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Abstract

Fulfillment of QoS requirements for systems deployed in the Internet is be-
coming a must. A widespread characteristic of this kind of systems is that they
are usually subject to highly variable and bursty workloads. The allocation of re-
sources to fulfill QoS requirements during the peak workloads could entail a waste
of computing resources. A solution is to provide the system with self-adaptive
techniques that can allocate resources only when and where they are required.
We pursue the QoS evaluation of workload-aware self-adaptive systems based on
stochastic models. In particular, this work proposes an accurate modeling of the
workload variability and burstiness phenomena based on previous approaches that
use Markov Modulated Poisson Processes. We extend these approaches in order
to accurately model the variations of the workload strongly influence the QoS of
the self-adaptive system. Unfortunately, this stochastic modeling may lead to a
non tractable QoS analysis. Consequently, this work also develops an efficient
procedure for carrying out the QoS analysis.

Keywords: Adaptability, Quality of Service, Stochastic Petri nets, Markov
models, Workload modeling

1. Introduction

The Quality of Service (QoS) offered by systems is an important matter for
their successfulness in the marketplace. This is exacerbated nowadays, in the era
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of Internet services and online applications, where the popularity of systems with
good functionality may be jeopardized by poor QoS, such as low performance
or scarce availability. Examples of site degradation due to high workloads of
Internet traffic abound, from legitimate requests, such as “flash crowds” effects,
to disruptions due to malicious requests, such as denial of service attacks.

In order to build systems with good QoS, the formal methods community has
achieved important advances [4]. Among other results, the QoS analysis leads to
the identification of the amount of resources allowing a system to fulfill the re-
quired QoS (e.g., [5, 33]). However, in the last years the deployment of software
systems has changed. Currently, they are not constrained to execute using a pre-
defined number of resources, on the contrary, they can dynamically adjust their
deployment as a response to changes in their execution context, such as changes
in the workload. This could be obtained, for example, exploiting the elasticity
and auto-scaling properties offered by cloud-computing. Hence, software service
providers save costs during periods of time when the workload is low, but can
also provide good QoS during workload peaks by provisioning an extra amount
of resources temporarily. This type of systems are included in what it is called
self-adaptive systems [12].

The model-based QoS analysis of a software that adapts its deployment to
fulfill the required QoS while allocating the minimum amount of resources, is a
challenging research topic that has not yet been completely addressed. Beyond
traditional models of software behavior, we need models that represent, among
others: adaptation policies, monitoring of the environment (to manage false posi-
tive adaptations or lacks of adaptations -false negatives-) and workload variations.
In this work, we concentrate on the latter, the modeling of workload variations
over time in the Internet, such as the requests supported by services, applications
and websites.

It has been previously observed that the workload received by most of the sys-
tems operating on the Internet is highly variable and shows bursty behavior [8, 21],
i.e., irregular spikes of congestion. Therefore, the models used to analyze QoS
should be able to represent these characteristics. Otherwise, the model analy-
sis can lead to optimistic results; e.g., it declares fair resource utilizations and
probability of congestion, while in the real setting they would not be guaranteed.
Formal methods of the stochastic family that have proved to be useful in mod-
eling workloads with burstiness are the Markov Arrival Processes (MAP) and a
concrete subtype of them, the Markov Modulated Poisson Process (MMPP) [16].
In particular, work on fitting MMPP [16, 18, 20, 21] and MAP [10, 11, 22] param-
eters from workload traces with burstiness is very useful for the analysis of QoS
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properties, such as performance or availability, of a wide range of systems.
Considering workload-aware self-adaptive systems carefully, we can observe

that they should adapt (e.g., provisioning or release of resources) when they rec-
ognize that the workload is changing. However, the usual techniques of MMPP
fitting do not provide an accurate representation of the periods of time when the
workload is changing. Although this fact does not prevent an accurate analysis
of non-adaptive systems, it hampers the precise analysis of systems that adapt
resources due to the variable workload, as we will illustrate later.

In this work, we propose an accurate modeling and an efficient QoS anal-
ysis of self-adaptive systems that execute under variable and bursty workloads.
The accurate modeling builds on our previous work in [31], where we exploited
an MMPP(2) model, now we extend it considering an MMPP(N) model, which
allows for dealing with both, short and long term variability in the workload.
However, this outstanding modeling when combined with the self-adaptive system
model has a price, it may hamper the analysis, even it can turn into a non-tractable
analysis problem. Hence, here we develop an approach based on Markov reward
models for carrying out an efficient QoS analysis.

The rest of the paper is organized as follows. Section 2 motivates the need
of accurate models for representing bursty workloads affecting adaptive systems.
Section 3 shows the usefulness of MMPPs for modeling bursty workloads, but
also its limitations for adaptive systems. Sections 4, 5 and 6 address these limita-
tions. Section 7 evaluates the feasibility of the solutions here proposed. Section
8 discusses the benefits and limitations of the solution. Section 9 revises related
work. Section 10 offers a conclusion.

2. Motivation

The goal of this section is twofold. Firstly, we want to show the usefulness of
the adaptive systems for fulfilling QoS requirements in the context of bursty work-
loads; later, we recall the current modeling of bursty workloads using advanced
stochastic formalisms.
Usefulness of the adaptive systems. Let us consider a service composed of just a
single computational activity requiring an average 25 milliseconds of processing
time to serve a single request. The system can queue up to ten requests, serving
them following a FIFO policy, once the queue is full new requests will be dis-
carded. The QoS requirement is that at least 99% of requests must be served, i.e.,
an availability requirement.
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Figure 1: Requests every 10 seconds

We have implemented two Java programs for studying the QoS requirement:
one program simulates a static system that uses a fixed number of servers to pro-
cess the requests, and another that simulates an adaptive system that dynamically
adapts the number of servers based on the current workload. Table 1 shows the
results obtained by the execution of the programs using the workload1 in Figure
1. For the static system, seven servers were required to achieve an availability of
99.07% (the availability obtained using six servers was 98.31%).

For the adaptive system we first calculated, for each possible number of servers,
the maximum arrival rate of requests that they can support and still offer 99% of
availability. Then, we simulated an adaptive system that adds one more server

1Along the paper we use a real bursty workload trace, illustrated in Figure 1, which plots the
monitored arrival times of requests to the FIFA 1998 World Cup site [36]. This trace, despite its
age, is yet one of the most detailed workload traces of a real service that can be found available
for the public on the Web. The y axis counts the requests every ten seconds received by the Paris
region server, while the x axis represents the flow of time. The shape of the graph depicts a quite
bursty workload: the mean arrival rate of requests is 46.9 per second, but during 90% of the time
it is under 86.2 req/s, while there are many peaks of short duration whose arrival rate can easily
reach 350 req/s (i.e., around 7 times higher than the mean).
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No. servers used Availability
Static system 7 99.07%

Adaptive system 3.62 99.943%

Table 1: Simulation results

(i.e., it changes from using c servers to c+ 1) when the workload exceeds the cal-
culated maximum arrival rate for c servers; and releases one server (i.e., it changes
from using c+1 to c) when the workload is below the calculated maximum arrival
rate for c− 2 servers; i.e., we followed a simple hysteresis-based approach to re-
duce the adaptations that were false positives. We considered that a server needs
1 minute for booting. Under these settings, the second row in Table 1 shows that
an average number of 3.63 servers can achieve an availability of 99.94%. The
number of servers used at any time is depicted in Figure 2.

As a conclusion we observe that the adaptive system can offer better QoS
-more availability with less servers- than the static one. In fact, the former is pro-
visioning servers during the bursty periods while releases them when they are no
longer required.

Stochastic formalisms for modeling bursty workloads. Firstly, we modeled
the static system as follows. The arrival process used was a Poisson process with
λ = 46.9 req/s, i.e., the average arrival rate in the trace in Figure 1. In this case, the
system and the workload exactly correspond to the classical M/M/c/B queuing
model. Figure 3 shows the M/M/c/B model using the Petri nets formalism that
will be used in forthcoming evaluations along the paper. The service rate was
exponentially distributed with mean µ = 40, which is the inverse of the 25ms of
the processing time. Secondly, we evaluated the queue for a different number of
servers c, being the system capacity B = c + 10, in order to represent the ten
queued requests. Thirdly, we analyzed such model and obtained that using two
servers the 99.91% of requests can be served, result that is pretty far away from
the one obtained in the simulation, which required seven servers for satisfying the
99.07% of requests.

The Poisson process as workload model is broadly used in stochastic analysis.
However, it does not offer good results for modeling workloads with the bursty
phenomenon, as it was previously presented in research works (e.g., [30]). Being
the goal of this work the accurate modeling of bursty workloads for the QoS anal-
ysis of self-adaptive systems, we pursue more detailed descriptions of workload
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Figure 2: Number of Active Servers

variability. Next section starts the discussion.

3. Bursty Workload Modeling for Adaptive Systems

From the bursty workload trace in Figure 1 we can observe that the arrival rate
is highly variable in the long term, meaning that the changes in the arrival rates
differ by orders of magnitude. However, at the same time it is also highly proba-
ble that in the short term, i.e., few seconds in the future, the arrival rate will differ
from the current one, but not much. These long and short term variabilities are
well represented by the concept of multiple workload states, where each state is
governed by an arrival rate. Since the arrival rate in each workload state is differ-
ent, then, at a certain point in time it will be completely different from the arrival
rate received a long time ago, hence, the long term variability is well represented.
Regarding the short term variability, this is also modeled since the inter-arrival
time between each two consecutive requests at each state follows a probability
distribution function, instead of being a constant value. When the probability dis-
tribution is an exponential one, these concepts are exactly the ones represented by
a Markov Modulated Poisson Process (MMPP).
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Figure 3: Stochastic Petri net representing the same M/M/c/B model of our example system

3.1. Markov Modulated Poisson Processes and Workload Fitting
MMPPs have been largely and successfully used in the literature as work-

load models for systems evaluation, mainly network traffic modeling [16, 18, 20].
MMPPs are suitable to model event arrival processes, high variability and autocor-
relation for event generation. An MMPP is a stochastic process, the arrival rate
at each moment is determined by the states of a continuous-time Markov chain
(CTMC). So, when the chain is in state sn, the arrival process is a Poisson pro-
cess with rate λn. An MMPP with N states is defined by the NxN infinitesimal
generator Q, which governs the state changes in the MMPP, and a vector Λ of N
components representing the arrival rates in each state.

Q =


−q11 q12 ... q1N
q21 −q22 ... q2N

...
qN1 qN2 ... −qNN

 ,Λ = (λ1, ..., λN),

where ∀n, λn > 0 and ∀n, n′, (qnn′ ≥ 0 and qnn =
∑

n′:n′ 6=n qnn′).
To fit the parameters of the MMPP with N states we follow the algorithm pre-

sented in [21] and surveyed in [25]. Appendix A briefly recalls this algorithm.
The algorithm requires as input a trace of counts C as the one that generated Fig-
ure 1 and a “width parameter” called a whose value is inversely correlated with
the number of states for the resulting MMPP. We have applied the algorithm to
the workload trace in Figure 1 with value of a = 2. We obtained an MMPP of
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34 states and we applied such MMPP(34) as workload model to the static sys-
tem described in Section 2. In this way we obtain an MMPP/M/c/B queueing
model whose analysis results show that c = 7 servers are necessary to obtain an
availability of 99.11%. This is a very good result, pretty close to the 99.07% in
Table 1. So the MMPP(34) largely improved the results obtained by the former
Poisson process in the M/M/c/B queue, which missed the burstiness character-
istic. However, when the purpose is to evaluate a self-adaptive system instead of
a static one, we have found limitations in the utilization of MMPPs as workload
models. Next subsection describes these limitations and our proposal to deal with
them.

3.2. MMPP(N) for Adaptive Systems
In order to easily illustrate the limitations of using MMPP(N) as workload

models when evaluating self-adaptive systems, let us consider the basic case where:
(1) the workload arrival rate remains constant for a certain time, (2) then it starts
increasing up to reaching a certain threshold, say a target arrival rate, (3) it re-
mains for a certain time in this threshold, (4) and then it starts decreasing until
reaching the initial arrival rate, and then it cycles from (1) again. Figure 4 graph-
ically depicts this situation, it has been artificially synthesized just for illustrating
the limitation of MMPP(N).

Consider the application, over the trace in Figure 4, of the algorithm in Ap-
pendix A for MMPP fitting. It yields N > 2 states, with arrival rates λ1 > λ2 >
... > λN . In this case, where the variations are always periodic, half of the times
the arrival rate in the next state increases and half of times decreases. For instance,
in Figure 4, we observe that in I, III and V the next arrival rate is higher (work-
load is increasing) and in II, IV and VI the next arrival rate is lower (workload is
decreasing). For this reason, the algorithm provides a fitted MMPP(N) modelling
that, being in si, the probabilities to increment (decrement) the arrival rate in the
next workload change are the very same. This happens for each intermediate state
si, 1 < i < N , which means that states si−1 and si+1 are equiprobable from si.
This is statistically true indeed. However, this statistical truth does not represent
well the actual behavior of the arrival rate variations. Looking at the trace, when
the arrival rate is 50 and it comes from a tendency of increments, as in I, III and V,
the next arrival is always above 50. However, the MMPP models an equiprobable
choice between values above and below 50. The same happens for II, IV and VI,
the next arrival rate is always below 50, rather than an equiprobable choice, as the
MMPP models.
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Figure 4: A synthetic workload trace with constant increments and decrements

To illustrate this limitation, we fitted the parameters of an MMPP with the
data in the trace synthesized for depicting Figure 4. We obtained an MMPP(6)
workload model and we wondered how accurately this model would represent the
changes in the workload. We performed several experiments that simulated the
arrival rate produced by this MMPP(6). Figure 5 depicts six samples of these ex-
periments, illustrating the obtained variations of the arrival rate along time. Only
the top-right chart brought a workload behavior similar to what it was expected.
The other experiments failed in producing the expected workload variations due
to the following reasons:

• The workload starts increasing soon after it has started to decrease, i.e.,
before reaching its minimum, as it happens in the top-middle and bottom-
left chart.

• The workload starts decreasing before reaching its maximum, as it happens
in the bottom-right chart.

• The workload, instead of ranging from the lowest to the highest, keeps its ar-
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Figure 5: Six samples of the arrival rate generated by the MMPP fitted using the data in Figure 4

rival rate too much time in a medium value, fact that happens in the bottom-
middle chart.

Therefore, even though the fitting of the MMPP is correct from a statistical
point of view, in terms of arrival rates and transition rates, it is not correct from
the point of view of the probability of providing large increments or decrements.
For instance, this MMPP(6) has a probability of 0.54 = 0.0625 for completing
the sequence s1 → s2 → s3 → s4 → s5 → s6, while in the trace (Figure 4)
this happens every time the workload starts decreasing from its maximum value.
Therefore, we can observe that this characteristic of the formalism is not very
useful for modeling large continuous increments or decrements, say “tendencies”,
in the workload. In fact this procedure for fitting MMPP(N) fails in the concept
that the MMPP(2) used in [31] represented well which was the complete change
between low workloads and bursts of requests.

Considering that we pursue the evaluation of self-adaptive systems that change
their configuration depending on the workload they are receiving and that the
workload can show “tendencies”, then the statistically correct parameterization
is not enough because it incurs in a lack of accuracy in some important charac-
teristics of the workload. Instead, we look forward to a workload model able to
represent both, bursts and “tendencies”. Figure 6 provides evidence of the “ten-
dencies”. It represents an excerpt of Figure 1 –concretely, from 132300 to 133000
in the x-axis–. It shows an increasing tendency of the real arrival rate, from around
500 to 3000 requests every 10 seconds, in a time interval of few minutes.
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Lastly, a limitation arises if the analysis technique of the system model is based
on state-space enumeration, such as those that can be applied to Markov chains or
Petri nets. To exemplify this limitation, let us consider the nominal behavior of a
self-adaptive system stochastically modeled by k1 states, and its workload mod-
eled by a MMPP(k2) which consists of k2 states. So, for system analysis, their
aggregation produces a complete model that, in the worst case, has k1 · k2 states.
The reason is simple, for each system state the workload can be in any of its states.
Accurate workload models, as the ones proposed in this work, may entail a large
number of states. These analysis techniques should be carefully used in order to
avoid state explosion, which would make the analysis intractable.

Proposed solution
For a self-adaptive system that adapts due to workload changes, then periods

in which the workload is incrementing or decrementing are of special importance
since the adaptation should occurr. Let us call them transient periods. For this
reason, we propose to identify the stable periods in the workload (i.e., periods
when the workload does not vary much), to keep only the states in the MMPP that
represent these periods2, and to model separately and explicitly the transient peri-
ods. This will cope with the limitation regarding the lack of accuracy previously
discussed. Additionally, in order to avoid the limitation caused by the possible
state space explosion when evaluating the whole model that integrates stable and
transient periods, we propose to analyze the system QoS for each workload state
-stable or transient- separately, and to compose the results later so that it is not
necessary to analyze the aggregated model.

Details on these steps are given in Sections 4, 5, and 6. In particular, Section 4
details the state space reduction of the MMPP in order to keep only the most im-
portant states. Section 5 presents models for transient periods. Section 6 provides
the theories applied for obtaining the QoS of the system without requiring the
evaluation of the whole aggregated model. It is worth noting that, from now on,
all experimental results and figures only use real traces, so the synthetic one will
be no longer used.

2From now on we will refer to stable periods as stable states, so to identify them with the
MMPP states.
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4. MMPP State Space Reduction

In this section we discuss methods that can reduce the amount of states yielded
by the algorithm in Appendix A. The first solution that comes to mind is to in-
crease the value of the input width parameter a used by the algorithm, which
inversely correlates with the number of states of the resulting MMPP. However,
according to the algorithm, the mean arrival rates λn of the proposed states calcu-
lated in such way would only depend on two values in the trace C, the maximum
and minimum arrival rate values found in the trace. The rest of values would be
irrelevant for the calculation of every λn in Λ. In consequence, we prefer to first
create an MMPP using a small value for parameter a, which will create a large
amount of states, and then apply a filtering process to keep only those states in
which the arrival rate is really most stable. For reducing the number of states,
we have analyzed different options, which are discussed below: a) keep only the
most visited states, b) keep only the states with longest “mean sojourn time” and
c) keep only the states with longest maximum “sojourn time”.

For ease of explanation let us use a trace,Ws, with the same number of entries
as C, so |Ws| = |C|. Each entryWsi, i ∈ [1...|C|], stores the index of the work-
load state in the MMPP that can generate count ci in C. Therefore,Wsi ∈ [1...N ].
This trace can be easily derived from the information in C using the algorithm in
Appendix A and the function state(ci) there described, which assigns a workload
state for each possible count of requests. Consequently, position i in Ws, has
value n, only if, in C, the count of requests for i was generated by the state sn.
Formally,Wsi = n ⇐⇒ state(ci) = sn.

a) Most visited states: For each state we count how many times it appears inWs.
We then could select as stable states those with most occurrences inWs. Even if
this method is very simple and straightforward, we have observed, exercising the
traces in Figures 1 and 13, that it is not convenient to use it. The reason relies on
the fact that the states with extreme associated arrival rates (e.g., the set of states
with highest associated arrival rate λn) are filtered because they usually have few
occurrences. Nevertheless, these states are very important, even if they rarely
happen, because they represent the worst-case scenarios. Overall this would be
an insufficient model, and therefore we did not adopt this option but we continue
searching for a better method.

b) States with longest “mean sojourn time”: First, for each state we count how
many times it appears in Ws. Second, for each state we count how many times
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it happens that Wsi = n ∧ Wsi−1 6= n, which means how many times sn has
been visited from another state. Third, for each state we calculate its “mean so-
journ time” (i.e., we divide the previous two counting values). Now we could
select a percentage of states with the highest values. It is reasonable thinking that
the states with large mean sojourn time are more stable than those states with
low mean sojourn time. A reason can be that the latter show a low mean sojourn
time because they are active only when the arrival rate is in the process of in-
crementing or decrementing. However, this option shows also a drawback. We
have empirically observed from experimentation with traces in Figures 1 and 13
that the problem in this case is caused by the short-term variability of the work-
load. It specially happens with states whose associated arrival rate is low. The
reason is that, according to [21] and the algorithm in Appendix A, the differ-
ence between each pair λn and λn+1 progressively reduces while n increments.
Therefore, for some sn with low arrival rate, the short-term variability becomes
significant, because it represents changes in the active state. These very frequent
changes cause that the average sojourn time, in these affected states, are very low,
and consequently they are filtered. Consider for instance this small sub-trace of
Ws [..., s2, s2, s2, s2, s2, s3, s2, s3, s3, s2, s3, s3, s3, s3, s3, ...]. In a long-term view,
values in the beginning are continuously s2 and values in the last part are contin-
uously s3, so both states should present long mean sojourn times. However, they
will appear with short mean sojourn times since in a short-term view the trace
presents many transitions from s2 to s3 and vice versa, which increments their
counts of times they are visited from other states, and hence it drastically reduces
the results of their mean sojourn times. Therefore, the filtering of states obtained
with this method is highly influenced by what is happening in the short-term ar-
rival rate variability. For this reason this option is also considered not suitable to
our needs. From the intermediate results, observed during our research, we en-
visioned that this drawback could be reduced through the utilization of dynamic
values for a, the “width parameter” of the fitting algorithm. Increasing its value,
when creating states representing lower arrival rate, we could mitigate the ef-
fect of the short-term variability. Such solution comes at the price of including
additional parameters in the approach, those that will drive the variations for a.
Consequently, we discarded this technique at present and we leave its research as
future work. However, the main problems of the two presented methods can be
eluded by considering for each state its longest sojourn time only, as follows.

c) States with longest maximum “sojourn time”: In this case we consider for
each state its maximum number of consecutive occurrences in the trace. More
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formally, we could define an array longestV isit of size N whose values are cal-
culated as: longestV isitn = K such that

∃i∈[1...|C|] ∀k∈[0...K−1] Wsi+k = n

∧

@i∈[1...|C|] ∀k∈[0...K] Wsi+k = n

Consequently, each element in longestV isitn indicates the longest visit that
sn receives. We sum the values in the array as sumL =

∑
n longestV isitn and

we keep the minimum set S of states whose sum of longest visits exceeds a given
proportion p of sumL. Formally, we keep the set of states S such that∑

sn∈S

longestV isitn ≥ sumL · p

∧

@S ′ ((|S ′| < |S|) ∧
∑
sn∈S′

longestV isitn ≥ sumL · p)

It is worth noting that, in this manner, the number of resulting stable states
is not preset by values p and N but it is tailored for each situation based on the
relationships among values in longestV isit. This method reduces the influence
of the short-term variability, but it is not perfect either. There might be stable
states that are difficult to identify as such. Consider for instance the sub-trace
[..., s2, s2, s2, s2, s2, s3, s2, s2, s2, s2, ...]. In a long-term view, if s2 appeared in the
workload continuously, then the maximum sojourn time of longestV isit2 would
be at least ten. However, there is a change to s3 in the sixth position, which makes
longestV isit2 to be at least five. This problem will not cause an error, because
if a state is visited for long periods, in the long-term view, some of its visits will
actually show a long visit period in the short-term -even if the maximum in each
case does not completely hold the same value-. Therefore, if s2 is usually visited in
the long-term view for periods longer than five, even not finding any sub-trace with
10 consecutive values, there can be sub-traces with 9, 8 or 7 s2 consecutive visits.
Then, we can accept this weakness and consider this method suitable enough.

For these reasons, in our approach we adopt this method to obtain a new
MMPP starting from the MMPP created by the algorithm in Appendix A, as fol-
lows. Iteratively we remove from longestV isit the state with lowest maximum
“sojourn time”. Assuming an iteration where sn is removed then:
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1. λn is removed then getting a new Λ.
2. Ws is modified by overwriting toWsi =Wsi−1 allWsi ≥ n (orWsi > n

if n = 1).

Finally, the modifiedWs can be traversed for setting the transition rate values of
the stochastic generator matrix Q in the same way as described in Section 3.1.

Applying this reduction to our previous MMPP(34), created from the work-
load trace in Figure 1 using a = 2 and p = 50%, we got an MMPP(12). The
number of states has been reduced by 65%, meaning that 35% of the states ac-
counted for more than 50% of the longest sojourn times. Despite these good
results, the work presented in this section could be further extended in the future.
Better methods could be identified to reduce the state space or improve the pre-
sented ones, for example to overcome limitations, as it might happen with a state
with only one time occurrence with a very long visit that, at present, would be
classified as stable.

5. Modeling Workload Transient Periods

This section describes the stochastic modeling of the transient periods of the
workload, i.e., those that represent increments or decrements in the arrival rate.
Consider that MMPPs model the transition from one state to another as an im-
mediate event, however, not all workload traces show such abrupt behavior, they
may have progressive increments and decrements. Consequently, the explicit and
accurate modeling of these increments and decrements will improve the system
analysis results. Moreover, since system adaptations should occur during these
workload variations, an explicit modeling and analysis may provide us with valu-
able knowledge of the system behavior beyond the QoS.

The idea of this modeling is to represent large increments and decrements in
the arrival rate while we also keep a representation of the short-term variability.
For example, Figure 6, which is an extract of the running example workload trace
C in Figure 1, clearly shows both variabilities: a) a large increment in the arrival
rate from 500 to 3000 requests every 10 seconds in a period of time around 30
minutes, and b) a short term variability where the arrival rate values show a high
frequency of oscillation causing that the arrival rate value ci+1 is similar to the
arrival rate value ci but it may be higher, equal or even lower. The large increments
in a short time, but not instantaneous, is the type of behavior that lacks the MMPP
modeling.

Consider Figure 7(a), it represents the theory of what an MMPP produces
when it changes from state sn to sn′ and vice versa. Although it represents long
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Figure 6: Variation in the arrival rate. Zoom-in from indexes [132300...133000] in Figure 1

term variability, it clearly depicts an abrupt change. However, Figure 7(b) mod-
els transient periods, which is a view of how real workloads usually change their
arrival rate and therefore what it is desired to model. It represents long-term vari-
ability between arrival rates λn and λn′ as a linear increment —if λn < λn′— or
as a linear decrement —if λn > λn′—. Note that, although this section deals with
both short-term and long-term variability, we have filtered out the short-term one
in Figure 7 only for visibility reasons.

For describing a linear increment (decrement) in the arrival rate, we just need
the mean time for the workload to change, called mtnn′ and mtn′n in Figure 7(b).
This variation in the arrival rate (i.e., the change of speed, over time, in the recep-
tion of requests) fits the concept of acceleration3.

The models for the increments and decrements presented in this section will
provide even more accurate results than the MMPP models presented so far while

3We follow the concept of acceleration in physics, i.e., the second derivative of a given magni-
tude with respect to the time. Here, the magnitude would be the requests. Then, the first deriva-
tive would be the concept of arrival rate (or velocity of the arrival of requests), whose units
are requests/second. While, the second derivative would be the acceleration, whose units are
requests/second2.
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Figure 7: Workload models considering only states of the MMPP (a) and also including transient
periods (b)

they still keep simplicity. Other approaches, as curve fitting algorithms, could of-
fer more precise formal representations of the workload variability than the linear
increments/decrements here modelled. However, such techniques are not directly
applicable to the stochastic modelling we are using here to represent the system.
Indeed, the more accurate modelling would be at the price of an higher complex-
ity in the transformation to a stochastic workload model that could be effectively
attached to the system model.

We devise two algorithms for calculating the mean time for the workload to
change from a stable state sn to another stable state sn′ , one for the case λn < λn′
and another for λn > λn′ . These algorithms generalize the one we presented
in [31], which only dealt with the MMPP(2) case. Appendix B explains in detail
the algorithm we propose for the case λn < λn′ , i.e., a period of increment in
the arrival rate, the other algorithm would be very similar. The following lines
provide a brief summary of the underlying idea of algorithm in Appendix B. The
general idea for calculating the mean time that the workload takes to change from
a stable state n to stable state n′ —mtnn′— is to identify every segment in trace
C where the arrival rate shows a continuous increment between λn and λn′ , and
get the mean length of each of these segments. The decision whether a segment
where the arrival rate changes from λn and λn′ is a continuous increment is not
trivial. The immediate method of assessing if each arrival rate in the segment has
a higher value than the arrival rate in the precedent position in the segment does
not work well due to the short-term variability present in the workload. Thus, in
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order to decide whether a segment represents a real increment, we propose to filter
out the short-term variability by grouping the values of some continuous positions
in the trace into a single value. The number of consecutive arrival rate values
in the segment to include in each group is a parameter. Then, we compare the
value of each group with the value of its successive group to asses whether they
continuously increment.

5.1. Stochastic Models for Transient Periods
In order to analyze the system behavior during the transient periods of the

workload we need to accurately model them. To this end we use GSPN [1], which
is a language well suited for the modeling of system behavior. We present two
GSPN models, which use the previously computed mtnn′: one for increments and
the other for decrements.

The GSPN Model for Workload Increment is represented in Figure 8(a). The
arrival of requests is modeled by tokens in place Parrivals. The idea is to augment
the arrival rate from λn to λn′ in a mean of mtnn′ time units.

(b)

inc

minc

hn hn’

Parrivals

Pinc
t

pSystemInputpSystemInput’

hdec

mdec

hn’

Parrivals

Pdec

(a)

t

pSystemInput’ pSystemInput

h

Figure 8: Transient period GSPN models: (a) workload increment and (b) workload decrement
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The rate at which tokens are generated is λn + λinc · #Pinc.4 In the beginning,
#Pinc = 0, then the arrival rate is λn, which is increased until λn′ along ω steps5 .
The parameters for achieving the objective of reaching λn′ in mtnn′ time units are
set as follows:

• λinc =
λn′−λn

ω
, since we need ω steps to reach λn′ .

• σinc represents the rate at which increments in the arrival rate happen. Since
ω increments occur in mtnn′ time units, then σinc = ω

mtnn′
.

• ω is a user’s choice. The higher, the more accurate the modeling, however
at the cost of increasing the state space. Figure 9 illustrates examples for
ω = {5, 10, 20, 50}.

The expert reader can argue that the examples in Figure 9 could be equivalent
to those produced by a fitted MMPP(X) where, X = ω + 1 with

Λ = (λn, λn + λinc, λn + 2λinc, ..., λn + (ω − 1)λinc, λn′)

Q =


−σinc σinc 0 ... 0

0 −σinc σinc 0 ... 0
... ... ...

0... 0 −σinc σinc
0... 0


This is true, and hence it can be also argued that it would be possible to elicit,

from the input trace, an MMPP that includes all stable and transient periods while
providing accurate modeling of the workload variability. This argument is also
true. However, the problem of such solution resides in the implementation of a
method to fit the parameters of an MMPP with such characteristics. We are not
aware of any method, for such fitting, able to emphasize on gaining accuracy in
the representation of the transient times when the system needs to adapt.

The GSPN Model for Workload Decrement is represented in Figure 8(b). In
this case tokens in Parrivals are created at rate λn′ +λdec ·#Pdec. In the beginning,
#Pdec = ω, which decreases at rate σdec. The parameters are set as follows:

4#Pinc means the number of tokens in place Pinc.
5It is worth noting that we are considering infinite server semantic for all transitions.
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Figure 9: Four examples of workload models using (a) ω = 5, (b) ω = 10, (c) ω = 20, (d) ω = 50

• λdec =
λn−λn′

ω
.

• σdec = ω
mtnn′

.

• ω is again a user’s choice.

6. Efficient QoS Analysis Guided by Workload Models

Once accurate models of both the stable and transient workload states are gen-
erated, it is the moment to evaluate the system QoS under these workload models.
A method to create a complete workload model that aggregates these types of
stables and transient models was proposed in [31]. That work dealt with the ag-
gregation of transient workload models with an MMPP(2) for stable states -one
for bursty arrivals and one for non-bursty-. However, if we would follow such
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approach then the high number of states created by the current accurate modeling
would result in a non-tractable analysis.

To overcome this limitation, rather than analyzing the aggregated model, we
propose to analyze the system QoS for each workload state -stable or transient-
separately, and to compose the results later. The solution here proposed gener-
alizes the one we proposed in [31] by applying Markov reward models (MRM)
theory [23].

It is worth noting that for our solution to be useful, the inter-arrival time of
requests should be much lower than the mean time spent in each workload state
for each visit. Fortunately, this is what usually happens for Internet services,
changes in the workload take several minutes or even hours, while inter-arrival
times of requests are in the hundredths of second.

Let us consider the states in the MRM as the union of the states in the MMPP
defined in Section 4 (called stable workload states) and one state for each of the
transient models (called transient workload states). Subsections 6.1 and 6.2 tackle
the calculation of the reward for stable workload states and transient workload
states respectively. Later, Subsection 6.3 focusses on the generation of the CTMC
that governs the MRM and the achievement of QoS results.

6.1. QoS Analysis in Stable Workload States
In stable workload states the system only suffers short-term variability, that we

model with exponentially distributed inter-arrival times -a standard technique for
system QoS analysis-. The presence of short-term variability affects the system
QoS, but it should not be a reason to adapt the system. The motivation is that
the short-term variability oscillates with a frequency in the order of some seconds
while the system adaptation —in terms of activating and booting new resources—
may take several minutes. In this case, unless it were performed a very accurate
prediction of the future workload values, which is a topic out of the scope of this
work, when the system completes its self-adaptation the new system configuration
would no longer be necessary. Such a frequent adaptation rate would create a
too unstable system that moreover would not work better than a static system.
Therefore, if only short-term variability existed in the workload, the system should
be in a configuration that allows it to satisfy its QoS even with the inconvenience
created by this frequent oscillations in the arrival rate. So, we assume that for each
stable workload state an expected system configuration exists.

We create a parametric Markovian model calledMsys(R) representing the sys-
tem nominal behavior using R resources. As workload model we consider for each
state sn in the MMPP(N) proposed in Section 4, a Markovian model called Mwk,
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Figure 10: Examples of GSPN models: (a) Mwk, (b) Msys(R) of the system in Section 2 and (c)
Magg(R)

which represents an arrival rate of requests with λn. For system QoS analysis in
sn (i.e., whose results will become the reward values of the MRM for sn) we cre-
ate an aggregated6 model Magg(R) = Msys(R)||Mwk. We can analyze Magg(R)
to obtain: 1) the expected number of required resources rn under workload Mwk;
and 2) results for the QoS metrics we pursue (e.g., response time).

Figure 10 depicts examples of these models in the GSPN language: part (a) a
workload Mwk, part (b) the single service system illustrated as running example
in Section 2 Msys(R), and part (c) the aggregation of these models Magg(R).

6.2. QoS Analysis in Transient Workload States
In transient workload states the long-term variability in the arrival rate is rep-

resented and, consequently, the system adaptation for allocating or deallocating
resources occurs. These periods are placed between stable workload states, as
represented in Figure 9. Let us call snn′ the transient period between stable states
sn and sn′ . We create:

6For aggregation we use theory of place composition proposed in [15].
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• Msys(R) as in previous subsection.

• A Markovian model,Madapt, that represents the adaptation logic. We follow
a simple model for the adaptation logic since this concern is not the main
scope of the paper.

• A Markovian model, Mwk, that represents the increment (if λn < λn′) or
decrement (if λn > λn′) in the workload, as described in Section 5.

For system QoS analysis in snn′ (i.e., the result that will be the reward of the
MRM for snn′) we create an aggregated model Magg = Msys(rn)||Mwk||Madapt,
where Msys(rn) is an instance of Msys(R), R = rn, rn calculated as in previ-
ous subsection for stable state sn. The main behavior of Magg represents how the
system serves requests while the workload is changing and the number of allo-
cated resources vary from rn to rn′ according to the adaptation logic. Appendix
C presents examples of Mwk, Msys(rn), Madapt and also of the final system Magg.

We can analyze Magg to obtain: output1) results for the QoS metrics we pur-
sue; and output2) the mean time between the moment when the arrival rate starts
incrementing until the moment when both the arrival rate has reached λn′ and the
system is in a configuration to serve requests at such rate.

From output2 and mtnn′ –parameter calculated in Section 5– we can obtain
mtadaptnn′ = output2 − mtnn′ . It provides the mean time that passes between the
moment when the workload has already reached λn′ and the moment when the
system has just finished its adaptation and it is ready to appropriately serve re-
quests at rate λn′ .

6.3. Generation and Analysis of an MRM
We initially consider that the states of the MRM are those of our MMPP(N);

the state transition matrix of the MRM, QMRM , will initially be Q, the CTMC
given by the infinitesimal generator of the MMPP. Then, we need to extend the
MRM to also consider the transient periods.

For including a transient period snn′ , we:
1) remove transition QMRM

nn′ ;
2) add a state snn′ in QMRM ;
3) add a transition from sn to snn′ with rate Qnn′ in QMRM ;
4) add a transition from snn′ to sn′ with rate 1

mtnn′+mt
adapt

nn′
in QMRM . There-

fore, QMRM
n→n′,n→n′ = −QMRM

n→n′,n′ and for each j 6= n′, QMRM
n→n′,j = 0.
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Figure 11 graphically details the inclusion of three transient states7 in a CTMC.
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Figure 11: Modification of the CTMC: (a) Q, (b) transient states, (c) QMRM

QMRM needs to be adjusted because currently the time spent in transient states
is also represented by the stable states, so we have to appropriately reduce the
mean time in stable states. Figure 12 illustrates an example of this issue. For a
stable state sn, we have to consider the time already included in transient states
that sn reaches and those reached by sn, as follows:

1,1 2timeToSubtract

2,2 1

MMPP and MRM state superposition

s21s2s12s1 s1

timeToSubtract

1,1timeToSubtract2

(c)

MRM states

s1s2s1 s21s2s12s1 s1

MMPP states

(a) (b)

1 2,2timeToSubtract

Figure 12: Time modeled in both states, stable and transient

7Since we have converted a transient period into a state of the MRM, from now on we will call
transient states to transient periods.
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• For each transient state sxn that reaches sn we consider timeToSubtractx→n,n =
mtxn/2 +mtadaptxn . The rationale is that mtxn (i.e., mean time incrementing
or decrementing) should be represented only by the transient state but now
this time is also considered in the origin and target stable states. In conse-
quence, we subtract half of it from the origin and half from the target. On
the other hand, mtadaptxn (i.e., mean time to adapt) is included in the tran-
sient state and in the target state sn, hence we subtract it from the latter. For
example, in Figure 12(c),

timeToSubtract1→2,2 =
mt12

2
+mtadapt12

For each sn we considermeanTTSinputsn as the mean of all timeToSubtractx→n,n.

• For each transient state snx reached by sn we consider timeToSubtractn,n→x =
mtnx/2. In this case we subtract the half part corresponding to the origin,
as explained before. We do not decrement adaptation time here since such
a time should only affect the target states. For example, in Figure 12(c),

timeToSubtract2,2→1 =
mt21

2

For each sn we considermeanTTSoutputsn as the mean of all timeToSubtactn,n→x.

Finally, the mean sojourn time in state sn is

−1

Qnn

−meanTTSinputsn −meanTTSoutputsn

and we appropriately update QMRM as

QMRM
nn =

−1
−1
Qnn
−meanTTSinputsn −meanTTSoutputsn

We also need to update in QMRM the state transition rates of each stable state sn
to ensure that the sum of all its rates is equal to −QMRM

nn , while preserving the
transition probabilities. For doing this, all transition rates from sn are scaled by
factor QMRM

nn

Qnn
.

For example, in Figure 11(c):

QMRM
22 =

−1

−1
Q22
− (mt12

2
+mtadapt12 )− (

mt23
2

+
mt24

2

2
)
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and

QMRM
2,2→3 = Q23

QMRM
22

Q22

Now QMRM correctly characterizes the CTMC governing the MRM states -
stable and transient-. We calculate the steady-state probability distribution of the
CTMC, πT , as the solution of πTQMRM = 0 where πT1 = 1. We refer to πn
as the probability of being in a stable state sn and to πnn′ as the probability of
being in a transient state snn′ . The steady-state expected reward, which is the
steady-state QoS in this case, is calculated as usually [35, 19]:

qos = (
∑
∀ sn

πnqosn) + (
∑
∀ snn′

πnn′qosnn′)

Let us finally note that, although QMRM may potentially consist of N stable
states plus (N2 − N) transient states, some transient states are not required for
analysis. For example, between stable states sn and sn′ we do not need a transient
one when:

• There is no one-step transition from sn to sn′ , i.e., qnn′ = 0. Here we
benefit from the reduction on the number of stable workload states and state
transitions performed, since it helps to have a Q matrix populated with a
high proportion of zeros.

• The expected system configuration in sn is the same as in sn′ , i.e., rn = rn′ ,
in this case there is no need to adapt the system during the workload change.

7. Evaluation

This section presents evaluations of the proposed approach. Such evaluations
use aggregated models, Magg(R), which are compositions of a system model
Msys(R), represented by a GSPN, and workload models Mwk.

The first evaluation is presented in Subsections 7.1 and 7.2. The first subsec-
tion presents experiments for creating a model of the workload that represents the
behavior of the real workload trace in Figure 1. The system model used is the
GSPN in Figure 10(b) and its workload models those in Figures 10(a) and 8. Sub-
section 7.2 presents and discusses the quality of the obtained results in terms of
system availability evaluation.

The second evaluation is presented in Subsection 7.3. It has been carried out
to provide additional validity to our approach.
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a num States a num States a num States a num States
1 67 2 34 3 23 4 17
5 14 6 12 7 10 8 9
9 8 10 7

Table 2: States of the MMPP following the algorithm in [21] using different values for parameter a

7.1. Evaluation of the outcome of the algorithms
Here we present the results of our approach for creating the workload model

varying the values of its parameters: a, p, L and ω.

Parameter a: As described in Section 3.1, it is a width parameter that is used
for calculating the initial number of states in the MMPP and the arrival rate in
each state. We have experimented with values from 1 to 10. Table 2 presents the
results. It can be seen how, for low values, this parameter has a strong influence in
the resulting number of states, while for large values the number of states proposed
does not vary much. As proposed in Section 4, we will choose low values of a
in order to first create a large number of states and then reduce them according
to other characteristics of the workload trace beyond its maximum and minimum
values.

Parameter p: As described in Section 4 it represents the percentage for reduc-
ing the number of states of the initial MMPP following the technique states with
longest maximum “sojourn time”. We have experimented with values from p =
100% to p = 20% in steps of 10%. We have calculated the amount of states of the
reduced MMPP when the initial MMPP was calculated with values from a = 1 to
a = 4. These results are represented in Table 3, together with the percentage of
reduction in the number of states resulting from pruning the percentage 100−p of
lowest maximum sojourn times. In Table 3 it can be seen that the sojourn times of
the states are not homogeneous. For example, in the 10% of difference between
using p=100% and p=90%, the number of states is reduced around the 20%. It
means that the sojourn time of several of the states initially created by method
[21] summarized in Appendix A for the trace in Figure 1 is much under the mean.
However, in the 10% of difference between using p=30% and p=20% the number
of states is reduced only around the 8%. This fact justifies the observation that
there are states whose visits take much less time than other states, and the arrival
rate values produced by these states can be considered as transient.
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a=1 Initial states = 67
num num num

p States % p States % p States %
1 67 0% 0.7 39 42% 0.4 20 70%

0.9 55 18% 0.6 32 52% 0.3 14 79%
0.8 48 31% 0.5 26 61% 0.2 9 87%

a=2 Initial states = 34
num num num

p States % p States % p States %
1 34 0% 0.7 19 44% 0.4 10 71%

0.9 27 21% 0.6 16 53% 0.3 7 79%
0.8 23 32% 0.5 12 65% 0.2 4 88%

a=3 Initial states = 23
num num num

p States % p States % p States %
1 23 0% 0.7 11 52% 0.4 6 74%

0.9 18 22% 0.6 9 61% 0.3 4 83%
0.8 14 39% 0.5 7 70% 0.2 3 87%

a=4 Initial states = 17
num num num

p States % p States % p States %
1 17 0% 0.7 9 47% 0.4 4 76%

0.9 13 24% 0.6 7 59% 0.3 3 82%
0.8 11 35% 0.5 5 71% 0.2 2 88%

Table 3: States of the reduced MMPP for different values of width parameter a and proportion
parameter p
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Parameter L: This parameter is used when calculating the mean time that the
workload takes to change, process that was summarized in Section 5 and detailed
in Appendix B. This parameter represents the number of consecutive arrival rate
values in a segment that will be grouped in a single value in order to decide if the
segment represents a continuous increment/decrement in the workload or it should
otherwise be ignored. We have experimented with a set of values that range from
30 seconds to 2.5 minutes in steps of 30 seconds. That is, when an interval of
change in the workload between states is discovered, to filter out the short term
variability, we group the number of requests in periods of length L. We have also
checked the amount of real increments/decrements obtained if parameter L would
not be used. Table 4 depicts, in function of L values (represented in minutes),
the number of state changes that existed in the example trace and the number of
them that were considered real increments or decrements to calculate the mean
changing times between all states. The results of the experiment that did not
consider parameter L are represented in the table as “No L”. We have observed
the variation of L in the number of states created by setting a = 2 and ranging p
between 0.7 and 0.4 in steps of 0.1.

It can be concluded that, the larger the value of L the more changing intervals
are considered real increments/decrements. The reason is that the short-term vari-
ability in the arrival rate is filtered in a higher degree, which in turn also entails
that there might be considered as real increments/decrements some of the inter-
vals that should have been ignored. It is worth noting that, in some cases, if the
L parameter is not used, none of the intervals initially found between two states
were identified as “real increment” or “real decrement”. For instance, this fact
happened 5 times for the cases of p=0.5 and p=0.4.

Parameter ω: As described in Section 5.1 it is used to stochastically model the
transient increments and decrements in the workload. We refer to the study shown
in Figure 9 to show the effect of its different values.

7.2. Quality of the results
The goal is to compare the QoS results obtained by our approach with those in

Table 1, which were obtained by using each single value in the trace of Figure 1 to
simulate the system behavior along time. We parameterized the model as follows:

• We have chosen a = 2 because it is small enough as to generate a high
quantity of states in the MMPP. At the same time, this value is also large
enough for producing states with arrival rates with sufficient separation.
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a=2 p=0.7 allIntervals=48407
real real real

L changes L changes L changes
identified identified identified

No L 22967 1 44177 2 46324
0.5 39639 1.5 45602 2.5 46749

a=2 p=0.6 allIntervals=32444
real real real

L changes L changes L changes
identified identified identified

No L 15231 1 29337 2 30797
0.5 26350 1.5 30286 2.5 31112

a=2 p=0.5 allIntervals=12990
real real real

L changes L changes L changes
identified identified identified

No L 5620 1 11360 2 12071
0.5 10000 1.5 11830 2.5 12220

a=2 p=0.4 allIntervals=3276
real real real

L changes L changes L changes
identified identified identified

No L 1300 1 2541 2 2733
0.5 2220 1.5 2657 2.5 2788

Table 4: Number of state changes and number of them that were considered real incre-
ments/decrements
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The latter is useful in case that two neighbor states are both selected as
stable states by the state reduction algorithm. If arrivals in each state will be
generated following the exponential distribution -as it happens in MMPP-,
the value a = 2 allows the identification of the state that generated each
arrival in the workload log with high confidence during the fitting process.

• For p we have chosen 50% because in Table 3 for a=2 this is the threshold
from which the reduction in the number of states is less than the increment
of p (i.e., above p = 50%, each increment of 10% in p creates a reduction
lower than 10% in the number of states).

• L is set to one minute since each count in the workload trace represents a
time interval of ten seconds, then L = 6.

• Parameter ω is set to 10.

With this setting, our approach created 12 stable states (as corresponding to the
value given in Table 3 for a=2 and p=50%) and 19 transient states (14 representing
an increment in the workload and 5 a decrement) with a corresponding MRM of 31
states. From the MRM evaluation we obtained a system availability of 99.96%.
The availability of the real system obtained from the simulation with the actual
data in the workload log was 99.94%, as showed in Table 1.

To gain more insight about the behavior of the system, using these results
we have also calculated that the workload is in stable states the 98.4% of time,
while the remaining 1.6% is in transient states. Moreover, we have measured that,
in stable states, the system reaches an availability of 99.99%, while in transient
states the availability is 99.27%.

The importance of considering both the transient workload times and the sys-
tem adaptation times in their model-based representations is motivated by the fol-
lowing facts:

• If the model does not represent adaptation times. It means that the model
represents a system that could instantaneously change the amount of used
resources in any moment. In other words, this representation is equivalent
to assume that the system is always using the correct amount of resources.
A similar concept is what our MRM would represent if it would only take
into account the results in its stable states. The availability evaluation of
these states provided us the result of 99.99%. Therefore, if the model did
not represent adaptation times, we would fall into an overestimation of the
system availability.
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• If the model does not represent transient times, we can obtain an underesti-
mation of the availability. The reason is that the model represents a system
that starts its adaptation to use the correct amount of resources when the
workload has completely changed. For example, there would be modeled
that the system starts adapting when the workload is already high, then re-
sulting in periods where the availability obtained from the model is lower
than the real one. We do not provide a quantity for this result because the
straightforward model of this situation incurs in the state-space explosion.
However, in [31] is described an example of this kind of underestimation
that was possible to quantify because the workload model consisted of only
two states and hence it was tractable.

7.3. Application to the MAWI dataset
This section addresses a second evaluation of our approach. Again, we are

using a real workload trace, in this case provided by the MAWI8 dataset [13, 27].
In particular, we report results for a 96-hours trace9, which contains a sequence of
requests during continuous time intervals, then featuring more than 6 billions of
events. Figure 13 depicts the traffic variability during these four days, grouped in
periods of ten seconds. We can easily distinguish four cycles of day and night. We
can also see a heavy increment in the traffic around index 15000 and many traffic
bursts along the trace that can reach about 500000 events every ten seconds, which
happen suddenly and do not last for much time.

As for the real system to consume the workload, we have experimented with
one similar to that used in the previous evaluation, so to match assumptions and
results. The assumptions are then as follows. The system can queue 10 packets
before start serving them, and a packet will be lost if it finds the queue plenty upon
arrival. To manage a reasonable number of resources, we assume that each one
can serve 20000 packets per second (note that if using a rate of 40, as for the FIFA
case, our system then would need more than a thousand of resources). Finally,
the results obtained were that the 99.9968% of packets can be served and that the
average number of active servers should be 3.55.

Next, we simulated the adaptive system with the new trace and the proposed
hysteresis-based approach. As parameters, we used a = 2 and p = 50%. We
then obtained an MMPP made of 286 states, which was later reduced to 66 after

8MAWI offers traces of a backbone, which is a transit link of WIDE to an upstream ISP. The
traces go from 1999 to 2017, since 2006 they cover daily traffic.

9Link to the traces: http://mawi.wide.ad.jp/mawi/ditl/ditl2009/
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Figure 13: Requests every 10 seconds of MAWI 96-hours trace

applying the proposed state space reduction. The MMPP(66) still had more than
two thousand of transitions between states. For pragmatic reasons, we applied
again the approach with a = 4 and p = 25%, which produced an initial MMPP
of 143 states. It was reduced to an MMPP(15), the number of transients states
identified for the MRM were 16, where 13 of them correspond to increments in
the arrival rate and the other 3 to decrements. Therefore, the MRM consisted of
15 + 16 = 31 states. The model analysis obtained the following results:

• Percentage of served packets 99.9982%. Therefore, the approximation has
been in the fifth significant figure with respect to the real system result.

• The workload remains the 97.518% of the time in the 15 stable states.

• The workload remains the 2.482% of the time in the 16 transient states .

• In the stable states, the system serves the 99.99977% of the packets.

• In transient states, the system serves the 99.93764% of the packets.

These results demonstrate again the importance of modeling the transient pe-
riods, when the workload changes but the system is still adapting towards its best
configuration. Although only accounting for 2.482% of the time, transient states
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are important because they discard packets around 260 times more frequently than
the stable states.

8. Discussion of the Approach

This section discusses benefits and limitations of the proposed approach ac-
cording to six dimensions: the QoS properties to evaluate, the changing traffic,
the real-time models, the efficiency of the approach, the effectiveness of the ap-
proach, and the upper bound for the workload model.

On the QoS properties to evaluate. The paper has applied the approach to the
evaluation of two different QoS properties: availability and packet loss. The
availability was interpreted as “readiness for correct service” [3]. The case of
packet loss assumed that packets were discarded depending on the saturation of
the system. For other possible causes of packet loss, such as network problems,
an appropriate system model representing the behaviour of interest should be cre-
ated. Previously, in [31], we evaluated another QoS property, the system response
time. Summarising, our approach is not restricted to a given set of QoS properties,
although the engineer needs to build the system model that allows the evaluation
of the QoS properties of interest.

On the changing traffic. Our approach accommodates in a single model several
different workload intensities and changes between them. When the workload
changes, the model does not become imprecise, unless a change in the more gen-
eral workload pattern happens. Therefore, it is expected that the model remains
valid for “long periods” of time. We say “long period” with respect to the time
needed to create the model. Since guessing the moment when a complex workload
pattern has changed is a difficult task, we suggest that rearranging the model may
be a task that could be scheduled periodically (e.g., daily, weekly or monthly).

On real-time models. The creation of the workload models is not immediate. The
time needed to create them may be negligible when the rearrangement process
is carried out in a daily or weekly basis, as a background task. However, it is
too time consuming to execute the full approach during the frequent and real-
time process of taking an adaptation decision. As a single workload model is
expected to be valid for a long period of time and for several adaptation decision

34



moments, we position the execution of the generation of the accurate workload
model in the typical slow deliberation stage of autonomous systems [17]. Such
deliberations produce part of the Knowledge that is later used during the execution
of the traditional MAPE-K control loop [24].

On the efficiency of the approach. Differently from event driven simulation, here
the time required to compute the parameters does not depend on the arrival rate
but on the number of time intervals in the trace. In particular,

1. The time to compute the initial MMPP mainly depends on the quantity of
time intervals in the trace. However, the size, in terms of number of states,
of the MMPP depends on the maximum and minimum values in the trace.

2. For any width parameter not lower than 1, as an upper bound, the number
of states is lower than the square root of the maximum value. For instance,
for a width parameter of 2, 1000 states can describe an arrival rate from 1
to 4 million of events per time interval. Therefore, the representation of the
MMPP does not create a limiting constraint.

3. The process of reducing the number of states also depends on the number
of intervals in the trace.

4. It is necessary a QoS evaluation for each of the states in the MRM created in
Section 6.3 -to calculate the reward values of each state- and an additional
model evaluation of the MRM itself.

On the effectiveness of the approach. It has been confirmed by the accuracy of
the results of the experiments in Section 7. However, factors that may reduce such
effectiveness could be the following:

1. The accuracy of the results provided by the model-based analysis/simulation
engine, GreatSPN [14] in our case. For states with very low residence time,
as one per thousand of time, a rounding error in the third decimal may mean
to double the expected residence time.

2. We have found that the MAWI trace contains some entries that represent
very abrupt increments that last for extremely little time. Although this
property of the trace violates some of the assumptions under which our
approach was developed, the results obtained were pretty accurate. For in-
stance, around index 5350, in the trace of Figure 13, we can found that
the arrival rate suddenly increments from around 240000 packets every ten
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seconds to more than 520000, and then it immediately decreases again to
around 240000. This could probably cause that a reactive adaptation en-
gine will not be able to follow the speed of changes in these concrete cases.
We believe that providing our model also with an explicit representation of
these cases of abrupt variation can further improve the accuracy of the re-
sults. However, we leave this study as future work because such possible
extensions will entail an increment of the complexity of the model, hence
reducing its practical application.

On an upper bound to calculate the workload model. We see at present two upper
bounds to calculate the workload model. The first refers to the level of automa-
tion.There are still some manual steps, and these are a limitation for the applica-
tion of the approach. At present, all the steps from the beginning of the execution
to the generation of parameters for the models and the states and transitions of
the MRM are automated. These steps entail: the creation of the initial MMPP,
the creation of the state reduced MMPP, finding the transient periods and the
computation of the parameters for the transient models and stable models (e.g.,
λn, λn′ , λinc, λdec, etc.). However, the computation of the reward values that are
associated to states in the MRM still needs some manual work. Therefore, the
more states in the generated MRM, the more manual work required, being an up-
per bound on the the amount of manual work that can be afforded. The second
upper bound refers to rounding errors in numerical calculations. In transient mod-
els where arrival rate values are very high and the transient period relatively slow,
the internal numerical analysis of the model performs arithmetical operations with
real values whose operands differ in several orders of magnitude. This may cause
inaccuracies in the results due to rounding errors during these operations.

9. Related work

Workload modelling and analysis has been widely recognised as a critical part
for the design and development of dependable software systems, see, for example,
the work on capacity planning by Menasce et al. [28], or the works of Serazzi et
al. [6, 26] considering different types of applications, just to cite a few. Besides,
it has been observed that the workload, for some kind of systems, is far from
being stable but it presents high variability and shows burstiness [30, 2]. There-
fore, if the workload model does not account for the existing burstiness, then the
model analysis can lead to optimistic results. Research on workload and network
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traffic considering the burstiness in the arrival rate used MAPs and MMPPs [16]
and their results show an accurate modeling of the workload variability, see for
example [21, 25]. In particular, work on fitting MMPP and MAP parameters
from workload traces with burstiness is very useful for the analysis of QoS prop-
erties of a wide range of systems. The parameter fitting of Markovian models,
such as MMPPs, starting from traffic traces is a promising research field where
works [20, 22, 29, 34, 10, 11] propose techniques that can be of interest for the
adaptive systems field. Some of these fitting works also deal with the modeling
of burstiness characteristic. Recent work [9] proposes a generalization of MMPP
that also allows representing the arrival process of requests for systems that re-
ceive different classes of requests. However, to the best of our knowledge, this
aspect has been neglected in the modelling and analysis of adaptive systems. We
think that this topic is of great importance for systems deployed on the Internet
since it will help to improve their behaviour and overall performance and quality.

Starting from the results in [31], we strove for an extension to deal with more
than two stable states, i.e., to advance towards an MMPP(N) modeling. In fact,
we knew that if we were able to get such fine grain modeling then the accuracy
of the QoS results would be of great quality, which was the main critical issue
in our initial work. To this end we exploited the results obtained in [18, 7] to
choose the estimators of the workload trace and the algorithm proposed in [21, 25]
to fit the MMPP(N). Then, we had to deal with the QoS analysis problems we
have described in the paper, which completely reshaped the proposal in [31]. The
proposed QoS analysis is able to guarantee that the system meets the requirements
in any state -stable or transient-. This is a restriction harder than to meet the
requirements considering only a fully aggregated model as we have initially done
in [31].

10. Conclusion

Current generation of systems deployed on the Internet needs substantial im-
provement to adequately manage workload issues. Unfortunately, it is very com-
mon to hear everyday news about degradations, disruptions or even complete fall
down of systems. The situation will aggravate when deployments in the cloud
become first class citizens, which will happen soon. Most of these QoS problems
arise due to an inappropriate system management of the workload, which in the
Internet is bursty and highly variable. Self-adaptive techniques offer a solution for
Internet-deployed systems to adequately manage workload issues. However, the
very burstiness and variability make the adaptation processes challenging.
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In this work we have proposed a model-based evaluation of the QoS of adap-
tive systems. The characteristics of our approach make it specially suited for
Internet deployed systems. Our solution addresses the problems and challenges
previously described. Then, we proposed an accurate modeling of the burstiness
and variability phenomena that allows identifying the adequate moments for sys-
tem adaptation. Moreover, we leveraged stochastic models to attain an efficient
QoS analysis of the system, which implies the use of Markov Modulated Poisson
Processes and Markov reward models.

There are several interesting directions stemming from this work to be inves-
tigated. Currently, the transient periods are modeled with linear increments or
decrements in the arrival rates. Different behaviors, such as logarithmic or ex-
ponential, could be analyzed and compared with the linear ones. Another possi-
ble line of research include the consideration of different analysis techniques and
their comparison with the Petri nets adopted in this work. We are also working on
the implementation of our approach on a real testbed, to assess its effectiveness
through a more comprehensive set of real experiments.
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Appendix A.

We present here the main steps of the algorithm presented in [21]. It receives
as input a trace of counts of requests received in consecutive intervals of time.
Let us denote by: C the trace of counts, as the trace that originated Figure 1; |C|
the number of entries in C, and ci the count of requests the i-th entry in C where
i ∈ [1...|C|]. The algorithm first creates the vector of arrival rates Λ and then fits
the transition rate values in Q. These two processes are briefly described in the
following:

Create a vector of arrival rates: To create the arrival rate in each state and, at the
same time, to decide the value for the amount of states N , the algorithm uses the
maximum and minimum values in C, called max(ci) and min(ci) respectively.

• First, it assigns λ1 = (
√

1 +max(ci)− 1)2.

• Then, to create every λn, n > 1 , it iteratively applies the formula λn =
(
√
λn−1 − a)2.

• The algorithm stops right after finding the first λn that satisfies λn−a
√
λn ≤

min(ci).

Parameter a has an arbitrary value, e.g., a = 2 in [21]. It represents the width
in the number of standard deviations, of the Poisson distribution, for the range
of observations that will be associated with each arrival rate. For example, a = 2
means that there will be associated to each arrival rate all the observations between
its mean plus/minus two standard deviations.
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The value of n in the last iteration is assigned to N (i.e., the dimension of the
MMPP) and the vector Λ is filled with the calculated λn values 1 ≤ n ≤ N .

Fit the transition rate values: The fitting procedure in [21] of values in Q as-
sumes that each ci in the trace can only be produced by one state. Therefore, it
exists the function state(ci) that, given a count of requests ci (i ∈ [1, |C|]), returns
the state sn that generated it (1 ≤ n ≤ N ).

The behavior of function state(ci) is the following: state(ci) = sn if and only
if ((λn − a

√
λn) < ci)∧ (ci ≤ (λn + a

√
λn)).

The univocal assignment of a state to a count of requests under this rule is
possible because the algorithm followed to create λn values of the MMPP ensured
that:

∀n∈[1..N ],@ n′ 6= n | (
√
λn − a)2 < λn′ < (

√
λn + a)2

Using this state(ci) function, values qnn′, n 6=n′ in Q are calculated as the prob-
ability of being the count of requests in position i+ 1 produced by state sn′ given
that the count of requests in position i has been produced by state sn (i.e., formally
P (state(ci+1) = sn′ | state(ci) = sn)).

Finally, values qnn are calculated as qnn =
∑

n′:n′ 6=n qnn′ .

Appendix B.

We illustrate here the algorithm that calculates the mean time for the workload
to change from a stable state sn to another stable state sn′ (case in which λn <
λn′).

• First step: Data int workload trace with counts of requests C is traversed to
find all intervals of increment from λn to λn′ . Each interval is defined by its
bounding positions in C: [init, end]. Bound values init and end must satisfy
that:

(cinit−1 < λn) ∧ (cend+1 > λn′)

∧

@ k ∈ [init, end] | ck < λn ∨ ck > λn′

• Second step: In order to calculate a meaningful value that represents the
mean time for the workload to change between values λn and λn′ , we need
to identify among the intervals found in the previous step in C those ones
that are “real increments” in the workload trace. As “real increment” we
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mean the intervals that show continuous increment in the long-term view.
The reason to identify the “real increments” is that the workload trace C may
contain different changing behaviors between λn and λn′ , two examples of
changing behaviors between values λn and λn′ are shown in Figure B.14.
We want to ignore the intervals whose changing behavior is like the one de-
picted in Figure B.14(a) because they do not really represent a direct change
between values λn and λn′ and could jeopardize the study, and keep the in-
tervals whose changing behavior is like the one in Figure B.14(b). Hence,
we decide to keep the intervals that show continuous increment in the work-
load and ignore those that contain some arrival rate decrements. However,
this distinction is not straightforward to implement due to the presence of
short-term variability in all the workload trace C, which makes pinpointing
continuous increments more difficult. Therefore, to address this step, the
short-term variability should be temporarily filtered out in order to decide
whether an interval shows continuous increment. The algorithm below in
this Appendix addresses this issue.

end

n

hn’

hn

hn’

c end

c init c init

c end

(a)  (b) 

init end init

h

Figure B.14: Examples of workload increment

• Third step. For each interval that was kept in the previous step, calculate its
length as end − init. Then, calculate the mean of these lengths and assign
such value to mtnn′ .

Algorithm for deciding “real increments” in the workload
Given an interval [init, end], the algorithm decides whether it represents a

“real increment” of the workload. The basis of the algorithm is to check whether
the workload is continuously increasing in the long-term within the interval.
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• First step. To filter out short-term variability, we add the number of re-
quests received during L consecutive periods into a single value. So, the

i-th aggregated value, where i ∈ {0, ..., b end−init
L
c}, will be

L−1∑
l=0

cinit+iL+l.

L is a user’s choice and represents how much we filter brief variations: a
too low L would not filter short-term variability, while a too high L may
recognize as continuous increments intervals that should be ignored.

• Second step. To check whether the workload is continuously increasing, we
verify that

∀i∈{0,...,b end−init
L

c−1}

L−1∑
l=0

cinit+iL+l <
L−1∑
l=0

cinit+(i+1)L+l

Appendix C.

Figure C.15 depicts examples of stochastic models using GSPN. Part (a) mod-
els a workload increment, Mwk, according to Section 5.1. Requests are repre-
sented by tokens in places pSystemInput and pSystemInput′, the first used by
Msys(rn) and the latter by Madapt. Part (b) models the system in Section 2 when
using rn resources. Part (c) models a simple rule-based adaptation logic. The
logic adds resources as a function of the arrival rate during the last time interval
of length t−1Interval. Concretely, if the number of requests is higher than x1, then it
adds up to res1 resources; if it is higher than x2, then up to res2; and if it is higher
than x3, then up to res3. Methods to calculate suitable resi and xi values in this
case have already been proposed [32, 33]. Finally, Madapt also models, through
transition tsetup, the time required to boot resources -servers and application- be-
fore they are ready to serve requests.

Figure C.16 depicts the aggregation of the three models in Figure C.15, com-
posing them by places pSystemInput, pSystemInput’ and pResources.
This Petri net depicts a cycle of workload increment and adaptation. We decided
to obtain the QoS results by using a steady-state analysis of the Petri net. So, we
tuned the model to behave as a regenerative process of the cycle. We then added
an immediate transition that fires when the cycle is finished for creating the initial
marking again.
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Figure C.15: Examples of GSPN models: (a) Mwk, (b) Msys(rn) and (c) Madapt
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Figure C.16: GSPN aggregated model, where rn = 4
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