
����������
�������

Citation: Malo-Perisé, P.; Merseguer,

J. The “Socialized Architecture”: A

Software Engineering Approach for a

New Cloud. Sustainability 2022, 14,

2020. https://doi.org/10.3390/su

14042020

Academic Editor: Tin-Chih

Toly Chen

Received: 2 January 2022

Accepted: 6 February 2022

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

The “Socialized Architecture”: A Software Engineering
Approach for a New Cloud

Pedro Malo-Perisé and José Merseguer *

Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, 50009 Zaragoza, Spain;
736201@unizar.es
* Correspondence: jmerse@unizar.es

Abstract: Today, the cloud means a revolution within the Internet revolution. However, an oligopoly
sustaining the cloud may not be the best solution, since ethical problems such as privacy or even
transferring data sovereignty could eventually happen. Our research, coined as the "socialized
architecture," presents a novel disruptive approach to completely transform the cloud as we know it
today. The approach follows ideas already working in the field of volunteer computing, since it tries
to socialize spare computing power in the infraused hardware that institutions and normal people
own. However, our solution is completely different to current ones, since it does not create hyper-
specialized muscles in client machines. The solution is new since it proposes a software engineering
approach for developing “socialized services”, which, leveraging an asynchronous interaction model,
creates a network of lightweight microservices that can be dynamically allocated and replicated
through the network. The use of state-of-the-art patterns, such as Command Query Responsibility
Segregation, helps to isolate domain events and persistence needs, while an API Gateway addresses
communication. All previous ideas were tested through a complete and functional proof of concept,
which is a prototype called Circle implementing a social network. Circle has been useful to expose
problems that need to be addressed. The results of the assessment confirm, in our view, that it is
worth to start this new field of work.

Keywords: software architecture; microservice; cloud; distributed systems

1. Introduction

It is well-recognized that we live in a highly digitized world, where computer systems
are a nuclear part of our lives, being indispensable to develop a dignified life. It is not
difficult to see the benefits they have brought, e.g., improvement in countless processes,
economic growth, and wealth. Its flaws are not hidden either: job destruction as a result of
automation, the digital divide between gender and generations, or the privacy scandals
that flood the media [1,2]. However, in addition to all these important questions, there is
another problem: the dependence of these systems of hosting in the cloud. In 2018, 37% of
deployments were on premise, that is, hosted on the infrastructure of the organization that
developed the system. Just two years later, in 2020, 83% of deployments are made on cloud
solutions [3]. In two years, the use of the cloud has increased its market share by 10%. At
this rate, in 2025 the cloud will be the only option on the market. This progression is caused
by good reason: cloud hosting has been a revolution within the internet revolution.

The cloud revolution has brought unprecedented cost reductions, which is the main
reason why companies decide to migrate to the cloud [4]. The cloud offers unattainable
scalability, replication, and fault tolerance solutions compared to on-premise approaches.
Such simplicity of use makes it possible to deploy an infrastructure in just a few clicks,
which, until a few years ago, would have involved months of work for several systems
engineers. However, reality says that around 74% of the cloud hosting market is own by
three companies: Amazon, Microsoft, and Google [5]. They rule a market used by 93%

Sustainability 2022, 14, 2020. https://doi.org/10.3390/su14042020 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14042020
https://doi.org/10.3390/su14042020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-5538-3553
https://doi.org/10.3390/su14042020
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14042020?type=check_update&version=1


Sustainability 2022, 14, 2020 2 of 21

of worldwide companies. The math is clear: of every 100 companies that use the cloud,
68 will depend on data hosted by them. If, as we have said, those 68 systems are nuclear
pieces in the lives of millions of people, the power that we are granting to these companies
is similar to that of states. Without going any further, 50% of governments already use
cloud solutions in their deployments [6].

The fact that such a small group of companies account for such a high proportion of
deployments may imply ethical problems [7]. Let us remember that the business model of
cloud providers is not based only on offering computing capacity but also on hosting the
data from which the applications are fed. Although there are regulatory frameworks that
protect users from third-party access to these data, there is no barrier, beyond the legal one,
that prevents either an operator or the very same company access without leaving a trace
to the content of an infrastructure over which, ultimately, they have full control. Privacy is
perhaps the most immediate problem, but we must not forget others: censorship of critical
systems or sites, manipulation of stored data, or disruption of functioning for spurious
purposes. Ultimately, the cloud may imply to effectively transfer data sovereignty, and the
control of the correct and continuous operation of our systems, to large corporations.

Despite this scenario, the fact that these issues are possible does not mean they will
necessarily happen. They are just a possibility, and as such should be considered and,
ideally, prevented. Obviously, prevention is not reason enough to give up all benefits that
the cloud offers. Computer systems are developed, for the most part, by companies that
seek to maximize profitability. Social and ethical motivations in the fight against oligopolies
will never be a strong argument to give up to them. This is why, if it is intended to reverse
this situation and regain control over systems requiring hosting, an option is to struggle for
a sustainable profitability—that is, to offer alternatives that can compete, with the “status
quo” of the cloud, and endure in terms of cost and convenience. This was precisely the
objective of this research. The main contributions of this work are:

• Explores the focal ideas needed to propose a new cloud based on hosting “socialized
services”. Microservices and an asynchronous interaction model are at the core of
the solution.

• Offers a proposal for developing “socialized services” using state-of-the-art software
engineering patterns, such as CQRS (Command and Query Responsibility Segrega-
tion) [8] and an API Gateway.

• Develops a prototype, called Circle, that proves the feasibility of the ideas presented
and exposes the problems to address.

Although it is evident that an alternative to the cloud goes beyond the work of a single
team, this article starts by unveiling some of the many problems to address and the many
disciplines involved, such as, software engineering, distributed systems, or security. As
a modest contribution in this direction, the study offers preliminary ideas, mostly in the
software engineering field. Hence, other researchers and companies can later continue
by refining and envisioning more proper solutions, which can drive to a real sustainable
new cloud. On the other hand, the open innovation field [9,10] proposes a new innovation
model, in which companies commercialize external, and also internal, ideas by deploying
outside, and also in-house, pathways to the market. Hence, ideas that originated outside the
company can follow different paths for commercialization, such as licensing agreements or
startup projects. In this regard, ideas proposed in this work can be the foundation to a new
product, i.e., this new sustainable cloud, which overcomes the problems of the current one.

In the end, the work presented in this article must be seen as a vision statement and
its “proof of concept.” In this regard, we propose an architecture that, at an acceptable cost,
allows reliable and safe deployments outside the current cloud but without incurring the
unsustainable on-premise approach, with disadvantages such as high maintenance costs or
equipment obsolescence. We coined our solution as the “socialized architecture”.

The balance of the article is as follows. Section 2 positions the research of this article
and reviews the literature. Section 3 describes the method followed in this research.



Sustainability 2022, 14, 2020 3 of 21

Section 4 presents the findings of our research and evaluates them. Section 5 discusses
important aspects of this research. Section 6 concludes the article.

2. Problem Statement and Literature Review

The alternative we propose to the massive use of the cloud is to "socialize computing”—
that is, the distribution of the computing needs, and eventually the storage, of a system
among its users wishing to collaborate with companies that seek actions with a transfor-
mative impact or any entity wishing to bet on the reduction in cloud hosting. The process
of "socialization” consists of hosting, altruistically or not, one or more parts of the system
that you want to support in your own infrastructure. This gives rise to highly distributed
environments, executed on a heterogeneous infrastructure.

Far from previous approaches, which are revised in Section 2.1, what we propose is
the fragmentation of a multipurpose system (the backend of any modern system) into a
series of independent services. Hence, each user willing to participate in the “socialization”
process can locally host one or more replicas, of any of the services that make up the system,
the “socialized services”. These socialized replicas would be peers to others hosted, either
on the premises or in the cloud, by the organization that owns the system. Depending on
the number of socialized replicas at each moment, the organization could dynamically scale
them up. Ideally, with a sufficient mass of users, it could be reduced to zero regarding the
dependence from the cloud. The idea of altruistically distributing the computation needs
not being new, there are a number of mature technologies that allow to carry out the idea
presented. The main techniques, technologies, and methodologies that give support to our
proposal are:

• Virtualization. Specially lightweight virtualization based on containers, such as
Docker [11].

• Asynchronous communication. Advances in distributed systems offer interaction
patterns that allow for reliable low-latency communications.

• Microservices. A design pattern that promotes cohesive and focused services with
low coupling among them, as well as desirable scalability properties.

• Other patterns, such as CQRS, that enable separation of concerns in asynchronous
environments.

2.1. Literature Review

Volunteer Computing (VC), a.k.a. cycle stealing system or public-resource computing,
appeared late in the 1980s. The survey in [12] revises dozens of works in the field of VC,
proposed in the last years; hence, the idea of collaborating with a cause, by offering local
computing capability, is by no means new. VC is defined as a kind of distributed computing,
where anybody with a computer can donate idle computing resources to run computational
and storage-intensive tasks [13].

As summarized in [12], a VC system is made of volunteer nodes that donate spare
resources (Resource Nodes) and an entity that manages the donated resources and gives a
point of entry to volunteers (Resource Controller) and users of the VC system. The behavior
of VC systems is summarized in [12] as follows. The user submits the task(s) to the Resource
Controller, which after preprocessing selects a suitable or a collection of suitable Resource
Node(s) to deploy the task(s); then, the Resource Node(s) processes the task(s) and returns
the result(s) back to the Controller. Based on the deployment, the architecture of VC systems
can be centralized (client/server, C/S), decentralized (P2P), or hybrid. C/S implies the
existence of dedicated machine(s) acting as server(s) and providing resource-controlled
services. P2P relies on volunteers acting as resources and controllers; then, communication
can be coordinated without a central authority. A hybrid architecture blends the flexibility
and scalability of P2P with the security and trust leverage of C/S. However, a centralized
server still offers functionalities such as a global resource directory [12].

It is important to note that the “socialized architecture” can perfectly fit, and be
implemented, with the three models: C/S, P2P, and hybrid. This is because no restrictions



Sustainability 2022, 14, 2020 4 of 21

are made regarding where the infrastructure layer should be placed; it just provides an
API, with a minimum number of functionalities. In fact, this layer is a lightweight Resource
Controller in charge of solving services addresses, load balancing, information aggregation,
and translating the communication protocol. Then, the infrastructure layer acts as an
isolated and loosely coupled component, which communicates asynchronously with clients
and resources. As a consequence, we can choose an appropriate implementation depending
on what features need to be favored, for example, scalability versus security. In Circle, the
Resource Controller is implemented as an API Gateway by leveraging GraphQL [14].

We have not found works in the literature strictly having the same goal of the “social-
ized architecture”, i.e., to propose a complete alternative to the current “status quo" of the
cloud. However, in the VC field, and sharing similarities with our work, Kirby et al. [15]
and Che and Hou [16] discussed initial models for desktop clouds, then proposing alterna-
tives of possible architectures and discussing some of the challenging aspects to address.
From these initial models, several projects have borrowed ideas to implement solutions,
most of them in the form of a prototype or proof of concept. cuCloud [17] is a project that
follows the model in [16]. It proposes a C/S architecture where the clients run guest Virtual
Machines (VMs) and install, as it happened in BOINC [18]-related projects, a middleware
that controls the node, in this case for monitoring its utilization and QoS. This project was
built on CloudStack (https://cloudstack.apache.org (accessed on 1 January 2022)). AdHoc
Cloud [19] is based on BOINC with VirtualBox VMs installed in the volunteer machines.
The architecture is C/S, where the server schedules, monitors, and manages the jobs and the
overall system, including the VMs. The client installs a middleware that allows to commu-
nicate with the server and executes the jobs. Nebula [20] uses both dedicated and volunteer
nodes. The computation is made within the native client sandbox provided by the Chrome
browser; in this way, there is no need of VMs, as it happened in previous approaches, while
the security characteristics of Chrome can be used. The system monitors the volunteers,
updates them, and assigns tasks while controlling the load balancing. P2PCS [21] follows a
P2P architecture to get a fully distributed cloud system maintained by an overly network.
As in previous approaches, each volunteer node needs to install a middleware, in this case
as a daemon that provides an interface to send requests to the system and to communicate
with peers. A prototype based on Java has been developed for P2PCS. Finally, the table in
Figure 1 summarizes the main characteristics of these desktop clouds and compares them
with the “socialized architecture”. The column “Sw Eng. Approach" refers whether the
approach defines a software engineering approach for developing client applications.

Figure 1. Comparison with desktop clouds.

Among projects dedicated to particular cloud features, such as cloud storage, we
can mention: Storage@home [22], Fatman [23], STACEE [24], and SASCloud [25]. They
are volunteer storage cloud projects that propose alternatives to commercial products like
Amazon’s Simple Storage Service (Amazon S3). Storage@home aggregates storage donated
by volunteers and provides back-up functionalities in a C/S architecture. Fatman uses
tens of thousands of underutilized servers to create an archival system, also under a C/S
architecture. STACEE proposes a four-layers architecture (Backend, Services, Adaptation,
and Economic indicators) based on economic metrics, such as energy, that help to minimize
energy consumption and maximize user engagement. It leverages a model in which the
provision of the resources is accomplished dynamically. SASCloud offers a secure storage

https://cloudstack.apache.org


Sustainability 2022, 14, 2020 5 of 21

service in a mobile ad hoc cloud system. In this case, the architecture is hybrid, which
means to have a central authority and clients, which register as nodes. Another important
group of projects develop cloud features regarding services, such as social networking in
the cloud. Among them, we can mention SOCIALCLOUD [26] and SoCVC [27]. The first
one is a proposal in a paradigm that leverages social networks, like Facebook or Twitter,
to build cloud computing services by harnessing trust relationships common in social
networks. SoCVC (Social Cloud for Volunteer Computing) uses the APIs of different social
networks, like Facebook, to identify the users. Moreover, it proposes algorithms to indicate
the social reputations of the user’s of the system. Finally, other systems of interest in this
category are discussed in [28–30].

Although different from our work in objectives and functionalities, there are fully
functional projects in the field of VC worthy of being compared with the “socialized
architecture”. They offer technical solutions that may eventually be of interest, and perhaps
reused, in our context. BOINC [18] is used for computing intensive tasks for scientists.
It is a general-purpose middleware and offers a client to be installed in the volunteer
machine. BOINC architecture and the scheduling problem for assigning tasks to volunteers
are explained in [31], while new task assignment algorithms, which claim to minimize
completion time, are given in [32]. BOINC uses traditional technologies, e.g., relational
databases for storage, web services for offering functionality, and daemon processes for
computing. As we can see the target of the project, architecture and technologies are far
from our proposal. SETI@home [33], hosted by BOINC, is a project for signal processing
in the extraterrestrial environment. Based on a C/S architecture, the clients download and
just process the work units and return results to the server. The most salient feature is the
redundant computation to detect malicious users. As in the previous case, SETI@home
largely differs from our proposal in goal and architecture. DreamLab [34] is a mobile app to
collectively help in computing for COVID-19 projects. Regarding BOINC and SETI@home,
it installs a piece of software, on general-purpose equipment, for it to execute computational-
intensive processes. In all three cases, the users who participate do it selflessly. However,
in these projects, the local software pieces always act as simple slave executors of a specific,
highly specialized task, which is computationally intensive. Different to our proposal,
the software pieces are remotely orchestrated, so they are not nuclear pieces of a larger
computer system. They are only a hyper-specialized muscle in a task.

Among the most recent proposals in the VC field we have found the following. The
work in [35] proposes the integration of VC and vehicular ad-hoc networks (VANET).
The idea is to utilize the surplus vehicular computing resources. The work defends the
existence of a high amount of available resources in different scenarios: parked vehicles,
vehicles at a traffic signal, vehicles in congestion, or smoothly moving vehicles. The
goal is not to propose a concrete architecture but the ideas needed for carrying out a
master–slave computation leveraging the VANET for VC. In this regard, the work discusses
a taxonomy for this new field, the scenarios where to apply it, and the challenges. The
applications for this surplus of computing are the usual ones: high-performance computing,
autonomous vehicles, intrusion detection, content distribution, connectivity, and efficient
communication. In the scope of 5G cellular technologies, Cao et al. [36] proposed a novel
user cooperation approach in both computation and communication for mobile edge
computing (MEC) systems. The idea is to improve the energy efficiency for latency-
constrained computation. The work is based on the premise that wireless devices can
offload computation-intensive and latency-critical tasks to access points and cellular base
stations in close proximity.

3. Method

The methodology we followed for this research was to initially develop a proof
of concept. We thought that a functional prototype would help us to critically assess
the concepts, given in the previous section, underpinning the “socialized architecture”.
For such a disruptive concept, a mere theoretical proposal and discussion might not be



Sustainability 2022, 14, 2020 6 of 21

appropriate, due to the scarcity of sources on the matter. In addition, the fact of facing a
real development allows,aspects that would otherwise be hidden to emerge.

A complete development of the “socialized architecture” implies to devise many
challenging aspects. Among others, we would need to develop new technologies, to address
intricate issues regarding security or to develop micro-services for different application
domains. Then, we propose to implement a small-scale system prototype powerful enough
to consider as many casuistic and features as possible, while keeping a substantial basis for
reasoning and obtaining meaningful conclusions regarding our proposals.

We developed Circle (https://github.com/Pitazzo/circle (accessed on 1 January 2022)),
a social network, similar to Twitter [37], offering a set of cohesive functionalities, that
conforms to a complete system for evaluation. Registered users publish short texts receiving
likes from other users, and it can be retrieved by more recent or best scored publications, as
well as popular users. Circle also offers a system of subscriptions and notifications. Table 1
summarizes the main functionalities implemented. Although the domain is seemingly easy,
it is rich enough to support a wide range of use cases. In addition, it can be fragmented
into sub-domains that can be managed by separate microservices, without demanding
cross-communication needs.

Table 1. Requirements for Circle.

Users
FR1 The system allows registration using a nickname and an email.
FR2 The system allows to edit the user profile.
FR3 The system allows to consult other user profiles, by nickname or by querying

the n-top with more publications or the n-top with more subscribers.
Contents
FR4 The system allows to add publications, with title and body.
FR5 The system allows to give likes to publications by others.
FR6 The system allows to consult the n-top more recent publications or the n-top

publications with more likes.
Subscriptions
FR7 The system allows users to subscribe to other users.
Notifications
FR8 The system notifies subscribed users, by email, when publications are added.
FR9 The system notifies users, by email, when another user is subscribed to his/her

publications.
FR10The system notifies users, by email, when another user gives a like to one of his/her

publications.

Circle is used through an API, queried by GraphQL [14], offering services for sup-
porting user requirements, persistence, and all technical infrastructure for the system to
be fully operative. Although no user interface was developed, the richness of the system
forces to deal with the following aspects to address the needs of experimentation and
analysis consistently:

• The need of implementing mechanisms for ensuring integrity while reacting to domain
events. For example, when we query the users publishing the most, then the users
and contents microservices need to be consistent while each one keeps managing its
own entities.

• The need to interact with external services based on internal events. For example,
when sending emails to report content published to subscribed services.

• The need of aggregating information when querying different services. For example,
when getting the user profile with the list of his/her publications.

• The need of scaling services. It should be easy to add replicas for a given service.

https://github.com/Pitazzo/circle


Sustainability 2022, 14, 2020 7 of 21

4. Results

This section presents and discusses the proposals currently considered to carry out
the concepts behind the “socialized architecture”. As previously remarked, our aim was
to open a field of work. Hence, these are preliminary ideas, a starting point, for other
researchers to fertilize the field. We think that offering an initial body of solutions, although
modest, is the best way for researchers to grab and understand the underlying concepts.
Consequently, the reader should not take for granted that all the solutions explored here
are the best; what we defend is that they work to carry out the “socialized architecture”,
just to demonstrate the feasibility of the idea.

4.1. An Asynchronous Interaction Model

In today’s cloud, control over the infrastructure is complete. Therefore, the operation of
the cloud is usually guaranteed, through Service Level Agreements, with figures higher than
99%, obviously due to the high degree of replication. Additionally, these companies invest
large amounts in the deployment of submarine cables and optic fiber, then ensuring low
latencies in their data-centers. In summary, this first-class infrastructure achieves stability
and security in deployments, which is precisely another of the successes of the cloud.
However, by relying the “socialized architecture” on a heterogeneous leased infrastructure,
made of different hardware solutions, it cannot enjoy the advantages of the cloud. On the
contrary, new problems arise:

• Non-homogeneous latency times. The same service could be replicated both on a
Raspberry Pi plugged to a home network or in a high-performance data-center of
a university.

• Unstable network bandwith. Home networks have different quality of service (QoS)
policies than ad hoc networks in data-centers. Furthermore, they are affected by other
users’ use of bandwidth. For example, a user who hosts a replica of a “socialized
service” may decide to consume a streaming video service at the same time.

• NATs and private IPs. Hardly any current home network has a static public IP
address. Most of them are behind a NAT4 and their associated shared addresses can
change at the discretion of the internet service provider. This means that any incoming
communication to an instance of a “socialized service” may not be possible, as the
other services do not know how to reach such replica.

As a result, we need to recognize that the reliability of the overall “socialized architec-
ture” is necessarily low. These problems led us to rule out synchronous communication
protocols, such as REST [38] or RPC, since they require limited latency times, a degree of
network stability, and a method to enroute messages. Therefore, we envision, as a principal
use case, that interactions, among “socialized service”, will be demanded without all the
interlocutors being alive synchronously. Undoubtedly, interaction patterns based on asyn-
chronous communications are the natural choice for these scenarios. Message passing [39] is
a natural choice in this context, and if we combine it with the concept of message broker [40]
the problem can be controlled:

• Latency times loose importance, since senders continue their workflow until, if neces-
sary, a response arrives.

• The instability of the network becomes a minor problem, as long as the broker remains
up. When a message is sent, if one of the possible receiving replicas is disconnected
from the network, another will take the message from the queue to complete the
communication. If, for example, a network partition left all the replicas without
communication with the broker, the reliability mechanisms of the latter would make
the message persist locally, until some replica is ready to process it.

• Routing messages to services is no longer a problem, since the broker acts as a central-
ized agent, being the services who initiate the communication. The broker, hosted at a
known static address, is always traceable by the services, regardless if they are behind
a NAT. In addition, the public IP-change process becomes completely transparent.



Sustainability 2022, 14, 2020 8 of 21

Certainly, the use of asynchronous pattern interactions convert the system into a
reactive one. Then, each service can independently act, and it can react to domain events
produced in the scope of the system. This model is known as event-driven architectures [41],
a category to which the “socialized architecture” belongs. As a consequence, services are
completely decoupled from each other. Another advantages of using a broker that help in
the design of the architecture are:

• Offers delivery policies, timeouts, or centralized security, which are all configured in a
common place.

• Reduces an attack’s exposition to the broker, so we do not need to secure each service
endpoint.

• Provides a centralized method to obtain usage logs and metrics.
• There are many open-source implementations and protocols to run the broker. Among

them, RabbitMQ [42] stands out, as it will be discussed in Appendix A.

However, we can also point out some drawbacks:

• The broker becomes a single point of failure: if it stops working the entire system
would too. However, this is a well-studied problem, and most implementations offer
replication and clustering mechanisms that minimize this risk.

• Running the broker implies an additional infrastructure cost, which is even higher if
the degree of replication necessary to mitigate the above risk is applied.

For designing and implementing an asynchronous model, different approaches can
be taken. Considering current technologies, we strongly believe that queuing systems are
today a plausible approach. In queuing systems, a queue, managed by a broker, allows to
publish and consume messages, which are simple data structures. Queues allow many
different management policies, for example, in Circle we used FIFO. For the “socialized
architecture”, we regard a message as a serialized object that represents either a command,
a query, or an event (as required by the CQRS pattern, explained in Section 4.3). Each
service will be represented by a queue.

For an asynchronous model to be implemented using queues, several design decisions
need to be taken:

• Each service will publish, as messages, its commands, queries, and events. They will
be published in a dedicated exchange.

• Each message will be replicated as many times as services are subscribed to it. Obvi-
ously, each replica will populate the queue representing such a service, and the queue
will be attached to the exchange of the publisher service. By doing so, we ensure that
different consumers (other services) do not steal messages from each other.

• All replicas representing the same service will be using the same queue for a particular
type of command, query, or event. In this way, the different replicas are competing
for the same message, but eventually only one achieves it. As a consequence, scaling
a service is as simple as to add more replicas to the queue representing such service;
then there is no need of load balancing. Hence, we achieve “scalability by design.”

• Each service replica owns a queue of where to get the answers for its requests. This is
because together with the publication of the query, each replica appends the name of
the queue, where the executor service must respond.

Figure 2 represents the queue design for carrying out the proposed asynchronous model.



Sustainability 2022, 14, 2020 9 of 21

Figure 2. The system of queues.

FR4 of Circle is a good example to understand the approach. In a traditional REST [38]
(Representational State Transfer) approach, the contents service will communicate with the
users service directly, to increment the number of publications of the author. However, in
our reactive proposal, upon sending the publication, the contents service only publishes an
event announcing a new post. Services interested in such an event are already subscribed
and will react as indicated by its business logic. In this way, we can maximize service
decoupling, while the latency of direct communication stops being an issue.

4.2. Microservice Architectures

A first step to achieve “socialized services” goes through the “partition of the system”
in small software pieces, which eventually will be “containerized” and hosted by third
parties. Undoubtedly, the smaller the pieces the best, otherwise the socialization process
lose a main incentive: to get a minimum impact hosting a replica in the altruistically leased
hardware. Certainly, no one will host a container if it means to sacrifice a good part of
his/her resources. Hence, it is vital to “minimize” the replicas, both in size and in its
resource demands.

Being mandatory requirements, both the “partition of the system” and the “minimiza-
tion” of such partitions, the architectural solution is clear: microservices. They are described
by Newman [43] as “an approach to distributed systems that promotes the use of small
independent services with their own life-cycles, which collaborate jointly.” Microservices
promote a fragmented development, where the different services communicate among
them, while trying to maximize cohesion and minimize coupling. This can be achieved,
among others, by reducing the scope of the services to concrete domains and specialized
use cases—hence, obtaining small services, as desired in the “socialized architecture”.

We understand that reducing the size is not a main goal of the microservices architec-
ture but a consequence of its principles. However, for us, such a reduction is determinant
for choosing the pattern. Moreover, microservices come with other advantages for the
“socialized architecture”:

• Resilience. Microservices systems are more fault tolerant; when a service falls, the
rest of the system is not affected, only those services relying on it. This is important
for the “socialized architecture” since the underlying infrastructure is more prone to
failure as previously discussed.

• Scalability. Microservices scale better than monolith approaches. When a use case
is overloaded it is enough to horizontally scale only the services related to it. In our
context, this is desirable since the organization can react more easily before a low
number of replicas of a given service.



Sustainability 2022, 14, 2020 10 of 21

• Easier deployment. The individual deployment of a service is easier than that of a
larger piece of software. There are less dependencies, and lighter configurations are
also easier. This is important to encourage to users the local installation of replicas.

Microservices also have downsides. First, they are much more complex to develop
than monolithic approaches, basically due to the inherent communication processes and
the variety of failures they may cause. Second, the testing process is necessarily more
complex. Third, if synchronous communication patterns among services are proposed,
which is the common way for them, then more latencies are obtained. The latter should not
be a problem in our context.

4.3. Approach for Development

Different to approaches discussed in Section 2.1, the “socialized architecture” should
not impose a specific programming language, development framework, or whatever re-
striction is needed for the environment where “socialized services” will be deployed. For
example, in SETI@home the tasks are completely dependent on the environment provided
for the client application. For the “socialized architecture” to be an alternative, their services
should be developed using state-of-the-art software engineering. A first implication of such
requirement is the use of virtualization techniques, as it will be discussed in Section 4.4.
However, a second implication arises, which is the need to offer design guidelines for the
development of the “socialized services”.

The essence of the “socialized architecture” relies on distributing the computation
needs among home computers, which basically means to distribute the replicas of the
services among these computers. Such services, designed as microservices, should offer
the system functionalities, i.e., the business logic and the persistence model. However,
such design must also take into account the asynchronous model, and the reactive nature
of the architecture, as proposed in Section 4.1. A solution we envision for the design of
the microservices is the use of the Command Query Responsibility Segregation (CQRS)
design pattern [8,44]. In addition, it greatly helps to address an appropriate “separation of
concerns,” which is an advantage to design well-focused microservices. In the following, we
explain the main characteristics of the pattern and analyze its suitability for the “socialized
architecture”.

CQRS enables a system for two clearly differentiated interaction patterns: commands
and queries. Commands are actions implying a change on the system state, while no infor-
mation is returned. Whereas, queries are operations that are not changing the system state
but returning the user some data. Queries and commands will follow well-differentiated
paths in the system, using segregated processing models. On the other hand, CQRS in-
troduces the concept of bus. Commands and queries are dispatched using different buses,
to which handlers are subscribed. Usually, the bus only manages calls to local functions
representing the handlers, which results in a monolithic approach. Being our architecture
based on microservices, this approach is not feasible. Instead, we opted for creating an
API Gateway to publish commands and queries. The API Gateway will also help in imple-
menting the asynchronous model, in the case of Circle packaging commands and queries
into an AMQP [45] message. Then, services will subscribe to these messages. The function
triggered when a message is received fulfills the mission of classical handlers. Figure 3
summarizes our idea of using the CQRS pattern.

The API Gateway is a common pattern in microservice architectures. In particular, it
will be in charge of solving services addresses, load balancing, information aggregation,
and translating the communication protocol. Moreover, while it would be reducing the
exposition of the system in terms of security, it could also act as an authentication entity.
As drawbacks, it represents a single point of failure and requires additional infrastructure
for its deployment.



Sustainability 2022, 14, 2020 11 of 21

Figure 3. High-level view of the CQRS pattern applied to microservices.

Following CQRS, each service plays as an executor of the logic in its corresponding use
case. Moreover, it is of interest for each service not to own the state and be replicable. So, the
system could execute different replicas of the service without an additional configuration.
For the architecture to address all the restrictions above, each service will also need to
accomplish the following well-defined functionalities:

• Implement an API that offers the system functionalities assigned to it. The API is
made of commands and queries, according to CQRS.

• Attend the API orders (commands and queries). It will accept or reject them once the
parameters have been validated. The order will eventually be executed if applicable.

• Emit domain events as a result of the commands that trigger them.
• Listen to domain events, produced by other services, and react to them.
• Interact with a persistence service whenever a command or query requires it.

For Circle, we devised a users service, a contents service, and a subscription service, so
to resemble the main system functionalities. Figure 4 depicts an UML components diagram
for one of the services in Circle. It faithfully reflects our canonical proposal for each service
of the architecture. Hence, each service is made of a couple of sub-components:

• An amqp-controller, in charge of communicating with the rest of the system compo-
nents. It reacts to the commands, the queries, and the events it has been subscribed. It
also publishes domain events needed by the business logic it implements.

• The core of the service, which encapsulates the business logic and also manages the
components persistence. Previously, it registers callbacks in the amqp-controller for
being executed when needed.

The advantages of using CQRS are clearly explained in [8]. Fowler advocates CQRS be-
fore CRUD systems because they overcome the “anemic” nature of the latter. Additionally,
Fowler highlights the performance of CQRS. However, CQRS increases system complexity
by forcing the developer to think in a different way. For example, in an init session use case,
when the system changes state for establishing the session a command should carry out the
action. Consequently, nothing should be returned by the system longer than the acceptance
of the order. However, for the system to inform the user about the result of the command, a
subscription mechanism, as the one proposed, is mandatory. Such a mechanism completely
fits with our asynchronous model.

Summarizing, the cost of applying CQRS is high. However, it was decided to propose
it due to its performance and asynchronous nature. As explained, we need to take into
account the uncertainty of the underlying hardware infrastructure. Therefore, we opted
for considering the worst-case scenario and then assumed that the performance should
be highly optimized. Finally, regarding our case study, it is true that it is not calculation
intensive nor critical about obtaining immediate responses, but we implemented it fol-
lowing our architectural proposal, obviously to obtain accurate results and to obtain the
corresponding lessons.



Sustainability 2022, 14, 2020 12 of 21

Figure 4. UML components diagram for the user service of Circle.

4.4. Virtualization and Deployment

The premise, given in Section 4.3, of not imposing specific environments leads to
opt for solutions based on virtualization. Moreover, when we deal with dependencies,
configurations, heterogeneous environments, or incompatible versions or systems, the
installation processes used are complex and error prone.

A solution to these problems lies in virtualization, especially lightweight containers.
Operating-system-level virtualization provides watertight runtime environments. This
allows a high degree of isolation, at the same time that it is hardly an overhead to the
system, since it is not necessary to emulate the entire virtualized system. For the purpose
of the “socialized architecture”, we consider this as an appropriate solution:

1. It provides an easy method to package software together with its dependencies and
configurations.

2. It offers isolated execution environments.
3. It hardly implies an overhead in the system greater than the one that would derive

from executing the service natively.

On the other hand, for the “socialized architecture” model to succeed, it is important
to obtain a significant number of users. So, the existence of processes that automatically
deploy the “socialized services”can greatly help to this end, and we can argue that this is
a mandatory requirement. The deployment of Circle lets us to learn about the problems
needed to be addressed for achieving such automation. Section 5.3 discusses the solution
we took for deploying Circleand the issues we found.

4.5. Evaluation

The assessment of Circle is of importance, as it will help to appraise our proposal from
at least two points of view: First, the correctness of the design decisions made to shape
the architecture and, second, the feasibility of the technologies we selected. For such an
assessment, we selected three standard metrics: the response time, the resource demand,
and the latency.

Table 2 summarizes the results we obtained for response times when executing the
different requirements. As it can be observed, the mean time was below 600 ms, even for
concurrent request, which is a reasonable result. At the light of these results and with a
deep investigation, not here reported, we can assess the following. Regarding technologies,
we could inform the suitability of all of them. However, for GraphQL we report the
following. We need to consider that the results may vary considerably depending on the
selected fields. In the tests, we asked for information for each entity once at a time. For
example, when querying users, we did not query information about his/her related posts.
Nested queries would imply the need of launching a second service, which will make it



Sustainability 2022, 14, 2020 13 of 21

impossible to compare results homogeneously. Subsequently, we performed additional
tests for evaluating nested queries. Then, we identified exponential response times. FR3
specially highlights this situation. Here, response times could reach even 6000 ms. This
behavior for nested queries is a consequence of the sequential sending of the messages to
the microservices. Following with FR4, the query related to posts is not sent until all the
information regarding the users is obtained. This is the standard GraphQL behavior, but
no trivial solutions exist.

Table 2. Response times.

Code Success Tmean Sequential
(ms)

Tmean Concurrent
(ms)

FR1 Yes 412.3 494.6
FR2 Yes 408.1 548.4
FR3 Yes 468.4 600.9
FR4 Yes 458.3 546.2
FR5 Yes 438.6 569.9
FR6 Yes 432.9 547.6
FR7 Yes 407.3 507.9
FR8 Yes 493.4 641.8
FR9 Yes 521.8 633.3

FR10 Yes 416.2 518.1

Table 3 presents the resource demands of the containerized services. The notifications
service was identified as the most demanding. This is due to its interaction with the email
external service. We can conclude that the results are satisfactory since the impact of the
containers, in the overall context of the system, is low when they execute. The results were
obtained using the very same tricks offered by Docker when executing.

Table 3. Resource demands (information obtained from Docker).

Service RAM Mean Demand (MB) CPU Peak (%)

users-service 85.0 4.5
content-service 95.0 3.0

notifications-service 110.0 6.0

Regarding latency times, an average access time between the replicas and the message
broker of 35 ms was calculated. Given the high volume of messages exchanged by replicas
and broker, it is especially important to get this figure as low as possible. This being one
of the most critical factors for the performance of the system, we believe that we can be
satisfied with the result.

5. Discussion

Circle was developed using an iterative approach. Once use cases were clearly defined,
then a few of them were developed, so we could understand the technologies involved
and refine the asynchronous interaction model proposed, see Section 4.1. After that, we
developed an initial complete prototype, where agile concepts started to guide the project.
Later, the prototype was refactored using Domain Driven Design [46], and a common
library was defined, see Section 5.1. Finally, part of the project was redesigned following
good practices on software quality. This last refactoring ended up producing the current
version of our proof of concept.

In the following, we discuss three important aspects that came up in the development
of Circle. They are key to understand the development of “socialized services” since they
tackle decisions regarding implementation and design. On the other hand, the development
of Circle, as a reference application for the “socialized architecture”, implied to select many
technologies. The choices necessarily were based on the design advantages that some of



Sustainability 2022, 14, 2020 14 of 21

them can offer over others. Appendix A reports the most interesting technologies selected
for Circle.

5.1. Library

While implementing the first prototype, we understood the need of sharing code
among different system components. We identified some common domain objects but spe-
cially the classes implementing the communication among services. Hence, we created the
circle-core library, which is imported by all services, including the API Gateway (explained
in Section 4.3). Their contents have been designed in three layers:

• Domain layer. Objects related to the application domain. For instance, a class to
encapsulate unique identifiers.

• Application layer. Classes encapsulating the logic of the services. For instance, objects
representing commands, queries, or events.

• Infrastructure layer. Classes managing communication among services and encapsu-
lating AMQP [45] implementation.

Undoubtedly, as a design decision, the use of a common library reduces code du-
plication along the project. The idea here is that “socialized services” can reuse the in-
frastructure layer, while the implementation of the other layers can be seen as guidelines
for designing the application specific needs (the implementation of Circle is available in
https://github.com/Pitazzo/circle (accessed on 1 January 2022)).

5.2. GraphQL

GraphQL [14], developed by Facebook, is an API’s design pattern trying to replace
REST by overcoming some of its limitations. GraphQL, as a query language for a data
model given by the server, executes on HTTP, while it interacts with web services in a richer
way than REST. GraphQL offers three interaction methods:

• Using queries. The server supports nested queries, which can also be concatenated.
• Using mutations. These operations change the server internal state. Like queries, they

can be concatenated and parameterized.
• Using subscriptions. They are a special data type but are similar to queries. However,

they can update data dynamically. For example, if you subscribe to a web service for
an asset that is “publicly traded,” then you obtain its current value, and as soon as the
server updates the info, the subscription updates the client.

GraphQL is used in Circle as a communication protocol between clients and the API
Gateway. We chose it for several reasons—initially, because of its semantic richness but also
because GraphQL is well-aligned with the CQRS pattern. On the one hand, it segregates
commands from queries, as dictated by the pattern. On the other hand, the use of subscriptions
enhances its symbiosis with CQRS.

Regarding the latter, CQRS makes it difficult to manage API clients, since there is not a
choice for managing asynchronous responses to orders. A common solution is to introduce
“polling” mechanisms, which can improve the user experience. By “polling” we mean
to periodically execute the service for simulating synchronism. This solution, although
functional, is not efficient nor elegant, from a design point of view. However, GraphQL
subscriptions offer a solution to this problem, as follows. GraphQL allows one to subscribe
to a query, which offers the result of a command, then synchronously receiving the result
once it has been completed; obviously this does not break CQRS principles. However, for
reaching this behavior, we need to use “domain events.” Once the execution of an order
has been completed, then, it triggers the publication of a “domain event” notifying this
fact. The API Gateway, subscribed to this event, will be notified and will extract the payload
result of the received event. As a result of the notification, the API Gateway will publish
an update in the subscription of the client, which was registered after dispatching the
command. Hence, the client can receive the result of the command without the need of
“polling” mechanisms. Figure 5 shows the mechanism described.

https://github.com/Pitazzo/circle


Sustainability 2022, 14, 2020 15 of 21

Figure 5. API Gateway and client interaction, using GraphQL subscriptions.

5.3. Containers and Security

Dependencies, configurations, and code in a “socialized application” should be packed
guaranteeing fair execution in any kind of environment, without user intervention. Con-
tainers are a solution since they allow you to easily run replicas of the system, simply by
executing a shell command. Circle uses Docker, a popular and lightweight virtualization
solution, where each service has been deployed. Container images has been uploaded
to a public repository in Docker Hub (https://hub.docker.com (accessed on 1 January
2022)). These services can be executed using the commands in Figure 6. Once the images
have been downloaded, then their execution starts automatically. They are synchronized
with the broker and the database, without user intervention. The user can execute only
one service, one replica of each service or even several replicas of the selected services.
Figure 7 depicts a deployment view of the system, which can be found in a GitHub
(https://github.com/Pitazzo/circle (accessed on 1 January 2022)) repository.

The proposed deployment model comes with a security issue since we are using an
infrastructure outside of the organization. In fact, we are submitting the code, with the
business logic, and the credentials. Initially, we proposed obfuscation, i.e., to transform
the code using cryptography techniques. In this way, it is not possible to apply reverse
engineering to obtain or alter the code, while it can be successfully executed. Regarding the
credentials, the literals in the code representing them are altered using bit-wise operations.
The praxis of including credentials in the code is a non-recommended one. However,
we proposed it for the sake of using obfuscation. The good praxis is to include them
in a separate configuration file together with the code. In our case, the literals were
automatically substituted, in compilation time, from those of an external file. Certainly,
obfuscation can be an initial solution but is insufficient in industrial terms of deployment.

docker run -d pitazzo/circle:users-service
docker run -d pitazzo/circle:content-service
docker run -d pitazzo/circle:notifications-service

Figure 6. Commands for executing system services.

https://hub.docker.com
https://github.com/Pitazzo/circle


Sustainability 2022, 14, 2020 16 of 21

Figure 7. Circle deployment view.

6. Conclusions

The main contributions of this work are:

• An open proposal to overcome the cloud oligopoly, which explores solutions in the
software engineering field, such as patterns and asynchronous interactions.



Sustainability 2022, 14, 2020 17 of 21

• The implementation of a social network that implements most of the underlying
concepts and exposes the problems.

Although a great effort, in both aspects, was invested, we recognize that a significant
amount of work is still necessary for the “socialized architecture” to become a reality.
Therefore, the open innovation field, mentioned in the introduction, could be a proper mean
for accelerating the proposed ideas as inputs for companies that want to boost their internal
innovation. In the following, we discuss some pending, important aspects.

• How to distribute the persistence is a major open issue for the “socialized architecture”.
Although our research is focused on regaining "data sovereignty," our proof of concept
still depends on cloud solutions for storing the system state.

• How to authenticate users in the “socialized architecture” is an important issue,
whose design must be addressed. Answers to the following questions are needed.
Should authentication happen in the API Gateway or in the services?. Should the
authentication service be socialized? and what are the implications?

• Currently, the parameters of the orders are validated by the services that receive them,
as indicated by CQRS. However, it would be interesting to involve the API Gateway in
the process. This could bring two advantages. First, response times would improve,
since no waiting times between services would exist. Second, there would be no
need of having ready services for processing a message upon its arrival, since the
broker could persist them. Hence, the system could accept all requests, from clients,
irrespective of the number of available replicas.

• As it was identified in the prototype evaluation, Section 4.5, there is a bottleneck in
nested GraphQL queries. It would be interesting to automatically parallelize such
queries or to offer design guidelines to minimize the cases when such paralleling is
not possible.

Future lines of work must necessarily address the previous pending issues. Concretely:

• Regarding persistence, future studies could investigate:

– “Socialize” the persistence together with the replicas, managing distributed trans-
actions and consensus algorithms in a classic way, for example, as in [47].

– Leveraging decentralized hosting solutions, such as the Interplanetary File Sys-
tem [48], or new ones based on blockchain as a distributed ledger.

• Security needs to solve authentication, but also other issues, as surveyed in [49].
• Fault tolerance is another subject where advances are needed for ensuring the reliabil-

ity and sustainability of the “socialized services”.

Finally, it is needless to say that our proposal cannot compete with the current cloud
solutions, neither in performance, nor security, nor reliability. However, the important
aspect of this research is to understand that there exists an alternative to the current cloud,
which can bring more freedom to the Internet.



Sustainability 2022, 14, 2020 18 of 21

Author Contributions: Conceptualization, P.M.-P. and J.M.; methodology, P.M.-P.; software, P.M.-P.;
investigation, P.M.-P. and J.M; writing—original draft preparation, P.M.-P.; writing—review and
editing, J.M.; supervision, J.M.; funding acquisition, J.M. All authors have read and agreed to the
published version of the manuscript.

Funding: J.M. has been funded by project PID2020-113969RB-I00 of the Spanish Ministry of Science
and Innovation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: The implementation of Circle is available in GitHub repository https://github.
com/Pitazzo/circle (accessed on 1 January 2022).

Abbreviations
The following abbreviations are used in this manuscript:

API Application Program Interface
CQRS Command Query Responsibility Segregation
DDD Domain-Driven Design
FR Functional Requirement
NAT Network Address Translation
REST Representational State transfer
RPC Remote Procedure Call

Appendix A. Technologies

In the following some of the technologies used for developing Circle are briefly re-
viewed. We consider important their discussion since it can greatly help to take informed
decisions for future developments.

Appendix A.1. NestJS

NestJS [50] is defined as a NodeJS [51] framework for building efficient, reliable and
scalable server-side applications. It is known for promoting good development practices
and for using TypeScript [52], the typed version of JavaScript, which confers applications a
plus in security and robustness. It offers native support for injecting dependencies, which
offers lot of value to the “socialized architecture” since: (1) the communication between
layers is very rich, and (2) the code aligns with the hexagonal architecture [53] promoting
maintainability.

Appendix A.2. RabbitMQ

Being nuclear the communication among services, the choice of a broker is a decisive
design decision. RabbitMQ [42] offers native support to AMQP [45], the protocol used
in Circle for services interaction. Moreover, NodeJS owns libraries implementing mech-
anisms for a high-level interaction with RabbitMQ, such as amqp-lib. Applications for
the “socialized architecture” need an infrastructure supporting the management of the
queues, see Section 4.1, and message passing, both mechanisms are offered by RabbitMQ.
If the infrastructure goes down, RabbitMQ is able to wake it up from the last valid state, by
transparently managing the persistence of the messages in the queues. Also, it can store
messages until some replica is available for consuming. Finally, it is important, for the
“socialized architecture”, its mechanisms for ensuring quality of service, which go beyond
simple round-robin.

https://github.com/Pitazzo/circle
https://github.com/Pitazzo/circle


Sustainability 2022, 14, 2020 19 of 21

Appendix A.3. TypeORM

Regarding persistence, there are at least two important aspects for the “socialized
architecture”. First, to manage communication among services and their corresponding
database representations. Second, the “re-hydration”, i.e., how to transform stored entities
into objects. We choose TypeORM [54], as it is the framework of reference for TypeScript. It
implements repository [55] as a persistence pattern. Hence, it offers a class for each entity
to interact with the persistence mechanism, with a transparent solution for managing
SQL statements. The persistence model for the “socialized architecture”advocates for an
independent data model for each service, which owns the entities need for implementing
the corresponding use case. These entities share the same storage. For Circle we choose
PostgreSQL [56], but certainly we consider it as an arbitrary decision since it does not offer
significant advantages regarding other solutions.

References
1. Florea, D.; Florea, S. Big Data and the Ethical Implications of Data Privacy in Higher Education Research. Sustainability 2020, 12,

8744. https://doi.org/10.3390/su12208744.
2. Antonio, A.; David, T. The Gender Digital Divide in Developing Countries. Future Internet 2014, 6, 673–687. https://doi.org/10.3390/

fi6040673.
3. Columbus, L. 83% of Enterprise Workloads Will Be in the Cloud by 2020. 2018. Available online: https://www.forbes.com/sites/

louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/ (accessed on 1 January 2022).
4. Antova, L.; Bryant, D.; Cao, T.; Duller, M.; Soliman, M.A.; Waas, F.M. Rapid Adoption of Cloud Data Warehouse Technology

Using Datometry Hyper-Q. In Proceedings of the SIGMOD Conference, Houston, TX, USA, 10–15 June 2018; Das, G., Jermaine,
C.M., Bernstein, P.A., Eds.; ACM: New York, NY, USA, 2018; pp. 825–839.

5. Vargas, C. Cloud Market Share Report: AWS vs Azure vs Google Cloud 2019: McAfee. 2020. Available online: https:
//www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/ (accessed on
1 January 2022).

6. Rob van der Meulen. Understanding Cloud Adoption in Government. Available online: https://www.gartner.com/
smarterwithgartner/understanding-cloud-adoption-in-government/ (accessed on 1 January 2022).

7. Faragardi, H.R. Ethical Considerations in Cloud Computing Systems. Proceedings 2017, 1, 166. https://doi.org/10.3390/IS4SI-
2017-04016.

8. Fowler, M. CQRS. July 2011. Available online: https://martinfowler.com/bliki/CQRS.html (accessed on 1 January 2022).
9. Chesbrough, H.W. The Era of Open Innovation. MIT Sloan Manag. Rev. 2003, 44, 35–41.
10. Baierle, I.C.; Benitez, G.B.; Nara, E.O.B.; Schaefer, J.L.; Sellitto, M.A. Influence of Open Innovation Variables on

the Competitive Edge of Small and Medium Enterprises. J. Open Innov. Technol. Mark. Complex. 2020, 6, 179.
https://doi.org/10.3390/joitmc6040179.

11. Docker Inc. Docker—Empowering App Development for Developers. 2020. Available online: https://www.docker.com
(accessed on 1 January 2022).

12. Mengistu, T.M.; Che, D. Survey and Taxonomy of Volunteer Computing. ACM Comput. Surv. 2019, 52, 59:1–59:35.
https://doi.org/10.1145/3320073.

13. Durrani, M.N.; Shamsi, J.A. Volunteer computing: Requirements, challenges, and solutions. J. Netw. Comput. Appl. 2014,
39, 369–380. https://doi.org/10.1016/j.jnca.2013.07.006.

14. Facebook. GraphQL—A Query Language for Your API. 2012–2021. Available online: https://graphql.org (accessed on 1 January
2022).

15. Kirby, G.; Dearle, A.; Macdonald, A.; Fernandes, A. An Approach to Ad hoc Cloud Computing. arXiv 2010, arXiv:1002.4738.
16. Che, D.; Hou, W.-C. A Novel “Credit Union“ Model of Cloud Computing. In Proceedings of the International Conference on

Digital Information and Communication Technology and Its Applications, Dijon, France, 21–23 June 2011; Cherifi, H., Zain, J.M.,
El-Qawasmeh, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 714–727.

17. Mengistu, T.; Alahmadi, A.; Albuali, A.; Alsenani, Y.; Che, D. A “No Data Center” Solution to Cloud Computing. In Proceedings
of the 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), Honololu, HI, USA, 25–30 June 2017; pp. 714–717.
https://doi.org/10.1109/CLOUD.2017.99.

18. University of California at Berkeley. BOINC. 2021. Available online: https://boinc.berkeley.edu (accessed on 1 January 2022).
19. McGilvary, G.A.; Barker, A.; Atkinson, M. Ad Hoc Cloud Computing. In Proceedings of the 2015 IEEE 8th International Conference

on Cloud Computing, New York, NY, USA, 27 June–2 July 2015; pp. 1063–1068. https://doi.org/10.1109/CLOUD.2015.153.
20. Ryden, M.; Oh, K.; Chandra, A.; Weissman, J. Nebula: Distributed Edge Cloud for Data Intensive Computing. In Proceedings of

the 2014 IEEE International Conference on Cloud Engineering, Boston, MA, USA, 11–14 March 2014; pp. 57–66.
21. Babaoglu, O.; Marzolla, M.; Tamburini, M. Design and Implementation of a P2P Cloud System. In Proceedings of the 27th Annual

ACM Symposium on Applied Computing, SAC ’12; Association for Computing Machinery: New York, NY, USA, 2012; pp. 412–417.
https://doi.org/10.1145/2245276.2245357.

https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
https://www.gartner.com/smarterwithgartner/understanding-cloud-adoption-in-government/
https://www.gartner.com/smarterwithgartner/understanding-cloud-adoption-in-government/
https://martinfowler.com/bliki/CQRS.html
https://www.docker.com
https://graphql.org
https://boinc.berkeley.edu


Sustainability 2022, 14, 2020 20 of 21

22. Beberg, A.L.; Pande, V.S. Storage@home: Petascale Distributed Storage. In Proceedings of the 2007 IEEE International Parallel and
Distributed Processing Symposium, Long Beach, CA, USA, 26–30 March 2007; pp. 1–6. https://doi.org/10.1109/IPDPS.2007.370672.

23. Qin, A.; Hu, D.M.; Liu, J.; Yang, W.J.; Tan, D. Fatman: Building Reliable Archival Storage Based on Low-Cost Volunteer Resources.
J. Comput. Sci. Technol. 2015, 30, 273. https://doi.org/10.1007/s11390-015-1521-6.

24. Neumann, D.; Bodenstein, C.; Rana, O.F. STACEE: Enhancing storage clouds using edge devices. In Proceedings of
the 1st ACM/IEEE Workshop on Autonomic Computing in Economics, Karlsruhe, Germany, 14 June 2011; pp. 19–26.
https://doi.org/10.1145/1998561.1998567.

25. Al Noor, S.; Hossain, M.M.; Hasan, R. SASCloud: Ad hoc Cloud as Secure Storage. In Proceedings of the 2016 IEEE International
Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable
Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), Atlanta, GA, USA, 8–10 October 2016.
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.17.

26. Mohaisen, A.; Tran, H.; Chandra, A.; Kim, Y. SocialCloud: Using Social Networks for Building Distributed Computing Services.
arXiv 2011, arXiv:1112.2254.

27. Chard, R.; Bubendorfer, K.; Chard, K. Experiences in the design and implementation of a Social Cloud for Volunteer Computing.
In Proceedings of the 2012 IEEE 8th International Conference on E-Science, Chicago, IL, USA, 8–12 October 2012; pp. 1–8.
https://doi.org/10.1109/eScience.2012.6404452.

28. Caton, S.; Haas, C.; Chard, K.; Bubendorfer, K.; Rana, O.F. A Social Compute Cloud: Allocating and Sharing Infrastructure
Resources via Social Networks. IEEE Trans. Serv. Comput. 2014, 7, 359–372. https://doi.org/10.1109/TSC.2014.2303091.

29. Kuada, E.; Olesen, H. A Social Network Approach to Provisioning and Management of Cloud Computing Services for Enterprises.
In Proceedings of the CLOUD COMPUTING 2011, the Second International Conference on Cloud Computing, GRIDs, and
Virtualization, Rome, Italy, 25–30 September 2011.

30. Mcmahon, A.; Milenkovic, V. Social Volunteer Computing. J. Syst. Cybern. Inform. 2011, 9, 34–38.
31. Anderson, D.P. Globally Scheduling Volunteer Computing. Future Internet 2021, 13, 229. https://doi.org/10.3390/fi13090229.
32. Xu, L.; Qiao, J.; Lin, S.; Qi, R. Task Assignment Algorithm Based on Trust in Volunteer Computing Platforms. Information 2019, 10,

244. https://doi.org/10.3390/info10070244.
33. University of California at Berkeley. SETI@home. 2020. Available online: https://setiathome.berkeley.edu (accessed on 1 January

2022).
34. Fundación Vodafone. DreamLab. Available online: https://www.vodafone.com/dreamlab/spain (accessed on 1 January 2022).
35. Waheed, A.; Shah, M.A.; Khan, A.; ul Islam, S.; Khan, S.; Maple, C.; Khan, M.K. Volunteer Computing in Connected Vehicles:

Opportunities and Challenges. IEEE Netw. 2020, 34, 212–218. https://doi.org/10.1109/MNET.011.1900603.
36. Cao, X.; Wang, F.; Xu, J.; Zhang, R.; Cui, S. Joint Computation and Communication Cooperation for Energy-Efficient Mobile Edge

Computing. IEEE Internet Things J. 2019, 6, 4188–4200. https://doi.org/10.1109/JIOT.2018.2875246.
37. Twitter. Twitter—Red Social. 2021. Available online: https://twitter.com/ (accessed on 1 January 2022).
38. Richards, R. Representational State Transfer (REST). In Pro PHP XML and Web Services; Apress: Berkeley, CA, USA, 2006;

pp. 633–672. doi:10.1007/978-1-4302-0139-7_17.
39. Tanenbaum, A.; Van Steen, M. Distributed Systems: Principles and Paradigms; Pearson Educación: London, UK, 2008.
40. Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. Pattern-Oriented Software Architecture—Volume 1: A System of

Patterns; Wiley Publishing: Indianapolis, IN, USA, 1996.
41. Taylor, H.; Yochem, A.; Phillips, L.; Martinez, F. Event-Driven Architecture: How SOA Enables the Real-Time Enterprise, 1st ed.;

Addison-Wesley Professional: Boston, MA, USA, 2009.
42. VMware Inc. RabbitMQ—Messaging That Just Works. 2007–2020. Available online: https://www.rabbitmq.com (accessed on 1

January 2022).
43. Newman, S. Building Microservices: Designing Fine-Grained Systems, 1st ed.; O’Reilly Media: Newton, MA, USA, 2015; p. 280.
44. Kumar, A. Cqrs (Command Query Responsibility Segregation); Independently Published: 2019.
45. OASIS. AMQP—Advanced Message Queuing Protocol. 2020. Available online: https://www.amqp.org (accessed on 1 January

2022).
46. Evans, E. Domain-Driven Design: Tackling Complexity in the Heart of Software; Addison-Wesley: Reading, MA, USA, 2004.
47. Ongaro, D.; Ousterhout, J. In search of an understandable consensus algorithm. In Proceedings of the USENIX, Philadelphia, PA,

USA, 19–20 June 2014; pp. 305–320.
48. Chen, Y.; Li, H.; Li, K.; Zhang, J. An improved P2P file system scheme based on IPFS and Blockchain. In Proceedings of the 2017

IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017, pp. 2652–2657.
49. Tahirkheli, A.I.; Shiraz, M.; Hayat, B.; Idrees, M.; Sajid, A.; Ullah, R.; Ayub, N.; Kim, K.-I. A Survey on Modern Cloud Computing

Security over Smart City Networks: Threats, Vulnerabilities, Consequences, Countermeasures, and Challenges. Electronics 2021,
10, 1811.

50. Mysliwiec, K. NetsJS—A Progressive Node.js Framework for Building Efficient, Reliable and Scalable Server-Side Applications.
2017–2020. Available online: https://nestjs.com (accessed on 1 January 2022).

51. OpenJS Foundation. NodeJS. 2020. Available online: https://nodejs.org/ (accessed on 1 January 2022).
52. Microsoft. TypeScript—Typed JavaScript at Any Scale. 2012–2020. Available online: https://www.typescriptlang.org (accessed

on 1 January 2022).

https://setiathome.berkeley.edu
https://www.vodafone.com/dreamlab/spain
https://twitter.com/
https://doi.org/10.1007/978-1-4302-0139-7_17
https://www.rabbitmq.com
https://www.amqp.org
https://nestjs.com
https://nodejs.org/
https://www.typescriptlang.org


Sustainability 2022, 14, 2020 21 of 21

53. Alistair Cockburn. The Pattern: Ports and Adapters (“Object Structural”). 2020. Available online: https://alistair.cockburn.us/
hexagonal-architecture/ (accessed on 1 January 2022).

54. Open Source—Supported by Sponsors. TypeORM—Object-Relational Mapping. 2020. Available online: https://typeorm.io/#/
(accessed on 1 January 2022).

55. Fowler, M.; Rice, D.; Foemmel, M.; Hieatt, E.; Mee, R.; Stafford, R. Patterns of Enterprise Application Architecture; Addison-Wesley
Professional: Boston, MA, USA, 2002.

56. Obe, R.O.; Hsu, L.S. PostgreSQL: Up and Running A Practical Introduction to the Advanced Open Source Database, 2nd ed.; O’Reilly
Media, Inc.: Sebastopol, CA, USA, 2014.

https://alistair.cockburn.us/hexagonal-architecture/
https://alistair.cockburn.us/hexagonal-architecture/
https://typeorm.io/#/

	Introduction
	Problem Statement and Literature Review
	Literature Review

	Method
	Results 
	An Asynchronous Interaction Model
	Microservice Architectures
	Approach for Development
	Virtualization and Deployment
	Evaluation

	Discussion
	Library
	GraphQL
	Containers and Security

	Conclusions
	Technologies
	NestJS
	RabbitMQ
	TypeORM

	References

