain standards and recommendations. Future Internet
(2020). https://doi.org/10.3390/fi12120222

20. Blockchain Ecosystem Interoperability. Technical report, Object
Management Group (2019). RFI: mars/19-08-03

123

https://doi.org/10.6028/NIST.IR.8202
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.4230/OASIcs.FMBC.2020.5
https://doi.org/10.1007/978-3-319-23165-5_7
https://doi.org/10.1109/ARES.2009.95
https://doi.org/10.1109/ARES.2009.95
https://doi.org/10.1145/3098954.3098983
https://doi.org/10.1145/3098954.3098983
https://doi.org/10.1016/j.cose.2019.101654
https://doi.org/10.1145/3177457.3177485
https://doi.org/10.1145/3177457.3177485
https://doi.org/10.1109/ICECCS2018.2018.00031
https://doi.org/10.1109/ICECCS2018.2018.00031
https://doi.org/10.1016/j.cose.2021.102279
https://doi.org/10.1016/j.cose.2021.102279
https://doi.org/10.1109/TASE.2009.32
https://doi.org/10.1109/TASE.2009.32
https://doi.org/10.1007/s10207-004-0055-7
https://doi.org/10.3390/fi12120222

M. Raimondo et al.

21. Ellervee, A., Matulevic̆ius, R., Mayer, N.: A comprehensive ref-
erence model for blockchain-based distributed ledger technology.
In: ER Forum/Demos (2017)

22. Skotnica, M., Pergl, R.: Das contract—a visual domain specific
language for modeling blockchain smart contracts. In: Aveiro, D.,
Guizzardi, G., Borbinha, J. (eds.) Advances in Enterprise Engi-
neering XIII, pp. 149–166. Springer, Cham (2020)

23. UMLTM Profile for Modeling Quality of Service and Fault Tol-
erance Characteristics and Mechanisms Specification. Technical
report, Object Management Group (2005). formal-08-04-05

24. Lodderstedt, T., Basin, D., Doser, J.: Secureuml: a UML-based
modeling language for model-driven security. In: Jézéquel, J.-M.,
Hussmann, H., Cook, S. (eds.) UML2002—The Unified Modeling
Language, pp. 426–441. Springer, Berlin (2002)

25. Jürjens, J.: Secure Systems Development with UML. Springer,
Berlin (2005). https://doi.org/10.1007/b137706

26. Rodríguez, R.J., Merseguer, J., Bernardi, S.: Modelling secu-
rity of critical infrastructures: a survivability assessment. Com-
put. J. 58(10), 2313–2327 (2015). https://doi.org/10.1093/comjnl/
bxu096

27. Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis
of security-design models. Inf. Softw. Technol. 51(5), 815–831
(2009). https://doi.org/10.1016/j.infsof.2008.05.011

28. Jürjens, J., Fox, J.: Tools for model-based security engineering.
In: Osterweil, L.J., Rombach, H.D., Soffa, M.L. (eds.) 28th Inter-
national Conference on Software Engineering (ICSE 2006), May
20–28, 2006, pp. 819–822. ACM, Shanghai (2006). https://doi.org/
10.1145/1134285.1134423

29. Kent, S.:Model driven engineering. In: Butler,M.J., Petre, L., Sere,
K. (eds.) IFM. Lecture Notes in Computer Science, vol. 2335, pp.
286–298. Springer, Berlin (2002)

30. Ivanov, I., Bézivin, J., Aksit, M.: Technological spaces: an ini-
tial appraisal. In: 4th International Symposium on Distributed
Objects and Applications, DOA 2002—University of California,
Irvine, United States, pp. 1–6 (2002). https://research.utwente.nl/
en/publications/technological-spaces-an-initial-appraisal

31. Bézivin, J., Devedzic, V., Djuric, D., Favreau, J.-M., Gasevic, D.,
Jouault, F.: An m3-neutral infrastructure for bridging model engi-
neering and ontology engineering. In: Konstantas, D., Bourrières,
J.-P., Léonard, M., Boudjlida, N. (eds.) Interoperability of Enter-
prise Software and Applications, pp. 159–171. Springer, London
(2006)

32. Bézivin, J., Kurtev, I.: Model-based Technology Integration with
theTechnical SpaceConcept.Metainformatics Symposium (2006).
https://hal.archives-ouvertes.fr/hal-00483587

33. PlantUML. https://plantuml.com/en/sequence-diagram. Accessed
11 July 2021

34. Web Sequence Diagrams. https://www.websequencediagrams.
com/. Accessed 11 July 2021

35. Cortellessa, V., Marco, A.D., Inverardi, P.: Model-Based Software
Performance Analysis. Springer, Berlin (2011). https://doi.org/10.
1007/978-3-642-13621-4

36. Bernardi, S., Merseguer, J., Petriu, D.C.: Model-Driven Depend-
ability Assessment of Software Systems. Springer, Berlin (2013).
https://doi.org/10.1007/978-3-642-39512-3

37. Bernardi, S., Gentile, U., Marrone, S., Merseguer, J., Nardone, R.:
Security modelling and formal verification of survivability prop-
erties: application to cyber-physical systems. J. Syst. Softw. 171,
110746 (2021). https://doi.org/10.1016/j.jss.2020.110746

38. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE
Trans. Inf. Theory 29(2), 198–208 (1983). https://doi.org/10.1109/
TIT.1983.1056650

39. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability pro-
file within MARTE. Softw. Syst. Model. 10(3), 313–336 (2011).
https://doi.org/10.1007/s10270-009-0128-1

40. Bernardi, S., Flammini, F., Marrone, S., Mazzocca, N., Merseguer,
J., Nardone, R., Vittorini, V.: Enabling the usage of UML in the
verification of railway systems: the dam-rail approach. Rel. Eng.
Sys. Saf.120, 112–126 (2013). https://doi.org/10.1016/j.ress.2013.
06.032

41. Selic, B.: A systematic approach to domain-specific language
design using UML. In: 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Comput-
ing (ISORC’07), pp. 2–9 (2007)

42. Lagarde, F., et al.: Improving UML profile design practices by
leveraging conceptual domain models. In: 22nd International Con-
ference on Automated Software Engineering, pp. 445–448. ACM,
Atlanta (2007)

43. Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A.: Tweetchain:
an alternative to blockchain for crowd-based applications. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 10360
LNCS, pp. 386–393 (2017). https://doi.org/10.1007/978-3-319-
60131-1_24

44. Keller, M.: Converting Alice&Bob Protocol Specifications to
Tamarin. Bachelor’s Thesis, Swiss Federal Institute of Technology
Zurich (2014)

45. OMG: Unified Modelling Language: Superstructure. Object Man-
agement Group (2015). Object Management Group. Version 2.5,
formal/15-03-01

46. Cortier, V., Delaune, S., Dreier, J.: Automatic generation of sources
lemmas inTamarin: towards automatic proofs of security protocols.
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) 12309 LNCS, pp. 3–22 (2020). https://doi.org/10.1007/978-
3-030-59013-0_1

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/b137706
https://doi.org/10.1093/comjnl/bxu096
https://doi.org/10.1093/comjnl/bxu096
https://doi.org/10.1016/j.infsof.2008.05.011
https://doi.org/10.1145/1134285.1134423
https://doi.org/10.1145/1134285.1134423
https://research.utwente.nl/en/publications/technological-spaces-an-initial-appraisal
https://research.utwente.nl/en/publications/technological-spaces-an-initial-appraisal
https://hal.archives-ouvertes.fr/hal-00483587
https://plantuml.com/en/sequence-diagram
https://www.websequencediagrams.com/
https://www.websequencediagrams.com/
https://doi.org/10.1007/978-3-642-13621-4
https://doi.org/10.1007/978-3-642-13621-4
https://doi.org/10.1007/978-3-642-39512-3
https://doi.org/10.1016/j.jss.2020.110746
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1016/j.ress.2013.06.032
https://doi.org/10.1016/j.ress.2013.06.032
https://doi.org/10.1007/978-3-319-60131-1_24
https://doi.org/10.1007/978-3-319-60131-1_24
https://doi.org/10.1007/978-3-030-59013-0_1
https://doi.org/10.1007/978-3-030-59013-0_1

	An approach for the automatic verification of blockchain protocols: the Tweetchain case study
	Abstract
	1 Introduction
	2 Related work
	3 Approach for automatic verification
	3.1 Overview of the approach
	3.2 Towards a UML profile for blockchain protocols

	4 Case study: modelling
	4.1 UML modelling
	4.2 From UML to AnB
	4.3 The Tamarin model

	5 Case study: validation and verification
	5.1 Model validation
	5.2 Verification of transaction authenticity

	6 Conclusions and future works
	Acknowledgements
	Appendix A: Background
	A.1 UML and profiling
	A.2 Alice and Bob notation
	A.3 Tamarin prover

	References

